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Nonlinear optical properties of Rbqznc14 in the incommensurate and ferroelectric phases
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Nonlinear optical properties of Rb2ZnC14 are measured for the incommensurate and ferroelectric
phases by means of second-harmonic generation experiments. In the temperature range of the fer-
roelectric lock-in phase, the nonlinear optical coefficients d33 d32 and d24 and the Miller 5 coeffi-
cients are determined using the wedge technique and are shown to be proportional to the spontane-
ous polarization. In the incommensurate phase of RbqZnC14, the order of magnitude of the second-
harmonic intensity corresponding to nonlinear optical coefficients allowed by the local point-group
symmetry is estimated to be at least 10 times smaller than the second-harmonic intensity generated
in quartz and thus difficult to detect. Furthermore, it is shown that quasi-phase-matching of the
fundamental and second-harmonic waves in the incommensurate phase is limited to a very small
temperature range of T~ & T & T~+0.01 mK. (Tz is the incommensurate-ferroelectric phase-
transition temperature. ) The temperature dependence of the second-harmonic intensity in the range
Tz & T & 198 K is explained by the occurrence of a defect-induced unipolar domain structure.

I. INTRODUCTION

Rb2ZnC14 belongs to the family of tetrahedrally coordi-
nated AqBX4 crystals with P-KzS04 structure. It shows a
succession of four phases with decreasing temperature:
the paraelectric phase I'nam, , the incommensurate phase
in which the wave vector of the condensed-out soft mode
qt ——[ I —5(T)](a'/3) (5 « 1, a* is a reciprocal-lattice vec-
tor of the paraelectric phase) deviates slightly from the
lock-in wave vector qc ——a'/3, the commensurate im-

proper ferroelectric, ferroelastic lock-in phase Pna 2l with
spontaneous polarization along the crystallographic c
axis, and finally the ferroelectric low-temperature phase
with monoclinic space group Alai and spontaneous po-
larization within the a-c plane. At normal atmospheric
pressure and no applied electric field, the phase-transition
temperatures are Tq ——303 K, Tc ——192 K, and TL,

——75 K
upon cooling. The small deviation of the incommensurate
soft-mode wave vector qt from qc results in a superlat-
tice, the periodicity of which is an irrational fraction of
the periodicity of the underlying lattice. As a conse-
quence the translational symmetry in the direction of the
incommensurate modulation is lost. The incommensurate
and ferroelectric phases of Rb2ZnC14 have by now been in-
vestigated using various experimental techniques such as
x-ray and Raman scattering' or nuclear magnetic reso-
nance. Spontaneous polarization data and dielectric mea-
surements are reported in Refs. 4—8. %'e finally carried
out birefringent and electro-optic measurements in the in-
commensurate and ferroelectric lock-in phases of
R12ZnC14. " Optical second-harmonic —generation ex-
periments turned out to be an efficient tool for investigat-
ing local-symmetry changes within the incommensurate
phase of Rb2ZnC14 as well as for studying the phase tran-
sition from the incommensurate to the commensurate fer-
roelectric phase. Preliminary experiments of this type
have already been reported for KqSe04 and (NH4)28eF4
crystals. ' ' These materials belong to the same crystal

family and show the same phase sequence as R12ZnC14.
Both materials, however, exhibit in the incommensurate
phase a quite different nonlinear optical behavior. In this
paper we report nonlinear optical experiments in the in-
commensurate and ferroelectric phases of Rb2ZnC14. The
experimental results in the incommensurate phase will be
compared with various theoretical models for the non-
linear optical susceptibility. The possibility of quasi-
phase-matching near Tq for light-propagation direction
along the spatial modulation axis will be discussed. In the
ferroelectric lock-in phase the temperature dependence of
the nonlinear optical coefficients d33 d3$ and d24 will be
reported and compared with the temperature dependence
of the spontaneous polarization. Furthermore, the contri-
bution of field-induced electronic excitations to the low-
frequency electro-optic effect will be discussed.

H. THEORETICAL

A. The nonlinear optical effect

1. Itlonlinear optical coefficients

In a nonmagnetic, lossless crystal the induced electric
polarization per unit volume P can be expanded as a
power series in the electric field components E of the
light waves propagating in the medium. A Fourier
transformation of this power series in time yields

( COg ) ( COgg ) ( COyg ) ( ~yg COO COp ) ( ~~ ) ( CO )
~l 0(~/'J' J' +dl J'k Ej k

{—CO;CO, CO, CO ) (CO ) (CO„) {CO )

+dijkl +j +k +I +

where we sum over repeated indices and where we have
assumed
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and

67~ =CO0 +Np

co=8.854X10 ' As/Vm is the free-space permittivity.
At low light intensities, i.e., weak electric fields E~, the
polarization is linear in the field

( „) ( „) ( „)
(3)

where 7;j is the linear susceptibility of the medium related
to the principal indices of refraction by

where po is the permeability of free space and jo(x) is the
zeroth spherical Bessel function of the first kind, or
sinx/x. I„is the intensity of the fundamental wave, I the
length of the crystal in the light propagation direction,

ff the effective nonlinear coefficient, and

b, k =k2„—2k (13)

the phase mismatch between the fundamental and
second-harmonic waves. Finally, n and n2 are the re-
fractive indices of the crystal at fundamental and second-
harmonic frequency, respectively.

Introducing the coherence length

+ii ni
2

(4) (14)

in the principal-axis system.
The nonlinear optical polarization for third-order pro-

cesses (e.g., third-harmonic generation, four-wave mixing,
. . . ) can be written in terms of the nonlinear optical coef-
ficients d,jkt or the Miller 5 coefficients, '

{co„) ( —co„;co,co, co ) (co ) (co ) (co )
( PNL )i eodlj kl Ej Pk +I (5)

or

(cog ) ] ( cog 'coq7cop cog ) (coq ) (cop ) (cog )

Ei ~ij kl Pj Pk Pl
Ep

with

where c is the free-space velocity of light, it follows from
(12) that l, is a measure of the maximum interaction
length that constructively contributes to the second-
harmonic intensity. It should be noted that relation (12)
was calculated under the plane-wave approximation for
the fundamental and second-harmonic waves propagating
in the same direction.

The nonlinear optical properties of Rb2ZnC14 were mea-
sured using the wedge technique described by Boyd
et al. ' Translation of a crystal wedge perpendicular to
the fundamental laser beam yields the following depen-
dence of the second-harmonic light power on the position

dij kl

( copf ) ( coq ) ( cop ) (~g )

e(rtii ~jj ~kk ~ll

Analogously, second-order processes (e.g. , second-
harmonic generation, optical rectification, sum-frequency
generation, . . . ) are described by

P2„(y)=Kd,gtl, P~ (n„+1) (n2„+1)

X I 1 —[cos(2q))]e (15)

or

( co+ ) $ ( co+ co0 co ) (co0 ) ( co )

E; "=—5,Jk
" ' ~Pj 'Pk~

6p

where

(co„) ( —co„;co,co ) (co ) (co )
(PNL) "=eodjk "' ' '&,. '&k ' (8) where P is the fundamental power and K a constant de-

pendiug essentially on the parameters of the laser beam.
The phase mismatch for the translating wedge (wedge an-
gle 8) is

~ytan(9
O'= 0'p+

2l,

( —co;co,co }
( —co;cop, co )

dijk
(~p ) (~p ) ( ~fg )

eo jj ~kk ~ii

where we have assumed normal incidence. We write

heptane
g 7

l,
The |) coefficients have the advantage of being nearly fre-
quency independent, whereas the d coefficients show con-
siderable dispersions. It has been shown' that the values
of 5 are comparable in different materials specifically in
oxygen-octahedra ferroelectrics.

the beam-width parameter with mp describing the beam
waist inside the crystal.

S. The incommensurate phase of R12ZnC14

2. Second harmonic g-eneration (SHG)

Solving Maxwell's equations with

(P )(2') e ~( 2ar, rd. co)E(co)E(al)—
NL &i ~Mijk j k

as a source term, we get for the second-harmonic intensity
I2„ in the nondepleted input approximation

d lI =2 O' I2 'ff 22 Akl
(12)

In the incommensurate phase of Rb2ZnC14, the soft
mode belongs to a two-dimensional irreducible representa-
tion' and a Lifshitz invariant' is allowed by symmetry.
Expressing the transition parameters p and q in terms of
the polar coordinates A (x) and P(x),

p (x)= A (x) cosP(x), q (x)=3 (x) sin(I)(x), (18)

a Landau expansion of the free-energy density yields in
the continuum limit
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g(x)= —A + A + A cos(6$)
Pl 4 12

2 4 6
2

—oA +-2dg «q dII) dA

dx 2 dx dx
+ ' 0 ~ ~

where a=ao(T —To) is the only temperature-dependent
coefficient. The first two terms represent the standard
Landau expansion in a homogeneous crystal. The P2 term
represents the anisotropy energy responsible for the lock-
in transition at Tc and has six minima for 0&/ &2n
The o term is the Lifshitz invariant inducing the transi-
tion to the incommensurate phase and the x term
represents the elastic energy stabilizing the homogeneous
phase. The minimization of the free energy

2. The multisoliton limit

It is clear from relation (25) that, with decreasing tem-
perature, the amplitude A of the order parameter in-
creases and the anisotropy term in the free-energy density
can no longer be neglected. In the low-temperature part
of the incommensurate phase the plane-wave approxima-
tion consequently breaks down and is replaced by the mul-
tisoliton limit. The phase P is now a solution of the sine-
Gordon equation

d' &2 4.
A sin(6$) =0,

dx

which can immediately be derived from the phase equa-
tion (21) assuming the validity of the constant-amplitude
approximation. The solutions of this nonlinear differen-
tial equation can be written in the form

L,S=—I g(x)dx
0

(20)
x = F(k, 3$),

2y
(28)

is a variational problem leading to the Euler-Lagrange
equations where

1/2

dP
PzA sin(6$)= A o.—a

dx dx (21)

and

(29)

2
=A a+13IA —2o

dx dx dx

+P2A cos(6$) (22)

F(k, 3$)= (30)
[1—k sin (3Q)]

is an incomplete elliptical integral of the first kind. The
integration constant y can be obtained from the condition

1. The plane-wave approximation

Close to the paraelectric-incommensurate phase transi-
tion the anisotropy term is small and can be neglected rel-
ative to the Lifshitz term. Assuming the constant-
amplitude approximation dA/dx=0 (Ref. 18), the phase
equation (21) yields

27r/3

where

(23)

(24)

0
0 5

X/X
I

A'0
( TI —T)

' 1/2

(25)

is the wave number of the incommensurate modulation
wave. As a consequence, the transition parameters p and
q are sinusoidally modulated and so are all the physical
properties of the crystal. The temperature dependence of
the amplitude A can be deduced from Eq. (22), 0.5

a

tV

6 0.25
C3

~multi -soiiton limit

plane wave IlmIt

where
0

0
I

5
X/Xp

TI ——To+can jupe (26)

is the paraelectric-incommensurate phase-transition tem-
perature.

FIO. 1. Normalized amplitude A/A, and phase P of the or-
der parameter as a function of the reduced distance x/xo (xo is
the intersoliton distance, A, the amplitude of the order parame-
ter at the phase transition temperature T, ).
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d S/dy =0.
In Fig. 1 we have plotted the spatial dependence of A

and P for the plane-wave approximation and the multi-
soliton limit, respectively. In the multisoliton limit one
can see that commensurate regions —where the phase is
nearly constant —are separated by a regular array of
domain walls —or phase solitons —where the phase
changes rapidly by an amount of m/3. As a consequence,
higher harmonics must be included to describe the modu-
lation of the. physical properties of Rb2ZnC14 in the low-
temperature part of the incommensurate phase.

g =g+ P PE+2(A—P cos(3$),
2X

(31)

where g is given in (19) and P is the dielectric polariza-
tion. The g term resulting from the coupling of the polar-
ization to the order parameter contributes also to the
free-energy density in the absence of an electric field.

Minimizing g with respect to P yields

C. Spontaneous polarization of Rb2Znc4
in the incommensurate and ferroelectric lock-in phase

In the presence of an electric dc field E applied along
the crystallographic c direction, the free-energy density
becomes

(Ps )s ——M ( T' T)~—, (39)

with M=0.02 pC/cm K, T'=222.9 K, and P=0.47.
These parameters will be used for the interpretation of our
nonlinear optical results in the ferroelectric phase.

D. Nonlinear optical effects
in the incommensurate phase of R12Znc14

1. The plane-urave approximation

In the temperature range where the plane-wave approxi-
mation is valid, the local properties of R12ZnClq are
sinusoidally modulated. The effective nonlinear coeffi-
cient can be written as

draff(x) —D ff (5) cos x27r5

3Q
(40)

The spontaneous polarization then becomes

(Ps)p=+2$XAs . (38)

Hamano et al. have measured pyroelectric charges in the
ferroelectric lock-in phase of Rb2ZnC14 and calculated
from these data the spontaneous polarization. We have
fitted their results by a power law

P =gE —2/+A cos(3$) .

Putting E=O we get the spontaneous polarization

(Ps)& ——2$XA cos(3$) .

(32)

(33)

where 5 is the temperature-dependent incommensurability
parameter and a the length of the paraelectric unit cell in
the x direction. From Eq. (40) it follows that the modula-
tion wavelength is

In the incommensurate phase, because of the antisym-
metry of the phase P relative to the soliton centers, re-
gions with positive and negative spontaneous polarization
have equal length and (Ps)q ——0 on a spatial average.
Levstik et al. have shown that the phase solitons can be
deformed by an electric field in such a way that the an-
tisymmetry of P(x) around each soliton center is lost.
This leads to the compression of regions with positive
spontaneous polarization and to the extension of domains
with opposite polarization or vice versa. Consequently,
the incommensurate structure becomes polar by applying
an electric field.

In the ferroelectric lock-in phase

dP dA

8x 8x
(34)

and, using Eq. (32), the free-energy density g can be
written as

g =—A + A +2$XEA cos(3$) 2yA cos—(3P),E
2 4

(35)

where

A=3a/5 . (41)

A group-theoretical analysis' shows that in the incom-
mensurate phase of Rb2ZnClq the local point-group sym-
metry should be 1, and hence all the components of the
nonlinear optical tensor should be different from zero.
However, to date there is no experimental evidence for
any rotations of the ZnC14 tetraeders around the a axis
predicted by theory. Therefore, the experimental results
indicate that the local symmetry of the incommensurate
phase should be better described by the monoclinc point
group m. The local nonlinear optical tensor is then, in
Voigt notation,

d)) d)2 d}3 0 d)5 0

0 0 0 d24 0 d26

83] 6 32 433 0 d35 0

(42)

With Eq. (40) the nonlinear dielectric polarization can be
written as

2

2
(36) (PNr )' "'(x)=eoD,'Iq(5) cos x (Z'"')

3Q
(43)

It is easy to see that g has minima for

cos(3$) =+1 . (37)
The intensity of the second-harmonic wave in the plane-
wave limit is then given by
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PpI2„——2
6'p

' I/2 D( i ) (5)212eff 2
2 CO

n ~n2~

1, 2X —'jp
4

r

2+5 l .2 2+5 I
3a 2 3a 2 3a

Yp —— ——0.6 pm,
5tan8

(46)

limit Pz~ is at least 10 times smaller than in the fer-
roelectric phase. It is, furthermore, interesting to note
that because of the extremely small modulation period of
P2„(y) in the incommensurate phase,

Xjp
2m5

3Q 2

2+5 . 2+5 l+cos l jp 5k-
3Q 3Q

(44)

the beam-width parameter g, Eq. (17), becomes very large
(q~ 100 in our experiment), and the second-harmonic
power, consequently, independent of the wedge position.

2. The multisoliton limit and quasi-phase-matching

remembering that jp(x)=sinx/x It h. as been shown in
Refs. 1 and 20 that for RbzZnC1~ near TI,

5=0.08, a =9.3 A .

From our work it follows that

b, k=n/l, =.0.2 pm

In the low-temperature part of the incommensurate
phase the plane-wave approximation breaks down and ac-
cording to Sec. IIB2, the space dependence of the local
physical properties of Rb2ZnC1& is no longer sinusoidal
but contains higher harmonics. As a consequence, the ef-
fective nonlinear optical susceptibility should be expanded
in a Fourier series

pine
26)

C~2Ci7

D.'f'f'(5)' ak, D'fr'(5)'=1.4X 10—'
2~5/3a

With these data and b,k «2m5/3a= 180 pm ', it is pos-
sible to estimate the ratio between the second-harmonic
power in the incommensurate and ferroelectric lock-in
phases

d,ff = g D,rr (5 ) cos nx(n) 2m5

n=1 3Q

Solving Maxwell's equations with
r

PNz '(x) =ep g D,"fi(5) cos nx (E'"')
n=1 3Q

(47)

(48)

(45)

As a consequence, we can point out that in the plane-wave
as the nonlinear source term, we find for the second-
harmonic intensity

I2 ——2
Pp

6p

1/2I„2a) —D,rt (5)jp
l 2 1 (1)&

"n2 n 4

+D'f'r' (5)Jo

—b,k — D' ' (5) '+ eff JP

3Q
—hk —+D' ' (5) '

2+5 l'+~k-
3Q 2

r

~5
3Q 2

+2D,ff(5)cos I jp
(1) 2+5

3Q

2m5 l—hk —jp
3Q 2

2+5 ~k I
3Q 2

+2D,rr (5)cos l jp
(2) 4m 5

3Q

4m 5 ~k I—hk —jp
4m.5 ~k l
3Q 2

+2DJf'(5)D'Jq(5) cos I jp
2~5 .l+5k —jp
3Q

45 ~k l
3Q 2

+2D', r'f'(5)D', ff'(5) cos I jp
2+5 —bk —jp

4+5 l+b,k —+ . (49)
3a 2

remembering that jp(x) =sinx/x. Approaching Tc, the
incommensurability parameter 5 rapidly decreases' and,
according to Eq. (41), the wavelength of the incommensu-
rate modulation increases. Therefore, we would like to es-
timate whether this increased period could lead to quasi-
phase-matching of the fundamental and second-harmonic

waves. Quasi-phase-matching would considerably in-
crease the conversion efficiency. In fact, as can be seen
from Fig. 2, when the phase synchronism conditions

hk =+m, m =1,2, 3, . . .2m5

3Q
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FIG. 2. Second-harmonic intensity as a function of the in-
commensurability parameter 5. The ph envelo e of the second-
harmonic intensity function calculated q.from E . I'49), shown as
a solid line, is compareared to the second-harmonic intensity in the
ferroelectric p ase ath at T=190 K. The two peaks occur for
hk =m(2m5/3a) with m= 1 and m=2, respectively. T e tem-
perature range w ere eh the second-harmonic intensity wou e

. larger than in the ferroelectric phase due to quasi-p ase-
matching is AT=30 pK.

Using relation (53) we get

(56)

We have furthermore calculated that the temperature
range, where the second-harmonic intensity in the incom-

harmonic intensity in the ferroelectric phase because of
the quasi-phase-matching effect, is confined to an interval
of 30 pK (see Fig. 2). From these estimations it is clear
that quasi-phase-matching cannot be observed experimen-
tally. Finally we want to point out that all previous calcu-
lations assume plane electromagnetic waves. In the in-

mensurate phase, however, the refractive indices ascomme
weH as the electromagnetic wave amplitudes are modu
ed with a wavelength corresponding to the superstructure
of the material. This leads to a number of new optical ef-
fects which are characteristic of the incommensurate
structure and which were predicted theoretically by
Golovko and Levanyuk. Nevertheless, their estimation
of the second-harmonic intensity in the incommensurate
phase agrees with the result of our calculations based on
our measurement of the coherence length in the ferroelec-
tric phase (see Sec. IV B).

are fulfilled, the generated second-harmonic intensity has
sharp maxima. Using Eq. (50) we find for m= 1 with
6k=0.2pm

5=0.9X 10

The task of determining the temperature, where phase
matching might first occur (i.e., where 5=0.9&&10 ),

b 1 d b relating 5( T) to the temperature depen-
dence of the soliton density n, defined by Kind m e .
as the ratio between the soliton width b and the intersoli-
ton distance xo,

n, =b/xo .

In fact, as xo ——A/6 (see Fig. 1), where A=3a/5 is the
modulation wave end 1

'
length of the incommensurate structure,

one obtains

2& (T)5(T)
n, (T)=

Assuming that the soliton width and lattice constant a are
in a first a proxima-temperature independent, we have in a irs app

tion

E. Structural changes in the incommensurate phase
of Rb~ZnC14 due to defect-induced pinning of solitons

In the foregoing, all calculations were based on the as-
sumption that the crystal is free of defects. In real sam-
ples of RbzZnC1&, however, defects interact with the phase
solitons and lead to a unipolar domain structure as was
pointed out by Arutyunyan et aI. ' Symmetry in eac
domain can be described by the point group mm2 of the
ferroelectric lock-in phase. Because of the repulsive in-
teraction of phase solitons, the pinning effect appears only

th 1 -t mperature part of the incommensurate phase
where the intersoliton distance xo increases considera y.
For instance, electro-optic measurements" have shown
that the soliton lattice becomes "soft" at approximate y
Tc+ 16 K. Furthermore the unipolarity of the domain
structure is well documented by the measurement of a py-
roelectric charge in the incommensurate phase near

metry of the polar lock-in phase can also occur in the in-
commensurate phase below Tz + 16 K.

F. Nonlinear optical effect in the ferroelectric lock-in phase
2n, (TI )

n, (T)= 5(T) .
5(TI )

(53) In the ferroelectric lock-in phase the point-group sym-
metry is mm2 and the nonlinear optical tensor is given by

TpM =Tc +0.01 m K . (54)

W th the experimental soliton density data given by Blincee
et a/. in Ref. 22 the temperature TpM where phashase
matching might first occur is

00 0 0 d)5 0

0 0 0 de 0 0

d3] d32 d33 0 0 0

(57)

(55)

~ pThe temperature stability required for phase matching can
easily be calculated from the condition

b.5 & 3a /l = 10

with a =9.3 A and 1=3 mm.

0The second-harmonic generation in the ferroelectric phase
of Rb ZnC14 is basically a third-order nonlinear optica e-0 2 n 4 is
feet biased by the spontaneous polarization ( P . In the
paraelectric p ase o 2 41

'
h f Rb ZnC1 the lowest-order nonlinear

optical effects are described by the fourth-rank tensor
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(p q(3co) ~( —3cu;co, cu, co)E(cutE(co)~{co)
NL~i ~O ijkl j k l

and, according to Eq. (6),

(58)

components d,jkf [see Eq. (5)]. The nonlinear polarization
responsible for third-harmonic generation is given by fft Ut

Q .M

M

E~,
dl I

Z

(Olo) y

Ef 3cu) g( &—cu;cocoa, &tp, (cu)p(co)p(co)
ijkl j k l

Ep
(59) 0.5 1.5

Wedge Pos it ion y [mfn)

where 5,'Jkf
"'"'"' ' is given by relation (7).

In the polar ferroelectric phase the nonlinear optical ef-
fects can be described by the same relation (59) biased by
the dc polarization ( Ps )2, giving a relation for the
second-order nonlinearity,

E(2cu) 1 g( —2;cu, cocoa)p( )cpu( )c(up )i ijk3 j k S 3 ~

6p

This has to be compared with the usual second-order non-
linear equation (9), where we set co =coo——roz. Therefore,

$( —zco;cu, co) $( —, 2cu;co, cu, o)(p ) (61)

Assuming 5ijk 3
' ' as temperature independent, one

can conclude that the temperature dependence of 5,'Jk"' is
determined by the temperature dependence of the spon-
taneous polarization.

III. EXPERIMENTAL

The experimental setup is schematically shown in Fig.
3. The light source at the fundamental wavelength
(La=1064 nm) was a g-switched Nd:YAG laser (YAG
denotes yttrium-aluminum-garnet) (Spectra-Physics model
3000}. The sample was mounted in an optical clipping
cryostat. The lens Lt focused the laser beam into the
nonlinear crystal and I 2 collirnated the generated second
harmonic (Ao ——532 nm), which was detected by a pho-
tomultiplier (RCA1P28). A dichroic beam splitter and
an infrared-absorption filter (BG 18) placed in front of the
detector blocked the fundamental wave. The light polari-
zation directions were adapted to the geometry of the non-
linear interaction by means of a polarization rotator and a
Gian prism. The optical cryostat was mounted onto a
translation stage which could be translated perpendicular-
ly to the beam direction by a computer-controlled stepper
motor. The crystal position y was measured with a high-
resolution 1-p,m-length measuring system (Heidenhain
model I.S 903). The second-harmonic signal was ex-
ponentially averaged in a gated integrator (EG&G PAR
model 165}, whose output was subsequently stored by a

FIG. 4. Typical second-harmonic fringes obtained for a-
quartz with the corresponding sample orientation. Open circles
are experimental values, solid line is theoretical curve calculated
from Eq. (15).

at each temperature. Figure 4 gives an example of the
precision of the nonlinear optical measurement. We plot
the second-harmonic power as a function of the wedge
displacement for the reference material cz-Si02. The crys-
tal orientation is also shown. Experimental points are
compared with the theoretical expression [Eq. (15)] shown
as a solid line. The coherence length l, calculated from
the period of P2 (y),

'ETC

I, =
& cu

=(21.0+0.2) iu, m,

compares well with the value l, =20.64 pm given by
Jerphagnon and Kurtz.

The sensitivity of our experimental setup was high
enough to measure second-harmonic signals 10 times
lower than the one generated in the a-quartz crystal. For
the temperature-dependence measurements we could con-
trol the temperature with an accuracy of better than
+0.25 K. The Rb2ZnC14 wedge was a melt-grown sample
prepared in our laboratory. The dimensions of the
crystal wedge [wedge angle 8=(3.66+0.02) ] are
A &8&C=3)&10&5.9 mm . The crystal orientation is
shown in Fig. 5.

1024-channel signal averager (EGAG, PAR model 4202).
Each one of the 1024 channels could be identified with a
corresponding translation-stage position y.

As the standard reference material, we used an a-quartz
crystal. For determining the temperature dependence of
the nonlinear optical coefficients of Rb2ZnC14 we mea-
sured the ratio

ff d, ff ( Rb2ZnC14 )

d P, d»(quartz)
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FICz. 3. Experimental setup for measuring nonlinear optical
coefficients using the wedge technique.

FIG. 5. Typical dependence of the second-harmonic intensity
on the wedge position in the incommensurate phase of
Rb,zncl4.
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to get a measure for the optical nonlinearity of the sam-
ple. I. is the total crystal translation along the y direction
(typically I.= 1 mm in our experiments).

In Fig. 6 we have plotted the temperature dependence
of logic(M/M~) for geometries using the nonlinear coef-
ficients d24, 132, and d33. According to (62), M~ desig-
nates the spatial average of the second-harmonic power
for the standard quartz crystal. It is clear from Fig. 6
that second-harmonic generation is not only observed in
the ferroelectric phase below Tc ——187 K but also in the
incommensurate phase. A pronounced thermal hysteresis
of approximately 4 K is observed by-measuring M/M~
on cooling and heating cycles. Finally, it should be point-
ed out that in the ferroelectric phase, without any polariz-
ing electric dc field applied, M/M~ is about 4 orders of
magnitude larger than in the incommensurate phase. An
electric polarizing field has no influence on the space
dependence of the second-harmonic power observed in the
incommensurate phase. It is worthwhile to note that in a
logarithmic scale, our measured M/Mg points lie on the
same curve for all three geometries in which the nonlinear
susceptibilities d33 d32 and dq4 were involved.

G
CJ M Q

Rb2zn CI4

IO

~ IO'-
X

IV. RESULTS

A. Nonlinear optical properties in the incommensurate
phase of Rb2ZnC14

In the incommensurate phase of Rb2znC1&, with no po-
larizing dc electric field applied, second-harmonic signals
corresponding to the geometries di4, ds2, and d33 could
be measured below Tc + 4 K. Figure 5 shows a typical
position dependence of the second-harmonic power in the
incommensurate phase of the crystal. As it is impossible
to fit Eq. (15) to the experimental data, we have averaged
the second-harmonic power

L
M =—f P2„(y)dy (62)
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J.5

FIG. 7. Typical second-harmonic fringes obtained for
R12ZnC14 in the ferroelectric lock-in phase at T=179 K. Open
circles are experimental values, solid line is theoretical curve cal-
culated from Eq. (15).

B. Nonhnear optical properties in the ferroelectric
lock-in phase of R12ZnC4
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The nonlinear optical coefficients d3z, d33 and d24
were measured in the temperature range from 95 to 200 K
upon heating. To remove the domain structure a dc elec-
tric field on the order of 3.5 kV/cm was applied along the
polar c axis. Figure 7 shows the space dependence of the
second-harmonic power in the ferroelectric phase at 179
K. Pz„(y) is periodic and can be fitted according to Eq.
(15). In Figs. 8 and 9 we have plotted the temperature
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FIG. 6. Temperature hysteresis of M/M& around T, in
Rb2ZnC14. M designates the spatial average of the second-
harmonic intensity for Rb2ZnC14 crystal and M~ the corre-
sponding average for the standard quartz crystal. Open squares
are M/M~ data using the geometry for d33 open circles are
M/M~ data using the geometry for d32, and open triangles are
M/M~ data using the geometry for d24.
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FICi. 8. Temperature dependence of the nonlinear optical
coefficients (a)

) d33 ), (b)
) d32 ), and (c)

) dq4 I
for Rb2ZnC14 at

A,o ——1064 nm. Open squares are experimental values, solid line
is numerical fit using the spontaneous polarization data.
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dependence of the nonlinear optic coefficients
1

d33 1/dpi,
1d321/dpi, and 1d241/dpi and the coherence lengths
I 32 l 33 and I,34, respectively. Table I resumes the non-
linear optic coefficients, coherence lengths, and
refractive-index dispersion at 100 and 190 K. In the
whole temperature range 100 & T& 190 K we find

I d331 &
I d321 &

I d241

All three nonlinear optical coefficients d33 d32 and d24
increase in the ferroelectric phase with decreasing tem-
perature. From Fig. 8 it follows that d33(T), d33(T), and
dz4( T) can be compared well with the temperature depen-
dence of the spontaneous polarization (Ps)3. While the
coherence lengths I 33 and L gg remain nearly constant in
the ferroelectric phase, I,32 continuously decreases from
13.5 pm at 100 K to approximately 12.5 pm at 190 K.
The fcrroelectric-incommensurate phase-transition tem-
perature has been measured to be at Tc(E)=(196.5+0.5)
K (see Sec. IV A). The electric-field-induced shift of the
phase-transition temperature for E=3.5 kV/cm is
b Tc——(3+1) K and thus dTC/dE=(0. 9+0.4) Kcm/kV.
This value is larger than de/dE=0. 35 Kcm/kV calcu-
lated by Hamano et al. from pyroelectric measurements
and dTC/dE=0. 67 K cm/kV obtained in electro-optic ex-
periments. "

I I I I I I

80 IOO l20 I%0 l60 I80 200 220
Temperature (K)

FIG. 9. Temperature dependence of the coherence lengths (a)
I 33 Ao/4

1
n3(2co) —n3(co) 1, (b) 1,32=ko/4

1

ii3(2~) —+2(oi)
1

and (c) ~ 24=4/41&2(zoo) [(no+—n3)/&1(cu)
I
.
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V. DISCUSSIGN

A. Interpretation of the experimental results
in the incommensurate phase of Rb2znC14

The random space distribution of the second-harmonic
power (Fig. 5) in the incommensurate phase below 200 K,
the broad temperature hysteresis around Tc, and the fact
that we could only measure second-harmonic signals cor-
responding to tensor components allowed by the symme-
try of the polar lock-in phase, leads us to the conclusion
that the measured nonlinear optical effects in the incom-
mensurate phase of Rb2ZnC14 are due to the defect-
induced pinning of solitons. Furthermore, as in the fer-
roelectric phase P2 ——10 Pz„(quartz) (see Fig. 8) the
second-harmonic power caused by a perfect incommensu-
rate structure is, according to Eq. (45),

P2"„' (10 P3„(quartz) .

O

QP
~ — O
V- M

0
O ~ p

I

oo Q

Al

=-a) I-

(b}
Rbp ZnClp

1

1

pl
1
I

Such intensities could not be resolved with our experimen-
tal setup. The results agree with the nonlinear optical ex-
periments on K2Se04 carried out by Arutyunyan et al. '

They measured in the incommensurate phase of KzSe04
only second-harmonic signals corresponding to nonlinear
optical coefficients allowed by the symmetry of the fer-
roelectric lock-in phase and observed the same broad tem-
perature hysteresis around Tc as we did in Rb2ZnC14. Fi-
nally we must point out that our results disagree with
those given by Vtyurin et al. in (NH4)2BeF4. ' These au-
thors could resolve in the incommensurate phase of
(NH&)2BeF4 second-harmonic signals corresponding to the
nonlinear optical coefficients d22, d23, and d33 where d22
and d23 are only allowed by the symmetry of the point
group 1, which the authorg attributed to the structure of
the incommensurate phase. The most striking fact in
their measurements was that the magnitude of the
second-harmonic signals they observed in the incommens-
urate phase was comparable to the second-harmonic in-
tensity in the ferroelectric lock-in phase. They interpreted
the high second-harmonic intensities by quasi-phase-
matching smeared out over the whole incommensurate
temperature range. We have however seen in Sec. IID2
that, in Rb2ZnC14, quasi-phase-matching would enhance
the second-harmonic intensity only in a temperature range
of 30 pK.

B. Interpretation of the nonlinear optical properties
of R12ZnC14 in the ferroelectric lock-in phase

Figure 10 shows the temperature dependences of the
Miller coefficients 533 632 and 624, which were calculated
from our measured nonlinear optical coefficients d33 d32,
and d24 by using the refractive-index data reported in
Ref. 10. The experimental result agrees very well with
Eq. (61) for all three Miller 5 coefficients 533 532 and 524.
This allows the determination of the fourth-rank Miller 5
coefficients [with the data for (Ps )3( T) from Ref. 4]

m4
53333——(1.7+0.1) C2
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I

Q

~0
AJ

GQ

ppI
I-

1
1
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1
I

1

80 IOO I 20 I40 160 I 80 200 220
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FIG. 10. Temperature dependence of the Miller 5 coefficients
(a)

} 533 }, (b) } 532 ~, and (c) } 524
~

for RbqZnC4 at Ao = 1064
nm. Open squares are calculated from nonlinear optical coeffi-
cients using Eq. (10), solid line is theoretical curve (proportional
to the spontaneous polarization).

7 ra +So +Ie (63)

The above-mentioned terms are due to field-induced elec-
tronic (r, ) and lattice polarizations, where the latter con-
sist of acoustic- ( r, ) and optic- ( r, ) phonon-mode contri-
butions, respectively. In the principal-axis system, the op-

coefficients describing e
induced changes of the Fresnel ellipsoid are related to the
free electra-optic coefficients r Jk by'

( —co;c0.,0) 2 2
cg Jk

———n; r JknJ (64)

where n; and nJ are refractive indices. The corresponding
Miller 5 coefficients are

m4
53223 —( 1 .S+0. 1 ) C2

m'
53333——(0.7+0.1)

C2

Table II compares the nonlinear d and 5 coefficients as
well as the spontaneous polarization of Rb2ZnC14 to the
equivalent quantities of some other materials.

The stress-free linear electro-optic coefficient consists
of three contributions,
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TABLE II. Nonlinear optical coefficients, Miller 5, coefficients and spontaneous polarization of
some ferroelectric materials at room temperature (Ref. 25) and of Rb2ZnC14 at 190 K.

Material

BaMgF4

Rb2ZnC14

Nonlinear optical
coefficient

(10 ' m/V)

d32 ——0.065

d 33 —0.045
d32 —0.041
d24 ——0.037

Miller 5
coefficient

(10 m /C)

532—0.56

533——0.18
532——0.16
524 ——0.14

Spontaneous
polarization
(10 C/m )

7.7

0.1

KDP d36 ——0.63 536 ——4.0 7.3

NaNO,

KNb03

d32 ——2.9

d33 =27

532——11.5

533——6.3

8.6

n n2
g, ( —a); co,o) i J
~ij k ~ijk 2 2 ( —0)

Eo(n, —1)(n —1)(ek"= —1)
(65)

e~
= ' is the static dielectric constant along the k direc-

tion in the principal-axis system. In Table III the non-
linear optical Miller 5' "'"'"' are compared to 5'
where the static dielectric constant data are taken from
Ref. 10.

The contribution of the optic-phonon modes to the non-
linear optical d,jk

"'"' ' coefficients is given by

do ~ ndQ"
ijk ~pij ~En k

(66)

where Q" is the atomic displacement induced by the
optic-phonon mode n and p,J the Raman tensor element
corresponding to the nth mode. Only those phonon
modes which are Raman (p,"J&0) and infrared
(dQ "/dEk&0) active can contribute to the electro-optic
effect. Neglecting the internal-vibrational degrees of free-
dom in the ZnC14 groups, 48 phonon modes exist in
R12ZnC14, which transform according to'

14K)+ 10X2+ 1023+ 1424 .

Xi X3 X3 and X4 are irreducible representations of the
space group Pna2~ on the X line. It can be shown that
the optic-phonon modes which transform according to X3
and X4 are both Raman and infrared active. The corre-
sponding Raman tensors are

X3.

0 Pi3 0 0 0
0 0 0, X4. 0 0 p23

0 p„o

VI. CONCLUSION

We have measured the nonlinear optical properties of
Rb2ZnC14 in the incommensurate and ferroelectric lock-in
phases of Rb2ZnC14 by using the wedge technique. In the
incommensurate phase we could only resolve second-
harmonic signals due to nonlinear optical coefficients al-
lowed by the symmetry of the ferroelectric phase. We
conclude that the observed effect is due to the presence of
a unipolar defect-induced domain structure with the
point-group symmetry mm2 of the ferroelectric phase.
We were able to show that the second-harmonic intensity
generated in a defect-free incommensurate structure is 10
times smaller than the second-harmonic intensity generat-

From the foregoing one can conclude that only the
electro-optic coefficients d42 and d5& contain optic-
phonon contributions. For di3, d23, and d33 only acous-
tic phonons and electronic excitations contribute to the
-nonlinear polarizability. With the results resumed in
Table III it is clear that acoustic-phonon contributions are
small in the case of 5333

'"' ' and large in the case of
62 3

'
~ The contribution of optic- and acoustic-phonon

modes to 53 2
' ' is large compared to the electronic con-

tribution.

TABLE III. 5 and d coefficients of Rb2ZnC14 at T= 186 K. The low-frequency electro-optic coeffi-
cients are compared to the nonlinear coefficients at optical frequencies.

Electro-optic effect
g ( —r0;co,O)
5ij k

(m /C~10 )

~ ( —o3;r0,0)
~ijk
(pm/V)

Nonlinear optical
g ( —2co;C0, 63)5jik

(m'/C ~ 10-')

contribution
~( —2';co, co)
dij k

(pm/V)

5322

I
&»z

= 1.6
=9
=9
=8

I d223

=0.63
=0.48
=0.48
=3.07

532i I
=1.6

5„, I
=1.5

I
d„,

I

=0.044

I d»&
I

=o »9
I d2321 =0036
I d2i3

I

=0.036
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ed in the reference quartz crystal and therefore too small
for detection with our experimental setup. Furthermore,
we estimated that quasi-phase-matching of the second-
harmonic and fundamental waves in the incommensurate
phase of Rb2ZnC14 can occur within a temperature range
of only Tc&TPM &Tc+0.01 mK. Moreover, the tem-
perature range, where the second-harmonic intensity in
the incommensurate phase becomes larger than the
second-harmonic intensity in the ferroelectric phase be-
cause of the quasi-phase-matching effect is confined to an
interval of 0.03 mK.

In the ferroelectric lock-in phase our measured non-
linear optical coefficients are proportional to the spon-

taneous polarization or proportional to A where A is the
amplitude of the order parameter. Thus, the Miller 5
coefficients 533 53z and 524 could be related to the
fourth-rank Miller 5 coefficients 53333 53/33 and 53$23 by
using previously measured data for the spontaneous polar-
ization ( Ps )3.
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