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Low-temperature phase of a stacked triangular Ising antiferromagnet
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We have investigated a model consisting of planes of Ising spins with antiferromagnetic nearest-
neighbor interactions on a triangular lattice connected by nearest-neighbor ferromagnetic bonds in

the third direction. It is shown that Landau theory, mean-field theory, and conventional low-

temperature expansions are not reliable for this model. We have also studied a class of one-
dimensional frustrated Ising models which have low-temperature expansions with irrational coeffi-
cients, indicating that the usual method of counting excitations about ground-state configurations
cannot be used to construct their low-temperature series. The results from the one-dimensional
models are used to obtain bounds on the free energy and information about the magnetization of the
three-dimensional model at low temperatures.

I. INTRODUCTION

The two-dimensional nearest-neighbor antiferromagnet-
ic Ising model on a triangular lattice is a classic example
of a frustrated system. ' Wannier solved the model and
showed that it is disordered at all finite temperatures and
that it has finite entropy at zero temperature. ' Thus, the
number of ground states varies as e, where N is the
number of spins and a is a constant.

Recently there has been some interest in a three-
dimensional model constructed by connecting infinitely
many antiferromagnetic triangular Ising planes with fer-
romagnetic bonds in a third direction, yielding a three-
dimensional hexagonal crystal. This model may be
relevant to the experimental system VIz. The Hamiltoni-
an 1s

xy

where J,J'~0, S;=+I, and the summations are over
nearest-neighbor pairs either in the x-y plane or along z.
The number of ground states of this model varies as

p~2/3e~+, where N is the number of spins and P is a con-
stant, so the entropy at zero temperature is zero.
Blankschtein et al. have estimated the free-energy cost of
a domain wall and found that it is finite. Therefore, it is
not altogether shocking that Monte Carlo calculations in-
dicate that a low-temperature phase with broken symme-
try exists. Ia fact, two phase transitions occur, so there
are two different phases with broken symmetry.

Blankschtein et al. have analyzed the phase diagram in
terms of a Landau-Ginsburg expansion and Monte Carlo
simulations. - Although the Landau-Ginsburg theory re-
sults are consistent with their Monte Carlo data for the
stacked nearest-neighbor antiferromagnet, we will show
that models exist for which the Landau-Ginsburg analysis
is inadequate at low temperatures. Therefore, one would
like to find a method to determine directly the nature of
the phases. In this paper we will concentrate on the low-
temperature phase; the intermediate-temperature phase

will be considered only briefly.
The usual method to elucidate phase diagrams near

zero temperature is to expand the free energy using the
low-temperature expansion. The stacked triangular Ising
antiferromagnet does not obey the criteria described by
Slawny that ensure the existence of the low-temperature
expansion constructed by counting excitations from the
ground states of the system, and we will show that the
low-temperature expansion for the model (if it exists) is
quite pathological. In fact, we will demonstrate that the
model has finite disorder even at arbitrarily low tempera-
ture. This result is compatible with the Monte Carlo
work of Blankschtein et al. but does not agree with ex-
tended mean-field theory calculations using the method of
Nakanishi and Shiba. %'e will also provide arguments
that may indicate that the order parameter of the low-
temperature phase proposed by Blankschtein et al. never
saturates, so that all the chains of the spins remain par-
tially disordered even as the temperature is lowered to-
wards zero. A by-product of this work is the construction
of a class of simple one-dimensional Ising models with
low-temperature expansions involving irrational coeffi-
cients, which implies that one cannot use simple cou~ting
rules to obtain the coefficients of the series. Using these
models, one can obtain bounds to the free energy of the
three-dimensional stacked antiferromagnet, but so far no
bounds on the magnetization have been obtained.

The organization of the paper is as follows. Section II
contains an outline of previous work; it describes the
Landau-Ginsburg expansion, the Monte Carlo results, and
the extended mean-field theory calculations. The impor-
tance of frustration is stressed, and we construct a simple
model for which the Landau-Ginsburg expansion does not
describe the low-temperature phase. In Sec. III the at-
tempt to construct a low-temperature expansion for the
model is described. This attempt yields insight into why a
low-temperature phase may exist even though the two-
dimensional Ising antiferromagnet has no long-range or-
der. However, it is shown that attempts to construct a
low-temperature expansion about an ordered ground state
[similar to the methods employed for the three-
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dimensional axial next-nearest-neighbor Ising (ANNNI)
model and the fcc Ising antiferromagnet ' ] yield incon-
sistent results, so such an expansion cannot exist. In Sec.
III C we consider the low-temperature properties of
several one-dimensional models that are used to provide
bounds on the free energy, and also the proposed low-
temperature phase of Blankschtein et al. is investigated
using this viewpoint. Our results are consistent with their
proposed phase diagram, but we argue that the amplitude
of the order parameter tends to a nontrivial value at very
low temperatures. However, these arguments are not
rigorous. Finally, Sec. IV contains conclusions, specula-
tions, and suggestions for further work.

II. REVIEW OF PREVIOUS WORK

A. Landau-Ginsburg-Wilson analysis of the model

Blankschtein et al. have performed a Landau-
Ginsburg-Wilson (LGW) analysis of the model, which is
reviewed here. The analysis is expected to be valid near
the transition from the paramagnet to the intermediate-
temperature phase, where the order parameter is small.
On the other hand, it does not necessarily describe the
low-temperature phase because frustration effects are
neglected.

The method consists of expanding the free energy in a
power series of polynomial invariants of the order param-
eter. Therefore, the first step is to find the order parame-
ter. At this stage there are two usual ways to proceed—
either one uses knowledge of the ground-state properties
or one minimizes the Fourier-transformed coupling

J(q) =( I/v & ) ge'q'J(r)

as a function of q. For unfrustrated systems these two
methods are equivalent. However, for the stacked Ising
antiferromagnet the ground state is highly degenerate and
the relevant order parameter is not obvious. However,

J(q) =J[cosq„+2 cos(q„/2) cos( v'3q~ /2)] —J' cosq,

has two inequivalent minima at Q=+(4m. /3)x (and other
Q's related by reciprocal-lattice vectors). Thus, by using
the second method, one expects an order parameter of the
form 1(=tpocos(Q. x+p). However, the energy per spin
of the system's ground states Eg, = —J—J' is greater
than the energy E= ——', J—J' that one obtains from the
expression

~= X Pq4 eJ(q»— (2.1)
q

where P(Q)=g( —Q)=1/v2 and g(q)=0 otherwise. "
This discrepancy occurs because LGW description
neglects the constraint on the spins

~
SJ

~

=1 which is re-
sponsible for the frustration. Blankschtein et al. argue
that the restraint on spin length is irrelevant under renor-
malization at criticality and ignore it thereafter, but we
will return and examine this contention.

Given an order parameter g(r)=cocos(Q. r+P), with
Q=(4m. /3)x, one may construct the following invariant
polynonual free energy up to sixth order in

+LGW(0) a2
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'+a~
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'
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FIG. 1. (a} Sublat tice structure of the intermediate-

temperature phase of the stacked triangular Ising antiferromag-
net found by Blankschtein et al. (Ref. 2). (b) Sublattice struc-
ture of the low-temperature phase of the stacked triangular Is-
ing antiferromagnet found in Ref. 2.

If a net magnetic moment M is present, another term of
the form a3Mgocos(3$) is also allowed. Depending on
the sign of b6, the minimum of FLGw occurs at either
/=0 or P=m/6. A mean-field analysis using the method
of Bak and von Boehm' assuming g(r)=gocos(Q r+p)
yields a positive value of a6, ' so it is plausible that
P=vr/6 and the intermediate phase has a three sublattice
structure with one sublattice with no magnetic moment
and the other two sublattices with equal and opposite mo-
ments [see Fig. 1(a)].

Because the Monte Carlo results indicate the existence
of a second phase transition at lower temperature T,~,
Slankschtein et al. argue that at T,~ the renormalized
value of b6 may change sign and cause a transition to a
state with /=0 and order parameter /=cocos(Q x).
This order parameter corresponds to a three-sublattice
state with magnetizations M, —M/2, —M/2 [Fig. 1(b)].
This conclusion is compatible with their Monte Carlo re-
sults, but since low-temperature Monte Carlo simulations
are difficult, the very low-temperature portion of the
phase diagram was not accessible.

We argue here that the LGW analysis, since it ignores
frustration, may not be adequate to describe the low-
temperature phases of the model. (Our interpretation of
the lower phase transition is that the frustration becomes
relevant at T,~. ) For instance, if one considers this model
with weak second-nearest-neighbor attractive interactions
in the plane (similar to a model considered by Mekata' in
two dimensions) the LGW analysis yields identical results
and the ground state has a three-sublattice structure, but
each sublattice is fully ordered at low enough tempera-
tures. One can also consider a model with, in addition to
the antiferromagnetic nearest-neighbor coupling J',
third-nearest-neighbor ferromagnetic coupling J3 in the
plane, where J3 &&J' (and ferromagnetic coupling J2 be-
tween planes). The LGW analysis is the same as above
and yields the same low-temperature phase, but it is easily
seen that the energy of the state shown in Fig. 2 is lower
than the energy of any three-sublattice state, so at a
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where i is a label for the sublattices and the sum over l is
for the spins in each sublattice. Minimization of the free
energy implies that the M~ satisfy the consistency condi-
tion

4i M; = tanhI —P[3J(M; i+M;+ i) —2J'Mi] I, (2.4)

t,')L

FIG. 2. Structure of the low-temperature phase of the
stacked triangular Ising antiferromagnet with attractive third-
nearest-neighbor couplings in the planes. This phase does not
have a three-sublattice structure.

low enough temperature one expects the order parameter
to be /= cocos(Q2 x), where Q2 ——(2ir/V 3a )y or
2n. /M3a[ —,'y+(~3/2)x]. This phase does not have a
three-sublattice structure.

This argument proves that models exist whose (finite
number of) ground states cannot be found by minimizing
J(q). These models have well-defined low-temperature
expansions for the free energy, so at low enough tempera-
tures they have the same order parameters that describe
their ordering in the ground state. This argument does
not prove that the frustration becomes relevant at T,i be-
cause, for example, one could imagine a third temperature
Tg 3 at which the transition to the Qz wave vector occurs,
but the presence of two and only two transitions is a con-
sistent and simple possibility.

X gS —3J(MiM2+MiM3+M2M3)

+J'gM, ', (2.3)

B. Extended mean-field theory

Because the LGW theory has drawbacks, one is led to
examine the low-temperature phase further using other
techniques. For instance, one could use Mekata's mean-
field (MF) theory, ' where each sublattice i is assumed to
have a uniform magnetization M; when its affect on the
other sublattice is calculated. For reasons that are dis-
cussed in the next section we assume that the Monte Carlo
results indicating a three-sublattice structure in the low-
temperature phase apply. The Hamiltonian is thus ap-
proximated by the form

3

HMF ——g [3J(MJ +Mk ) —2J'Mi ]

where 1/P=k&T and modular arithmetic is used for the
sublattice labels.

We wish to find the solution to the three coupled equa-
tions (2.4) for the magnetizations in the limit of low tem-
peratures. As T~O these equations have the solution
3f J

—3f2 —3f3 —0 as well as six equivalent solutions with
broken symmetry, of which M, =1, M2 ——M3= —1 is
one. Thus, this mean-field theory predicts that the low-
temperature phase has a net magnetic moment, in contrast
to the LCiW results.

However, this mean-field theory ignores fluctuations
and frustration effects. One can visualize a possible prob-
lem by noticing that in this approximation the one-
dimensional Ising model would have a nonzero moment in
zero field. If the magnetization of sublattices 1 and 2 are
exactly 1 and —1, respectively, then the third sublattice
behaves as a one-dimensional Ising model in no field and
thus has no inoment at any finite temperature.

One can try to make less drastic approximations in the
theory. Nakanishi and Shiba have examined the stacked
frustrated Ising model in a field using the extended
mean-field theory method of Scalapino et al. ' One treats
each line of spins exactly, but uses an effective "mean
field" to account for interactions between chains. (In this
formulation, the chains are taken perpendicular to the tri-
angular planes, i.e., along the z axis). We again assume
the low-temperature phase has a three-sublattice structure
and follow their method for the case with no applied field.
The Hamiltonian (1) is broken into intrachain and inter-
chain parts

H =Hz+H~y, (2.5)

where H, is the Hamiltonian of a one-dimensional Ising
model in no field.

The interchain part H„y is approximated by

xy
H„y"——g Q —hMF(r)S(i, r) ~C, (2.6)

where the "mean field" is assumed to be independent of i
and

hMF(r)= —g J(S(r')) . (2.&)

NN

(If two sublattices have exactly equal and opposite mo-
ments, the third sublattice has zero moment in this ap-
proximation. )

At sufficiently low temperatures one must solve the
simultaneous equations

C= g Q h (S(r))+ g g J(S(r))(S(r')) . (2.7)
i r i r, r'

NN

Minimization of the free energy yields the relation
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—sinh[K(M~ ~+M;+ ~ ) ]

[y + sinh IC(M; ~+M;+~)]'~
(2.9)

with y=e-'~' and Z=3PJ.
Note that if M~+Mz ——M2+M3 ——M~+M3 ——0, then

M$ —M2 —M3 —0. Therefore, for a state with broken
symmetry, at least one sublattice i must have M; =+1 up
to corrections which can be shown to be very small. For
definiteness, we shall let M~ ——1. One must then solve
two simultaneous equations for Mz and M3. One solu-
tion is Mz ———1, M3 ——0. The "mean-field" free energy
of this configuration is

(2.10)

The other solution is

—4''
2'

1/3

(2.11)

The free energy of this configuration is lower, so as the
temperature tends to zero the magnitude of the magneti-
zation of all three sublattices tends to one, and the system
has a moment, as in the simple MF theory but unlike the
LGW theory results.

This review of previous work reveals that the LGW and
MF analyses of the stacked triangular antiferromagnet are
incompatible. Obvious questions arise: (1) Why does the
low-temperature phase have a three-sublattice structure? .

(2) Does the low-temperature phase have a net magnetic
moment'? We will show the answer to (1) is revealed in
entropy considerations, but the attempts to answer (2) will
not be successful. We will obtain bounds on the free ener-

gy of the system that enable us to eliminate some candi-
dates for the low-temperature phase and thus prove that
the mean-field theory results cannot be correct. The re-
sults will be compatible with the LGW predictions, but we
will argue that the magnitude of the order parameter may
saturate at a nontrivial value. Thus, this paper will show
that neither LGW theory nor MFT (extended or other-
wise) gives totally reliable information about this frustrat-
ed system at very low temperatures.

models with infinitely degenerate ground states; they find
that one must perform the expansion about each ground
state and find the one with the most low-energy excita-
tions, which is then selected out in the low-temperature
phase. Because of the nature of the method we consider
only excitations about ground-state configurations. (This
drawback will eventually lead to failure. )

B. Attempts to construct a low-temperature expansion

The method yields insight into why a low-temperature
phase with broken symmetry could occur, even though the
two-dimensional model is disordered at all temperatures.
The system selects out one of its infinite number of
ground states to form the low-temperature phase because
of entropy considerations.

Slawny has considered the conditions necessary for a
low-temperature expansion to be valid, one of which is not
satisfied by the stacked triangular Ising antiferromagnet.
This condition is that the energy of any finite region of
flipped spins must tend to infinity as the number of
flipped spins does. To see how this condition is violated,
consider the ground-state configuration shown in Fig. 3.
The lines of spins corresponding to sublattices 8 and C
are fully frustrated in the plane, since they have three sa-
tisfied and three unsatisfied bonds. Therefore, the only
couplings keeping the chain magnetized are the couplings
along z. One can note that the energy cost of flipping one
spin 4J' is the same as the energy required to flip any
number of adjacent spins along the line. The energy
remains 4J' even as the number of flipped spins tends to
infinity. This problem does not occur for any line of
spins that is either partially or not frustrated in the plane.

This effect explains why the three-sublattice structure is
preferred at finite temperatures. The argument above ap-
plies to any line of spins that is fully frustrated in the
plane, and one can see that the three-sublattice structure

III. THE LOW-TEMPERATURE EXPANSION

A. Naive approach

Since we are primarily concerned with low-temperature
properties of the model, it is reasonable to attempt to con-
struct a low-temperature expansion. Usually, one does so
by simply counting the number of low-energy excitations
of the system about the ground state. For instance, for an
Ising ferromagnet on a square lattice in two dimensions
with nearest-neighbor couplings J, the lowest-energy exci-
tafions are single spin flips with energy SJ which can
occur at any site on the lattice, so the first term in the—8J/k~ T
low-temperature expansion is —(1/N)(¹ ). The
second term is found by counting the number of ways to
place two adjacent flipped spins on the lattice, etc. Fisher
and Selke and Mackenzie and Young have considered

FICi. 3. Ground-state configuration that appears to be
favored at low temperatures because of entropy considerations.
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uniquely maximizes the number of frustrated lines of
spins (up to a sixfold degeneracy), with —, of the spins
frustrated in the plane. Although naively each frustrated
line is equivalent to a one-dimensional Ising model in no
field and thus should have no moment at finite tempera-
ture, if it demagnetizes, then an adjoining hne of spins
that formerly had large entropy because of frustration be-
comes unfrustrated and loses its entropy. Therefore, en-
tropy tends to stabilize the M=(1, 1, —1) state, and the
e'ffect is much larger than in two dimensions because a
line of spins is involved instead of one spin only.

At this point one may wonder at the reasonability of at-
tempting to construct the low-temperature expansion.
However, we point out that the one-dimensional Ising
model with coupling J in no field has exactly the same
flaw as our model, but a low-temperature expansion can
be constructed if one notices that the elementary excita-
tions are kinks rather than spin flips. Thus, by counting
possible locations for kinks, one finds the low-temperature
expansion for the free energy

(3.1)

which can be verified by expanding the exact result. Us-
ing this point of view, one expects that starting from the
(1,1, —1) phase, the first term in the low-temperature ex-

—2J'/k~ T
pansion is just ——,e, since —, of the spins are in
"frustrated" chains.

%'e now attempt to construct more terms of the expan-
sion for the stacked triangular Ising antiferromagnet and
find an inconsistency, thus demonstrating that the method
cannot be used. In addition, we show that the low-
temperature phase is at least partially disordered. In the
next section it will be argued (but not rigorously) that all
the sublattices are partially disordered. It will not be
shown that partial order does exist at low enough tem-
peratures, so at this stage the exact nature of the low-
temperature phase remains an open question.

%"e exhibit the - problems by assuming a low-
temperature expansion is possible. In this spirit, we ex-
pand about a ground state of the form (1,—1, —1) and as-
sume that all except for a finite number of sublattices are
fully ordered. Thus, in lowest order we assume that all
sublattices but one are ordered and count possible loca-
tions for kinks; thus one expects the lowest-order term to—2J'/k~ T
be ——,e, as above.

The problems arise when one attempts to construct the
second-order term. The calculation is done by assuming
all sublattices but two are fully ordered and counting pairs
of excitations; the only nontrivial case occurs when one
considers two adjacent frustrated chains. Since all other
chains are assumed to be ordered they cause an "effective"
field on the two chains considered. The problem is
equivalent to a one-dimensional two-chain Ising model in
a field, shown in Fig. 4. There is an antiferromagnetic
coupling J between chains and a ferromagnetic coupling
J' along the chains, and the field is J. One finds that this
model should have a net magnetization by arguing as out-

FIG. 4. Two-chain Ising model in a magnetic field that is
equivalent to assuming all but two of the chains iri the full
model are ordered.

lined above for the full model. We note that the extended
mean-field theory discussed in Sec. IIB should describe
this model if it is valid for the full problem. The two-
chain Ising model is solved straightforwardly using the
transfer-matrix method at low temperatures its free en-
ergy per spin isF, i 1 —2$'/kii T —4J'/kii T

(3.2)

so the first order coef-ficient for two chains differs from
that for one chain. Thus, there is no reason to expect the
first-order coefficient of the full model to be given by the
one-chain calculation. In addition, as the temperature is
lowered towards zero, the magnetization per spin ap-
proaches —, rather than 1. (Since a field is present, finite
magnetization is allowed even though the model is one di-
mensional. ) Thus, the entropy effect that causes the mag-
netization to be nonzero does not cause the chai~s to order
fully. These results do not depend on the ratio of the cou-
pling constants J/J', as long as it is finite. One can ra-
tionalize this as follows —if the interchain coupling is
weak, then the energy cost of creating a region with spin. s
from both chains aligned opposite to the field is small, but
it is still greater by a finite amount than the cost of flip-
ping between ground states. Therefore, at low tempera-
tures these regions are exponentially suppressed and they
can be ignored. These exact results for the analytic form
of the free energy and for the net magnetic moment
disagree with the extended MF theory prediction, so that
approximation must be regarded as unreliable.

It is now clear that the assumption of fully ordered sub-
lattices in the stacked antiferromagnetic triangular Ising
model is inconsistent. Since the chains for which excita-
tions are allowed have only partial order at any finite tem-
perature, and excitations are allowed on all chains, the
low-temperature phase cannot consist of three fully or-
dered sublattices. Since the (1,—1, —1) phase has lower
free energy than any other fully ordered sublattice config-
uration, the low-temperature phase must have finite disor-
der. The low-temperature expansion cannot be performed
by the method outlined above, because the disorder in
each chain must be accounted for when calculating its ef-
fects on neighboring chains.

In summary, so far we have shown, by explicit con-
struction of counterexamples, that none of the obvious
methods —Landau-Ginsburg-Wilson analysis, mean-field
theory, and naive low-temperature expansion an
describe adequately the low-temperature phase of a model
with frustrated spins. %'e now describe some calculations
done on bundles of chains that yield bounds on the free
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energy and give some insight into the nature of the low-
temperature phase.

8 and C can be connected only to regions of A while the
A phase can be connected to either 8 or C, so

C. Low-temperature calculations for small bundles
of chains

PA PB+PC ~

(3.3)

This section describes finding the leading term in the
low-temperature expansion for larger numbers of coupled
chains. These calculations are used to obtain bounds on
the free energy in the full model. Since any one-
dimensional short-ranged model in zero field has no phase
transition, knowledge of the magnetization is more diffi-
cult to obtain, but if one assumes that a fully ordered sub-
lattice exists, bounds on the magnetization can be ob-
tained. There are indications, however, that no sublattice
of the full model is fully ordered.

We redefine the energy scale so the system has zero en-
ergy at zero temperature. The free energy per spin of the
two-chain case has the form

A

(o)
A

and the magnetization per spin is —,'. These results can be
understood simply by noticing that as T~O the system
has three degenerate ground states labeled A, 8, and C in
Fig. 5(a). The system can change its configuration with
an energy cost of 2J' by flipping one spin only. There-
fore, to lowest order, transitions between A and 8 and be-
tween A and C are allowed, but transitions between 8 and
C are not, as represented schematically in Fig. 5(b). The
system breaks up into a series of domains. On average,
the size of a given domain is independent of whether it is
A, 8, or C, so the probability P of fin'ding each type of
region can be found by writing an equation describing
transitions between the various ground states. The regions

( 1+~2e a )Ni2 (3.4)

Thus, the free energy per spin is

F/k~ T= —lnZ/N= (1/v 2)e—

It is possible to extend this method to deal with larger
bundles of chains. For instance, Fig. 6 shows three chains
coupled ferromagnetically with coupling J' along their
length and antiferromagnetically with coupling Jq be-
tween chains in an external field H which is 2J~ for the
middle spin and J~ for the end spins. (For simplicity we
assume J»&J', but for the reasons explained above we
expect the results to be independent of J& /J'. ) The
ground states can be divided into classes with 0, 1, and 2
down spins, respectively, and the possible spin flips of a
state with 1 spin down depends on whether it is in the
middle or on the end (nearest-neighbor down spins are not
allowed at low temperatures). The various states are
shown in Fig. 7, and Fig. 8 is a diagram of possible transi-
tions between them. Again, assuming that the probabili-

1Pc= 2P~ .

Since Pg +PB +Pg ——1, Pp ——
~ and PB ——Pc ——

4 . The
magnetization per spin is 1(—,

' )+0( ~ )+0(—,
'

) = —,', the ex-
act result found above. To calculate the first term in the
low-temperature expansion of the free energy, notice that
given n domain walls on a chain with N spins (i.e.,
N /2 sites long), the walls can be placed in
(N/2)!/[n!(N/2 —n)]! different ways with an energy cost
of 2nJ'. Half the walls can also choose whether to go
from A to 8 or A to C, while the other half have no free-
dom, since a given wall starting in a region of 8 or C
must end in a region of A. Thus the partition function
can be written as sum over the number of walls n:

(N/2)! „z2 ~~ za~T
e

o n!(N/2 —n)!

JL
H= J!

JE H=2J!

FIG. S. (a) A "typical*' configuration of the two-'chain Ising
model with walls separating the three ground states. (b)
Schematic rendering of the lowest-energy transitions, which
dominate at very low temperatures.

H-JJE

I

FIG. 6. A three-chain model whose low-temperature magne-
tization and free energy are found in the text.
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State Q

State E!

State E~

State M

i E

IF State 2

FIG. '7. Degenerate ground states of the three-chain model.

ties of all single spin flips are the same, one can write cou-
pled equations for the probabilities of each type of
domain:

1 I~0 =—~E, +—I'F.,+I'~
1 1IE =I'E = —,I,+ 2I, ,

(3.5)

These equations, together with the condition that
&/~=i, imply Po +o PE =PE'5, PM=+0, and

P2 ———,'. The mean magnetization is —, for the end chains
and —, for the middle chain.

The entropy calculation for this larger system is slightly
more involved. Again we use the fact that n walls in a
chain with N spins cost energy 2J'n and can be placed in
(N/3)!/[(N/3 n—)!n!] locations. However, the number
of choices at each wall location depends on the domain
type.

Suppose the system is in state 0 (all spins up) at the
point x =0. Then in the region just past the first wall, it
can be in any of three states. After the second wall, each
of the states can "flip" into either one of two states (from
E& or E2) or one state (from M), depending on the first
wall.

This process goes on indefinitely. One can make a
"branching diagram" of all possible allowed orderings
similar to Fig. 9. To calculate the entropy, one must find
the asymptotic dependence of the total number of distinct
orderings of N domains a(N) on N. In this calculation,
different states related by symmetry are distinguishable
(i.e., there are three states with one spin down, etc.). Con-
sider the chain after N flips and say the last domain has
an even number of down spins. After two more walls
there again is a region with an even number of down
spins, so one can write the number of distinct orderings of
N+2 domains a(N+2) in terms of a(N).

Say at the Nth step there are yo(N) chains ending with
a domain of type 0 and y2(N) chains ending with a
domain of type 2. A type-0 domain can flip into either a
type-M domain or one of two type-E domains. A type-2
domain can flip into one of the two type-E domains.
Similarly, a type-E domain can flip into either a type-0 or
type-2, and a type-M can flip only into a type-0 domain.
Thus,

1

~M 3~0 ~

P2 ——2I'E + 2I'E2 ~

with

yo(N+2) yo(N)

y2(N+2) y, (N) (3.6)

1 1

110 11 22
10

0 By iteration, one finds

Ei

'yo(2M) '),(0)
'

=A
y2(2M ) y2(0) (3.7)

2 The asymptotic dependence of a(2M) =yo(2M)+@2(2M)
on M for large M is determined by the largest eigenvalue
k~ of the matrix A. One finds A, ~

———,(5+v 17), so the
first term of the low-temperature expansion of the free en-
ergy per spin is

FIG. 8. Allowed transitions (to lowest order) between degen-
erate ground states of the three-chain model. —k~ T I —,

'
[ —,

' (5+v 17)]'~ I e
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FIG. 10. Configuration of 12 spins that cannot be reached
via low-energy excitations of a (1,—1, —1) state. This configu-
ration does not contribute to the free energy.

an external field H =2J', one finds a mean magnetization
of —,

' and a low-temperature free energy of

F/k~T= —
6 [ 2 (15+V'129)] e

One can also solve models with 3, 6, 9, or 12 chains in no
field with periodic boundary conditions imposed. For the
larger bundles there are states which cannot be reached by
single spin flips between low-energy configurations from
the (1,—1, —1) sublattice structure (i.e., the state pictured
in Fig. 10), but they do not contribe to the first-order
coefficient. The magnetization is zero, and the free ener-

gy per spin F„for a model with n spins is

Fyg —2J'/kB T

Xk.T
(3.8)

N= I N=2 N=5 N~4 N=5
FIG. 9. "Branching" diagram showing all possible orderings

of the domains of the three-chain model whose first domain has
all spins up. By writing a recursive relation describing this tree,
the lowest-order term in the low-temperature expansion of the
free energy can be calculated.

This result can be verified by direct calculation using 'the

transfer matrix.
This method can be applied to any finite bundle of

chains. For instance, one can solve a ring of six chains in

with a3 ———, , a6 ——~2/3=0. 47, a9 ———,(8+2' 7)'~
=0.405, and a~q ——v 22/12=0. 391. Since the a„decrease
as n increases, one may speculate that they are upper
bounds to the value for the infinite system.

The method used above to calculate partition functions
assumes that only one spin flip occurs for each step along
the chains. This assumption is valid for any finite num-
ber of chains at low enough temperature, but as the num-
ber of chains goes to infinity, multiple spin flips become
important. This complication can be accounted for
straightforwardly.

Assume that every spin flip costs an energy 2J' and
that it has (on average) a choices for its location in the
plane. As the cross section A is increased, one expects cx

to increase proportionally, so one can write plausibly
a=yA, where y is a constant. (We will show —, &y & —,,
if it is well defined. ) For each of the X, steps along the
chains, any number of spin flips can occur, each at an en-

ergy cost of 2J', so the partition function can be written

n2 ——0

1 1

n =0 n&' n2'1l~

1 Z cz!
exp ( —2J'/k~T) g n;

Nz (a —n; )!

00

,
(ae

0 n!

Nz
2J /k T —W'/kBT N

— J'/kB T
) (eae )

z (eye ~
)

z (3.9)
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Thus, the first term in the low-temperature expansion for
the free energy per spin is

k8 T —2J'/k~ T
lnZ = k~ Tye

Z

D) AI

A6

Therefore, if one knows y, the thermodynamic limit can
be taken straightforwardly.

A simple lower bound for y (i.e., upper bound to the
free energy) is found by noting that if all the spins in one
frustrated sublattice are held fixed, the other frustrated
sublattice decomposes into A/3 decoupled Ising chains.
Since only a subset of the configurations are counted, it
follows that y) —,'. A more restrictive bound can be
found by considering units of nine chains with five of
them constrained as shown in Fig. 11. The constraints are
chosen so that the units can fluctuate independently, and
using the method described above, one finds that
y) [(11+~57)/2]'~ /9. Clearly, this type of calculation
can be extended to larger units and more stringent bounds
obtained.

Lower bounds on the free energy (i.e., upper bounds on
y) can also be obtained by considering groups of chains
with free boundary conditions. For instance, one knows
that not all the chains are simultaneously fully frustrated,
so y is bounded above by 1, the value achieved by A in-
dependent Ising chains. One can also consider larger
groups of spins; the simplest calculation involves three
coupled chains with free boundary conditions in the
plane —since constraints between the groups of chains are
ignored, one overcounts configurations and gets the bound
y( —,'. Once again, larger groups of chains can be con-
sidered to obtain more stringent bounds.

One can argue that all three sublattices must exhibit
finite disorder even at arbitrarily low temperature, so that
every sublattice magnetization M~ tends to a value dif-
ferent from one as the temperature approaches zero. First
assume that one completely ordered sublat tice exists.
Consider the set of chains shown in Fig. 12. If the spins
labeled Aq through A6 are fixed to be up, then the config-
uration with BI through B3 up and CI through C3 down
is expected to occur with finite weight. If so, then the in-
terior spin X is free to flip. Naively, one could estimate

A

Dp

FIG. 12. Construction used to argue that jf sublattice A con-
sists of up spins only, then spin x should be free to flip a finite
fraction of the time. This argument indicates that no sublattice
is fully ordered even at arbitrarily low temperatures.

this effect by assuming a (1,——,, ——,
'

) phase. One spin in
each frustrated sublattice is flipped half the time, and the
"right" spin will flip about half the time on each of three
sublattices, so the central spin is free to flip about
( —,

'
) = ~ of the time. Since spins BI, B2, and B3 are also

free to flip, the central spin will be down ( —,)( —,', ) = », of
the time. This argument ignores correlations between the
sublattices (i.e., the spins D~, D2, and D3 must be down
for BI, B2, and B3 to be up), but there is no obvious
reason why the configuration shown in Fig. 12 should not
occur with finite weight. Alternatively, one can look at
the set of seven spins shown in Fig. 13 and consider all

/
i/ X/

FICx. 11. Configuration of four chains that can be used to
yield an upper bound on the free energy of the full model.

FICz. 13. Set of seven chains that can be examined with dif-
ferent boundary conditions, none of which are consistent with a
(1,—2, —

2 ) state. This argument again indicates all three sub-

lattices have finite disorder at any finite temperature.
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possible states for a given configuration of the spins
bounding this unit. One finds that no combination of
boundary conditions is compatible with one fully ordered
sublattice and two sublattices with magnetization
Thus we expect sublattice magnetizations of
(Mf M2 M3 ), where M&, M2, M3 approach nontrivial
limits (i.e., not 0 or I) as T~0.

The method of calculating the free energy of the bun-
dles of chains may seem reminiscent of the time develop-
ment of a finite number of spins. Thus, one may wonder
if methods relating kinetic Ising models' in d dimensions
to static models in d+1 dimensions are applicable, ' '
especially since this correspondence tends to occur at
Lifshitz points. ' However, any connection is quite sub-
tle. To see the complications, consider the simple two-
chain model in a field of Sec. III A, whose mean magneti-
zation is —,

' and free energy per spin is

FIk~ T= —( I/~2)e

These results reflect the transitions between the three de-
generate types of domains shown in Fig. 5(a). The
domains do not occur with equal probability, but rather
the A domain with both spins up is twice as likely as the
B and C domains which have one spin up and one spin
down. For any zero-dimensional model with three states
of equal energy, each state occurs with equal probability
in equilibrium. Any dynamical model which obeys de-
tailed balance relaxes to the static equilibrium with equal
weights for the three states and thus cannot describe the
statistical mechanics of the one-dimensional coupled
chains.

IV. DISCUSSION AND QUESTIONS

%'e have shown that Landau theory, mean-field theory,
and standard low-temperature expansions cannot ade-
quately describe the low-temperature phase of the stacked
triangular Ising antiferromag net. By solving one-
dimensional models, one can obtain bounds on the
lowest-order term of the low-temperature expansion of the
free energy. One also can argue that all sublattices must
have finite disorder at any nonzero temperature. These
one-dimensional models have irrational coefficients in
their low-temperature expansions, so these series cannot
be obtained by the usual method of counting excitations
about an ordered state.

However, many unanswered questions about the model
remain. How does one prove that long-range order occurs
at very low temperature (assuming that the Monte Carlo
results indicating an ordered phase are correct)? Is the
low-temperature phase ferrimagnetic or antiferromagnet-
ic? These questions involve gross qualitative features of
the low-temperature phase, and the fact that they are
unanswered indicates the extent of our ignorance. In ad-
dition, more quantitative questions remain to be ad-
dressed. Is the parameter y in Eq. (3.9) well defined, and
if so, what is its value? What are the sublattice magneti-

zations at very low temperatures?
More work should be done to test the hypothesis that

the low-temperature transition occurs when frustration
becomes relevant. One test consists of doing a simulation
on a stacked triangular Ising model with third-nearest-
neighbor attraction and characterizing its phase diagram,
as discussed in Sec. II A. Since we know that at very low
temperatures the three-sublattice structure is unstable be-
cause of frustration effects, if only two transitions occur,
it might indicate that the lower-temperature transition is
caused by frustration becoming relevant. However, if
three transitions occur (i.e., three ordered phases), then
one may argue that the low-temperature phase in the ab-
sence of third-nearest-neighbor interactions corresponds
to the intermediate ordered phase in the presence of these
added couplings. This result would indicate that these
frustrated models exhibit even more complexity in their
phase structure than has been seen to date.

One would also like to test the claim that all three sub-
lattices have finite disorder at any nonzero temperature.
A Monte Carlo calculation of g,. Mi~, the Edwards-
Anderson order parameter, would be interesting, but it is
very difficult to reach equilibrium at low temperatures,
which is the region of interest here.

Finally, one may wonder whether the considerations
discussed here are generally applicable. The major con-
clusion is that the low-temperature phase structures of
frustrated systems can be very subtle, and that results ob-
tained using many standard approaches must be regarded
with caution. One concept used here that may be useful
for future work on other systems is that of looking at the
number of fully frustrated sites in a given configuration.
This process is more difficult than counting frustrated
rings, because it depends on the particular spin configu-
ration, but it yields insight into which configurations have
the largest number of low-energy excitations and are thus
preferred for entropic reasons. However, the details of the
analysis are only expected to be applicable to other special
nonrandom models with large degeneracy.

After completion of a draft of the manuscript, we
learned of work by Dubois-Violette et al., ' who did a
finite-size-scaling analysis of the low-temperature phase
of this model. Their results are compatible with those of
Blankschtein et al. and this work. In addition, we
learned of Monte Carlo work by Grest on a frustrated
"comb" model on a cubic lattice, which may be amenable
to the type of analysis presented here. However, investi-
gating this question is beyond the scope of this paper.
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