PHYSICAL REVIEW B

VOLUME 32, NUMBER 3

1 AUGUST 1985

Breakdown of self-similar scaling in the two-dimensional random-field Ising model:
A Monte Carlo study

E. T. Gawlinski, S. Kumar, Martin Grant, J. D. Gunton, and K. Kaski*
Physics Department, Temple University, Philadelphia, Pennsylvania 19122
(Received 28 December 1984)

We have simulated the two-dimensional ferromagnetic Ising model in a random magnetic field
with spin-flip dynamics. After the system is deeply quenched into the unstable region of the phase
diagram, we observe novel dynamical behavior, during an early-to-intermediate time regime, for the
average size of the growing domains, R. We find that self-similar scaling for the structure factor
[that is, scaling to a single time-dependent length such as R (¢)] breaks down for long times. Our re-
sults may have relevance to the problem of island-growth kinetics in some chemisorbed systems.

I. INTRODUCTION

Impurities can affect the equilibrium and nonequilibri-
um behavior of pure substances in unexpected ways. As
they are inherent in many physical systems, their conse-
quences (random interactions and random fields) have
been the subject of much study. In particular, for the last
decade, considerable effort has been devoted to the
analysis of a simplified model of such impurities: the Is-
ing model in a random magnetic field.! = Only recently
has a consensus been reached on the dimensionality above
which there is long-range order.> The lower critical di-
mension is now thought to be d{ =2.

Most of the work on the random-field Ising model has
considered the system either at, or close to, equilibrium
(some of the work on dynamical properties will be briefly
discussed below). The behavior of systems far from
equilibrium is, however, an active area of basic research in
its own right.5—!! In this paper we will study the growth
of unstable domains far from equilibrium in the random-
field Ising model.'?

We consider a rapid quench from a high-temperature
disordered state to a low-temperature state. In the ab-
sence of a random field this is a typical first-order phase
transition in which the standard scenario for phase
separation is as follows.*” The evolution involves dif-
ferent time regimes, such as early and late, for which dif-
ferent theories can be developed. In an early time regime,
following the quench into the unstable state, highly inter-
connected domains of ordered phase form. These
domains evolve during an early-to-intermediate time re-
gime so as to reduce their curvature, and thus their sur-
face free energy. In an order-disorder transition in a two-
state degenerate system (such as a binary alloy, where the
scalar order parameter is nonconserved) this growth pro-
cess is relatively well understood:® the average size R of a
domain grows in time ¢ via

R¥t)xt . (1)

This has been observed in metallurgical systems,’ che-
misorbed systems,'® and computer simulations of lattice-
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gas models.!! It is also found in this time regime that-all
lengths scale to R(t). In particular, the structure factor
(which gives the nonequilibrium elastic scattering intensi-
ty) is found to be

S(k,t)=R 4t)F(kR (1)), ()

where k is the wave number, and F(x) is the scaling func-
tion.!> Late-time theories describe the approach to equi-
librium. ‘

On a two-dimensional substrate, such as we are consid-
ering, impurities enter through, for example, steps, ter-
races, or vacancies. In the most simple case, these can be
modeled by a random field and random interactions (we
will not consider random interactions here). Villain® and
Imry® have given very explicit discussions of the way ran-
dom fields enter these systems, which we will now para-
phrase. A chemisorbed monolayer experiences a potential
energy due to its coupling to the three-dimensional host
crystal, that is, the substrate. This acts as an external
field, since in the most simple case the potential couples
linearly to the two-dimensional order parameter of the
chemisorbed system. Therefore, when the substrate is not
perfect the potential becomes random, and so the che-
misorbed system experiences a random field. One specific
example of this, which is discussed by Villain, is Xe
chemisorbed on the (110) face of Cu in the presence of
random impurities.'* !

Theories of various aspects of domain growth in the
presence of a random field have recently been proposed by
two of us,'® Villain,!” and Grinstein and Fernandez.!® !
The former theory deals with the earlier stages of evolu-
tion, while the latter two deal with the later stages. These
will be discussed below. We know of two other Monte
Carlo studies of the dynamics of the random-field Ising
model, those by Stauffer et al.?° and Pytte and Fernan-
dez.2! Both of these primarily address the equilibration
problems which have plagued experimental studies of di-
lute antiferromagnets in a uniform magnetic field*
(which have been argued to be in the same equilibrium
universality class as the random-field Ising model®).
Thus, they have considered much larger field strengths, as
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well as a variety of different quenching procedures (in-
cluding the quenching procedure we will consider herein).
We believe these studies are complementary to our work.

The format of the remainder of this paper is as follows.
In Sec. II we define our model and the Monte Carlo algo-
rithm used to simulate the dynamics. A short discussion
of relevant theory is also given. In Sec. III we present our
main results: the time dependence of the average size of
domains, and the nonequilibrium structure factor. We
find that the random field has a dramatic effect on the
well-known Allen-Cahn growth law [Eq. (1)]: the evolu-
tion is considerably slowed down, and the zero field
R ? <t behavior breaks down. It is impossible to precisely
determine the functional form of R(h,t) at present. This
is not surprising since very few Monte Carlo studies of
domain growth have been able to determine such precise
growth laws (see, for example, the well-known work of
Lebowitz and co-workers**). Nevertheless, an analysis in
terms of existing theory (which, however, does not consti-
tute a definitive test) is given below. We find that self-
similar scaling of the structure factor breaks down for
long times. This is due to the absence of long-range order
in two dimensions: although domains grow, they only be-
come ordered over some “small” length scale determined
by the random-field strength. The late-time form of the
structure factor reflects the morphology of the system as
it approaches this limiting behavior. Finally, in Sec. IV
we conclude our paper with a discussion of our results.

II. DYNAMICAL MODEL

The Hamiltonian for the two-dimensional random-field
Ising model is

N
H=——J20,~Uj—2_h,~0',-, (3)
(i,j) i=1
where the interaction sum runs over nearest-neighbor
pairs on the square lattice, and the N spins can take the
values o=+1. We have considered the case where the
random magnetic field 4 is given by a Gaussian probabili-
ty distribution,

P;= \/flf—rh exp(—h,-z/2h2) , 4)
so that

(h;)=0 (5a)
and

Chihjy=h?5; . (5b)

Theoretical studies of the random-field Ising model often
make use of this distribution. We have found this distri-
bution to give less noisy data than a double-peaked distri-
bution, which has been studied by other authors.?%?!

The dynamics involves the following. After an instan-
taneous quench from temperature T/J =0 to T/J=1
(where Boltzmann’s constant is set equal to unity) the sys-
tem evolves via the standard Metropolis spin-flip pro-
cedure. To be explicit, a spin o; flips if

exp(—AE;/T), AE;>0

Wi=11, AE <0

(6)
exceeds a random number between zero and one, where
AE; is the resultant change in energy on flipping the spin.
During a Monte Carlo step (our fundamental unit of time)
each spin on the lattice is updated in this manner. We do
this through N /15 attempts to flip randomly chosen
groups of 15 widely separated spins. (The factor of 15 in-
volves the multispin coding algorithm used to store and
update the lattice. Note that other authors sometimes call
N attempts to update spins a Monte Carlo step per spin,
rather than simply a Monte Carlo step.) Since the order
parameter (the magnetization) is not conserved in this al-
gorithm, the simulation corresponds to “model A4” in field
theory.

Following the quench, small highly interconnected
domains form, which grow as time evolves, as we have
discussed above, and is evident in Figs. 1—3. We have
monitored the evolving orientational order through
several measures of the “domain size” which are standard
in the literature.!>*=2¢ In the presence of self-similar
scaling, these are all equivalent to the inverse perimeter
density Ep. The perimeter density, in units of the thermal
correlation length, is half the number of broken bonds per
spin. Although we have calculated ip for several times
during the simulation, it is difficult to evaluate it for all
times of interest. The other measures we have considered
are the following. From the circularly-averaged structure
factor

_ 1 2mr
Stn=— [ "doskn, (72)

with
2

> (7b)

s(kt)——1—< ga_eik.ri
"N i=1 '

(where r; denotes positions on the lattice, k =2mj /N with
Jj=0,1,2,...,10, and tan@=k, /k, ), one can define

R%(1)=S(0,1) , )

following Sadiq and Binder,* and

S, k23S (k1) }“

.
Ri(n= >, S(k,t)

9

Both of these follow from self-similar scaling [Eq. (2)].
The quantity R,, is relatively easy to obtain, while R, is
not because of the Fourier sums which are involved. R,
is also somewhat sensitive to the choice of the large & cut-
off (which corresponds to j =10 here). We have also con-
sidered the quantity

= 2
Rp(t)= 2+EWN/T°

where E (2) is the average nonequilibrium energy per spin.
In the absence of a random field R E(I)EEP(I). This will
be discussed further in the following section. Our results
for the growth laws thus involve the four measures R,

EE: Rp, and Rk.

(10)
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FIG. 1. Spin configurations are shown for » =0. Times in Monte Carlo steps (MCS) as indicated. System size is 150%. Note that

growth acts to decrease interfacial curvature.

In Monte Carlo simulations of domain growth one
must balance a number of requirements.’® Three which
are particularly relevant for this study are the size of the
system, the duration in Monte Carlo steps of the runs, and
the number of quenches. We have done this in two ways,
one which is appropriate for the study of phenomena at
small field strengths, and another which is appropriate for
a larger field strength. ’

For small field strengths, namely h =0.311, 0.415, and
0.518, we have chosen to do a large number of runs (352
runs for A =0, and 450 runs for each small nonzero /) on
an N =757 lattice. This improves the quality of our data
(error bars are approximately 7%); test runs on larger and
smaller lattices indicate that our results are not dependent
upon lattice size. The random field roughens the inter-

faces separating domains, which is a short-range effect
during the growth process. Thus, doing a large number of
runs on a relatively small system is a sensible approach to
study the formation and growth of domains in the early-
to-intermediate stages of evolution. The runs on small
field strengths were terminated after 500 Monte Carlo
steps since percolation effects occur at this limit. (These
effects typically become important for?>?¢ R ~0.4V'N.)
The usefulness of studying the small field strengths, and
thus this time regime, can be summarized as follows.
Firstly, these times involve the fundamental nonlinear
problem of unstable domain growth. Secondly, we can
test a previous dynamical theory, which is discussed
below. Thirdly, our results should be related to domain
growth in real systems with random impurities, as we
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t = 148 MCS

have mentioned above.

We have also considered a large field strength,
h =0.829, for an N =240? system over 5000 Monte Carlo
steps. The price we pay for doing this, however, is that
we have only done 44 runs, and so the data are substan-
tially more noisy (error bars are approximately 10%).
Nevertheless, by considering a larger field strength, and
hence a longer time regime, we can investigate the subtle
breakdown of long-range order in the random-field Ising
model. These complementary approaches for small and
large field strengths thus enable us to study different as-
pects of the dynamics.

Before presenting our results we will briefly discuss ex-
isting theory. The rather interconnected structure in Figs.
1—3 is typical of the initial stages of an unstable state’s

268 MCS

FIG. 2. Spin configurations are shown for 4 =0.829. Times as indicated. System size is 150%. Note that growth is much slower
than in Fig. 1, and that the simulations are primarily over the regime before large isolated droplets form.

(d) o=

evolution. Previously, two of us have presented a theory
for such domain growth in the random-field Ising
model.!® In two dimensions the growth law was predicted
to be '

R Xh,t)=R %h =0,1)[1—h%aIn(t/b)] , (11)

where R %(h =0,¢) is proportional to ¢. An estimate from
theory gives?’ @ ~Inb ~1 for T/J =1. The theory is con-
sistent with d;=2,%® and predicts the breakdown of self-
similar scaling in two dimensions. Note that, for
h?b << 1, this will be numerically similar to a power law.
It is difficult to determine the range of validity of this
theory since the approximations used to derive it are, to
some extent, uncontrolled. (In fact, a test of this result
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also serves to test the physically appealing approximation
scheme of Ohta, Jasnow, and Kawasaki® which is used to
derive it.) For late times, however, as domains become
compact it is clear that the theory will break down be-
cause it is based on an assumption of isotropy. It is also
worth mentioning that the field dependence of Eq. (11)
may be strictly true only for a continuum model, and
could be different on a lattice.?’

Recently, other dynamical theories for the random-field
Ising model have been presented.!”~!° These address dif-
ferent issues than that of the theory discussed above.
“Growth” in those theories is limitied by the rate at which
large fluctuations can occur, in analogy to the theory for
nucleation rates from metastable states. Since these
theories do not include the well-established Allen-Cahn
curvature-driven growth mechanism, one would expect
that they could only be correct for late times when
domains are almost compact (but, in two dimensions, be-
fore domains have reached their maximum size). By com-
pact, we mean the domains are close to their local equi-
librium configurations (circles for 4 =0). While those
configurations involve roughened domain walls, they are
certainly much more compact than the interconnected
structure which forms following the quench. It is clear
from Figs. 1—3 that our simulations have principally
studied the motion of highly convoluted domain walls
rather than that of large, isolated droplets. (Note that the
convoluted domain walls are not due to roughening ef-
fects, which those theories incorporate.) A Monte Carlo
study of Villain’s'” and Grinstein-Fernandez’s'® theories
has recently been given by Pytte and Fernandez,?! in
which the equilibration time of large, isolated droplets is
considered explicitly (as well as quenching procedures
somewhat analogous to that studied here). They find
their data to be consistent with those theories.

III. RESULTS

A. Small field strengths

Our results for the growth law (that is, for Ry, Rg,
R,, and Ry) are shown in Figs. 3—7 for the field
strengths A =0, 0.311, 0.415, and 0.518. We believe that
the physics of this process corresponds to the following
simple picture. The small domains which form after the
quench have large curvatures, so that the system initially
reduces its surface free energy by flattening interfaces.
Later, as the interfaces flatten and domains grow, it be-
comes advantageous to roughen interfaces and slow down
the growth. Thus, immediately after the quench the devi-
ation from the zero-field (R?«t) growth law is small,
while as time increases, deviations become more pro-
nounced.

Clearly, from all the measures of length, a dramatic
time-dependent slow down in growth is observed in the
presence of the random field. As we have discussed, this
should be related to domain growth in experimental sys-
tems with random impurities (although we have not con-
sidered the effect of random interactions which we would
expect to be present in addition to random fields). In fact,
experimental studies have observed a slow down of
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FIG. 3. A late-time spin configuration is shown for
h =0.829. System size is 1502

growth, which is partly attributed to surface hetero-
geneities. We emphasize though that the experimental
slow down can also involve the degeneracy of the ground
state. For example, Sahni et al.’® have found that ver-
tices in the Q-state Potts model slow domain growth
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through Q-dependent exponents in an effective power law.
It may be that a combination of both impurity and degen-
eracy effects is responsible for the experimental observa-
tions.

We now turn to the analysis of our data. Only R,, and
Ry will be considered, since there is much less data for
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FIG. 6. f; vs t. Data only for times as plotted. Remainder
of information is the same as in Fig. 4.
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the other length measures. It is worth noting, though,
that the data from all length measures, Ry, Rg, R,, and
Ry, are consistent with one another. We cannot deter-
mine the precise functional form of R(h,t) at present.
Nevertheless, good characterizations of the data by fitting
functions are possible. For example, it is possible to find
an effective power-law fit R 2«<t" to our data, where,
however, the effective exponent n decreases as the random
field increases. That is, for the R,, data, we find n =1.0,
0.79, 0.70, and 0.67, while for the Ry data we find
n =1.0, 0.80, 0.74, and 0.69, for # =0, 0.311, 0.415, and
0.518, respectively.

We have also found good fits to the result from our
previous theory, Eq. (11), where the parameters @ and b
are fitted to each nonzero field strength. (By the X? cri-
terion, these fits are approximately one order of magni-
tude better than the power-law fits.) In Tables I and II we
present these values for the R, and Ry data. As can be
seen in Figs. 4 and 5, the log-correlation form gives a very
reasonable fit to the time dependence of the data (fits to
the Ry data are equally good). From Tables I and II,
however, the field dependence does not seem to be in
agreement with theory in that the coefficients a and b ap-
pear to have some 4 dependence. It is not clear to us
whether the origin of this is as noted in Ref. 29, or if it
may also involve noise in the data. In any case, there is a
clear need for a better theoretical understanding of this
problem.

Finally, it may be worth noting the following about the
R data, and the relationship of Ry to R,. Note that the
energy per spin of a completely ordered domain is
E/J = —2. Interfaces raise the energy of the system by
an amount Z/EI,, while the random field raises it by an-
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TABLE 1. Fitted parameters a and b in Eq. (11), to R, data
over the first 500 Monte Carlo steps, for the three small field
strengths, and over the first 5000 Monte Carlo steps for
h =0.829. Xx? is the normalized sum of squares of the residuals
for the fits (X><1 is a good fit). Data fitted using
AR 3;/0t~4.347, for h =0. Fits are shown in Fig. 4.

h a b xX?
0.311 1.346 13.938 0.30
0.415 0.824 5.757 0.10
0.518 0.432 0.939 0.23
0.829 0.148 0.091 2.78

amount ~h/§p. (This latter result follows straightfor-
wardly from Imry and Ma’s! original argument.)

Thus we. obtain Rgp=C(h)R,, which we have con-
firmed directly from the simulation data. Although Ry
involves an unknown field dependence, its time depen-
dence is equivalent to that of R. Hence we have studied it
in some detail. We should also note that it is a somewhat
less noisy measure of length than R,,.

B. Large field strength

To conclude this section, we discuss our results for

h =0.829. As we mentioned above, the data here are
noisier than that for the smaller field strengths, thus our
conclusions are more qualitative. In Fig. 8 the data for
R, and Ry at this field strength are presented.’! Clearly,
over the 5000 Monte Carlo steps studied, the two quanti-
ties have different time dependences. This is, we believe,
a consequence of the expected breakdown of long-range
order in the two-dimensional random-field Ising model.'®
- We have attempted to fit the data to the form of Eq. (11),
as well as the logarithmic forms proposed in Refs. 17 and
18. Because there is much less data, we cannot make any
strong statements concerning the validity of either theory
from the fits. We note though that the log-correction
form is reasonably good for early times, while the straight
log fits are reasonably good for late times. This suggests
to us that it would be useful to develop a theory which in-
corporates the features of both the early-time and late-

time theoretical approaches.
The structure factor is presented in Fig. 9 in the form

TABLE II. Fitted parameters a and b in Eq. (11), to Ry data
over the first 500 Monte Carlo steps, for the three small field
strengths, and over the first 5000 Monte Carlo steps for
h =0.829. X?is the normalized sum of squares of the residuals

for the fits (X?<1 is a good fit). Data fitted using
AR % /0t~2.195, for h =0. Fits are shown in Fig. 5.

h a b x?
0.311 1.527 39.45 0.69
0.415 1.048 43.07 0.87
0.518 0.768 45.88 0.87
0.829 0.541 257.9 3.55

=2

RMand RE

000 8000 16000 24000 32000 400.00 480.00 560.00 64000 72000 800.00

1
000 50.00 100.00 150.00 20000 250.00 300.00 350.00 40000 450.00 500.00

t(MCS)/10

FIG. 8. R% and R% vs t over 5000 Monte Carlo steps for
h =0.829. R 2 curve is the lower of the two for later times.
Error bars are 10%. 44 quenches on a N =240? lattice.
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1582 GAWLINSKI, KUMAR, GRANT, GUNTON, AND KASKI 32

Flx,n=21) (12)

R0

where x =kRy(t). The scaling function F is time in-
dependent in the self-similar scaling regime, if that regime
exists. In the absence of a random field, the time-
independent form of F(x) is well known from both simu-
lation and theory.®!! This function characterizes, basical-
ly, the geometric form factor for the morphology of the
evolving system. Figure 9 shows that the smaller field
strengths, A =0.311, 0.415, and 0.518, all scale to the
zero-field result over the first 500 Monte Carlo steps. (We
note again that finite-size effects preclude an examination
of longer times for these field strengths.) The result for
the “scaling function” for h =0.829, for the times
t =100, 500, and 5000 Monte Carlo steps, is also shown
in Fig. 9 (the later the time, the larger the peak near
x =0). Clearly the morphology for the late-time, large-
field system is considerably different from that of the
smaller-field results. We believe this is because the
domains are approaching their maximum size, as deter-
mined by the random-field strength. In other words, the
domains are far from the regime where the dynamics is
dominated by a curvature-driven mechanism.

The time dependence of the scaling function for
h =0.829 is also evident in Fig. 9. This shows the late-
time breakdown of scaling. As we have mentioned above,
this is to be expected since there is no long-range order in
two dimensions: The system becomes ordered over a
length scale proportional to the lattice constant (although
that proportionality constant can be large) rather than
over a length scale given by the size of the system.!® To
our knowledge there is no detailed theory available for
this interesting time regime. In contrast to the case for
early times, where the random field and thermal fluctua-
tions work together to roughen interfaces, here we would
expect these two effects to be competitive. Perhaps this

leads to another relevant length scale, as has been dis-’

cussed by Binder.® In any case, we note that the small-x
time dependence of F implies that the ratio R,, /R, is in-
creasing with time, which may be a useful clue for further
theoretical work. We do not know if any significance
should be given to the fact that F is peaked at nonzero x
in Fig. 9 (the peak is at k =27/V'N ). This may only be
an indication of the noise in the data. While the error for
nonzero x is relatively small,®? the error for the x =0

point is larger.!!

To conclude this section, we mention one way to quan-
titatively characterize S(k,?) [or equivalently F(x,?)].
The tail of the structure factor can be fitted to the form

klim S(k,t)~1/k4+1-9 (13)

in d dimensions. This equation, with =0, is called
Porod’s law,*® and gives the scattering intensity from a
sharp (infinitely thin) interface. The phenomenological
quantity 6, which we have included in Eq. (13), character-
izes the diffuseness of the interface. Other ways to use
Porod’s law in data analysis are also possible, as are dis-
cussed in Ref. 34. We have attempted to fit our data to
Eq. (13), but have been unable to draw any definitive con-
clusions.

IV. CONCLUSIONS

In this paper we have studied the dramatic effect that a
random field has on domain growth in the spin-flip kinet-
ic Ising model in two dimensions. Time-dependent devia-
tions from the zero-field Allen-Cahn growth law were ob-
served, during an early-to-intermediate time regime. A
qualitative explanation of this slow down appears to be
given by the previous theory of two of us. Further
theoretical work, however, is necessary for a complete
understanding of the problem. We found that self-similar
scaling of the structure factor breaks down for long times.
This is related to the breakdown of long-range order in
two dimensions.

These results should be related to growth in chemi-
sorbed systems in the presence of heterogeneous impuri-
ties. An experimental study of such a system in the pres-
ence of controlled random impurities would, we believe,
be of considerable interest.
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