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Wetting and drying phase transitions in the presence of van der Waals forces are studied in the Is-
ing lattice-gas model. With low-temperature series and mean-field analyses as a guide, a Landau
theory, valid at temperatures below the bulk critical temperature T„ is constructed. From the Lan-
dau theory, phase diagrams —including fourth-order, tricritical, critical, and critical end-point wet-

ting transitions —are found. Fourth-order wetting occurs in the idealized case where substrate-
adsorbate and adsorbate-adsorbate interactions differ only by an overall factor measuring relative
strength. A scaling analysis is presented, and critical exponents, expected to be exact as hyperscal-
ing predicts upper critical dimensions to be less than 3, are obtained. Detailed results from the full
mean-field theory, in agreement with the Landau theory, are given, and in one case a detailed map-

ping from the mean-field theory to the Landau theory is provided. An exact symmetry between

wetting and drying transitions, within mean-field theory, is found. The full mean-field equations,
supplemented by a scaling analysis, are used to provide predictions of novel wetting and drying phe-
nomena near T„as a function of variable adsorbate-adsorbate coupling near the adsorbate-substrate
interface. Some of these phenomena bear resemblance to, but are distinct from, the special and ex-

traordinary points which appear in the case of short-ranged forces. The relationship between the or-
der of the transitions and the substrate and adsorbate potential parameters is systematically ex-

plored. Tuning of substrate-adsorbate interactions by plating the substrate with a monolayer of a
third material is proposed as a means of producing critical wetting below T, as well as, possibly,
critical drying at T, .

I. INTRODUCTION

Wetting transitions were predicted' in 1977 and first
observed in 1980. Since that time a large amount of
theoretical ' and experimental work has been done in
an effort to determine the conditions under which wetting
(and drying ) transitions take place, the order of the tran-
sitions, and associated phase diagrams and critical proper-
ties. The nature of wetting transitions in systems with at-
tractive long-range forces between adsorbate particles is
the subject of considerable current interest. ' In this
paper we examine the case of van der Waals attraction in
some detail. We use Landau theory, mean-field theory, ,

and scaling arguments to study, among other things, the
wetting and drying phase diagrams as functions of the
adsorbate-adsorbate and adsorbate-substrate potentials,
the order of the various transitions, and the critical prop-
erties. ' Our basic theoretical model is the Ising lattice
gas which was first used for multilayer adsorption calcu-
lations by de Oliveira and Griffiths. This model has
two bulk phases separated by a first-order phase transition
ending at a critical point in the same manner as a real
liquid-gas system. The principal different between the
behavior of the lattice model and a real fluid is the pres-
ence of layering and roughening transitions in the former
at low temperatures but not the latter. Given appropriate
caution when interpreting such transitions as they arise in
the calculations, there is no difficulty in using the model
for a fluid adsorbate. From low-temperature and mean-
field studies of the model, we devise a continuum Landau
theory from which the qualitative features of the wetting

(and drying) phase diagrams may be inferred. We con-
struct appropriate scaling functions for the free energy at
temperatures below ' the bulk adsorbate critical tempera-
ture T, and determine the exponents associated with vari-
ous critical wetting transitions. A hyperscaling argu-
ment' is invoked to show that the upper critical dimen-
sion for each of these transitions is less than 3, and there-
fore the mean-field exponents are exact.

Comprehensive numerical solutions of the mean-field
equations for the model are presented as well as an exact
relationship between wetting and drying phase diagrams
within mean-field theory. The mean-field calculations
support the conclusions reached on the basis of the Lan-
dau theory and provide a detailed link between the
substrate-adsorbate and adsorbate-adsorbate potential pa-
rameters and the parameters of the Landau theory. In ad-
dition, they provide predictions of novel wetting and dry-
ing phenomena close to T, . The effect of enhanced or de-
creased adsorbate-adsorbate coupling in the vicinity of the
adsorbate-substrate interface is examined in mean-field
theory, especially in connection with wetting close to T, .
For enhanced coupling we find behavior not unlike, but
distinct from, the results of Nakanishi and Fisher for
surface-enhanced coupling in the case of purely short-
range interactions. This behavior is further explored us-
ing scaling arguments.

The remainder of this paper is organized as follows.
Section II contains a description of the lattice model, the
mean-field equations, and the derivation of the relation-
ship between wetting and drying phase diagrams. Fur-
ther, the Landau theory is developed here from analytic
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arguments including a low-temperature series expansion
and approximate solution of the mean-field equations.
Section III sets forth the results of the Landau theory in-
cluding scaling functions and critical exponents, while
Sec. IV presents detailed results of the mean-field calcula-
tions including comparison with the Landau theory and
the description of wetting phenomena near T, ; scaling ar-
guments are developed for the latter. In Sec. V we exam-
ine systematically the relationship between the substrate
and adsorbate potential parameters and the order of wet-
ting transitions, arriving at general rules for choosing the
adsorbate and substrate in such a way as to produce criti-
cal or first-order wetting. Finally, Sec. VI contains a
summary.

II. MODEL

We begin this section with a description of the lattice-
gas model for adsorption when long-range forces are
present. The mean-field equations, analyzed in detail in
Sec. IV, are given. From a low-temperature series and
from the mean-field equations, a simple but very instruc-
tive Landau theory is developed.

We use the standard 0 Ising lattice-gas model of adsorp-
tion. The adatoms are allowed to occupy the sites of a
point lattice located in the half-space z&0. These sites
are labeled i where m (m & 1) designates a net at con-
stant z and i runs over the sites on this net. The Hamil-
tonian is

H=g g W(i j )t t,
m &i~,jm&

+ kti Tg I n (m)inn (m)+[1 n—(m)]in[1 n(m—)]] .

(2.4)

Minimization of Q with respect to n (m) yields the mean-
field equations

n(m)(W~ „~ —W~ „~ i)+won(n)+ V„—p

=kgT ln
1 n(n—)

n (n)
1)2) 3~ ~ ~ ~ ~ (2.5)

the term m =n being omitted from the sum. In a real
system, the interaction between adatoms is often altered
close to the substrate in comparison with its behavior in
the bulk. We model this effect in a rough fashion by
changing the coupling between adatoms in the first layer.
Thus, in Eq. (2.4) we make the change

wo~wo+(f 1)wo&m, i— (2.6)

that 8'„ is the interaction energy between one adatom and
a half-space of adatoms n layers away from the adatom; it
is thus the natural analog of V„.

The mean-field free energy is

0= g n (m)n (m')(W —W~ ~ +i)
m, m'

m'&m

+ g ,' w—on (m)+ g(V~ p—)n(m)

with a corresponding change in Eqs. (2.5). In this way wo
is replaced by fwo in the first layer of adsorbate.

The bulk mean-field equation may be recovered from
(2.5) by setting all V~ =0, letting the adatoms fill all
space, and taking n(m) independent of m. The result
may be expressed as

n =1/(1+e ' ), (2.7)

+ g g W(,j )t , t, + gg(V p)t;—
m, m' i,j

m'&m
m i

(2.1)

where ( ) denotes a sum over distinct pairs, W is the in-
teraction energy of a pair, V is the substrate potential in
layer m, p is the chemical potential, and t; =0 or 1 is the

m

occupation number at site i
The mean-field equations are written in terms of n (m),

the probability that a site in the mth layer is occupied, as-
suming that this probability depends only on the layer in-
dex m. It is convenient to introduce the quantities

where po ——Wi+wol2. For T & T, —: pol2k~ there —are
two solutions n (liquid) and nti (vapor) unless p differs
too much from po. These solutions have equal free ener-
gies at coexistence where p=po. Also, the high- (low-)
density solution is stable for p&po (p&po). At coex-
istence, n~+ntt 1, where——as for p&po, n~+np&1.

For this model, and in the mean-field approximation,
there is a simple relationship between wetting and drying
phase transitions and between the corresponding phase di-
agrams. We may expose the relationships by considering,
first, the difference between the free energy of a film
beneath bulk vapor and the free energy of a reference con-

w ~„~= g W(i,j„)
Jn

(2.2)

(2.3)wm ~

m (&n)

m, m'

m'&m

In the sum for wo, the term j„=i„is omitted. Notice figuration with bulk vapor everywhere:

hQ = g [n (m)n (m') —nti]( W —W +i)+ g —,
'

wo[n (m) ntt]+ g—( V po bp—)[n (m—) ntt]—

+kii Tg [n (m)inn (m)+ [1 n(m)]in[ 1—n(m)] —ntilnnti —(1—n p)—ln(1 —ntt) j . (2.g)

Here, p =pa+6 p where hp (0 to stabilize the bulk vapor phase. Next, we write the difference between the free energy
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of a film beneath bulk liquid and the free energy of bulk liquid everywhere. We employ a different substrate potential
V' and chemical potential p'=po+Ap':

bQd ——g [n'(m)n'(m') —n' ](8' —8' +~)+ g —,'wo[n' (I)—n' )+ g(V' —po —bp')[n'(m) —n ]
m, m'

m'&m

+k&T g In'(m)inn'(m) +[I—n'(m)]in[1 —n'(m)] —n' inn' —(1—n' )ln(1 n' —)I . (2.9)

In this case, Ap & 0 to stabilize the bulk liquid phase.
Now specify that bp'= —hp. Then from Eq. (2.7) one finds that n' =1 np —Le.t us also define n'(m)—:1 —5(m)

and use these relations to rewrite AAd. The result is

~Qd g [p(m)p(m') —n pl( IV — —~ — + i)+ g & wo[p'(~) —n p]+ g ( IV~ —V~ —po —~p)[p(~) —np]
m, m' m m

m'&m

+k~ T g I p(m)lnp(m)+ [1—p(m)]in[1 —p(m)] n~—inn p (1——n~)ln(1 np—) ] . (2.10)

If V and V' are such that 8' —V' = V, then Eq.
(2.10) for b, Qd is the same as Eq. (2.8) for b,Q~. Hence
the drying phase diagram using this V' is identical to the
wetting phase diagram using V provided the axes are
scaled in the appropriate fashion. To take a specific ex-
ample, used extensively in the numerical work presented
in Sec. IV, let

wo = —2J, W = —J/m

Thus

n, m&l
(2.13)

Using Eq. (2.13) in Eq. (2.8), we find

l
b,Q, =(n n~) g—(V n IV—) —(n n~)l 5p,—

m=1

and

V = —RJ
m p{&4}m

Then if

(2.1 1) (2.14)

where the subscript s refers to the slab approximation. If
the adsorbate and substrate atoms interact via van der
Waals potentials, then V and 8' will have leading
terms of order m at large m. Keeping, for the mo-
ment, just these terms, we write

V~=& —V = —J —R
m p{&4}m W~ = —J/m, V~ = —RJ/m (2.15)

—= —JR' 1 7p

m p {)4}m P
(2.12)

we find that the drying phase diagrams using R'= 1 —R,
bIJ, '= —Ap, and yz ———Ryz j(1 R) are identic—al to the
wetting phase diagrams using R, b,p, and y~, provided the
axes are scaled accordingly. Also, the densities n'(m) in
the drying case are the same as 1 —n (I), n (m) being the
density in the wetting case. We may conclude that for
this model one need treat only wetting explicitly, the re-
sults for drying then being known. However, in the case
of altered first-layer coupling, i.e., f&1 in Eq. (2.6), there
is no such simple relation between wetting and drying.

Many of the qualitative results found from detailed
solution of the mean-field equations may also be obtained
from a Landau theory whose derivation is now address.
Consider first the slab approximation which, although
very simple, contains an appreciable fraction of the phys-
ics of wetting transitions in the case of long-ranged
forces. ' ' In this approximation the density is taken to
be constant in the adsorbed film which is of thickness l as
well as in the vapor above the film. The vapor density is
taken to be n~, the solution of the bulk equation (2.7).
For the film's density we use the liquid density n~.

and the I-dependent part of b,Q, is
r

bQ, =(n~ np)J(R n~—) 2
—

3 + —
4 +O(1/l )

1 1 6

2J' 2t' 4r4

(2.16)—(n~ np)1 bp—.

Consider this result at b,@=0, for —, &R & 1. Noting that
n~ varies between 1 and —,

' as T goes from 0 to T„we see
that if we define a temperature T,„by

n (T, )=R, (2.17)

then, for T & T, , AQ, has a minimum at I ( ac, while
for T ~ T, , there is a minimum at I = ao. Thus T,„is a
possible wetting temperature. The transition, however,
would be of infinite order in the slab approximation as at
T =T,„and Ap=0, there is no nonzero term to stabilize
the free energy. Effects ignored in this approximation
produce the desired stabilization. One way to obtain these
is to perform a low-temperature series expansion of the
free energy. ' A straightforward computation taking into
account only single-particle or hole excitations in the
ground state gives, at hp =0,
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EQ= g (Vm —W ) k—~Te
or

m=1

m=1
(

P I +m I+m m

bQ=J(R n—)
2l , +,+O(1/l')

2l 4l

I

+ I —m+I I —m+I m ~
)

m=1

+13npJ /101 (2.21)

(2.18)

The first term is from particle excitations in the gas above
the film and the second, from holes in the film. At low

T, n~ ——e ' &~ 1 so that T, is determined from
R =n~=1 —e . To describe wetting within the low-T
series, T, must be small which requires that 1 —R
be small and the differences WI+m —VI+ and
VI m+I —WI m+I in the exponents in Eq. (2.18) may be
neglected. To first order in np, b,Q is thus

I
aQ= g(V —W )

if we use Eq. (2.15) for the potentials. Hence we find at
low T that EQ(l) is stabilized by a term of order 1/l as a
consequence of smoothing the slab profile by thermal
effects. The same result is found by taking
n( m)=n o(m) +b n( m) where no(m)=n~, m (l and
no(m)=np, m &I, and minimizing the mean-field free
energy, Eq. (2.4) after linearizing the adsorbate-adsorbate
interaction energy in An T. he same functional form of
AQ is found by carrying this calculation to the next order
analytically and also results from our numerical studies of
the mean-field equations at all temperatures examined.

Now generalize the interactions (2.15) to

k~Tnp—g (e —1)+ g (e —1)
—~~m —~~m

W = —J
m p ()4)

m=1 m=1

(2.19)
and

of which the I-dependent part may be written as

b.Q= — g I V —W —k Tnp(e —1)] . (2.20)
m =I+1

V = —RJ
m p ()4) mp

(2.22)

m =I+1

PWm
~m —n~~m —np + .

For I sufficiently large we may expand the exponential
and find

Furthermore, introduce

V Up

p 7wp

(2.23)

Then in the slab approximation, Eq. (2.16) is replaced by

1 1 1 1EQ, =(n~ np)J (—R n~) —
z

—
3 + +@~4(RR4—n~)

2l 2l 4l 3l
1 1

2l 3l

+ y~q(RRq n) —— +y„6(RR6 —n~) +O(1/l ) (n~ np—)l bp—.1 1 1 6

4l4 2l' (2.24)

In the event that the substrate-adsorbate and adsorbate-
adsorbate interactions differ only by an overall factor, all
Rz are unity and the free energy is stabilized by the same
1/15 te~ as in Eq. (2.21). More generally, if the Rp are
not unity, additional corrections occur beginning in order
1/I, as a consequence of adjustments to the densities
n(m) produced by all R~&1; this point is discussed in
more detail in Sec. IV. In all cases explored using the full
mean-field equations no indication was found that stabili-
zation beyond the 1/l term is required.

On the basis of the preceding analysis as well as numer-
ical solutions of the mean-field equations, we conclude
that an appropriate form for b,Q(1) for all T ( T, is

Equation (2.25) provides us with a simple, yet very rich,
Landau theory for wetting transitions. An analogous ex-
pression valid in the drying regime is obtained by inter-
changing n13 and n . Note that the Landau theory is a
continuum theory and hence does not possess the discrete
layering transitions present in the lattice-gas model.

III. LANDAU THEORY: RESULTS AND SCALING

In this section we analyze in detail the Landau theory
developed above. At the outset we point out two differ-
ences between the Landau theory and the full mean-field
theory, Eqs. (2.4) and (2.5). First, the Landau theory is
incapable of dealing with phenomena at or near T„ i.e.,
phenomena involving bulk correlation lengths comparable
to or larger than the film thickness 1. Second, as noted

Q2 Q3 g4 g5
b,Q(l) = + + + —l (n np)Ap . (2.25)—

2l2 3l3 4l4 5l5
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briefly in the preceding section, for potentials of the gen-
eral form (2.22), the coefficients a3 and a4 of Eq. (2.25)
are not given precisely by Eq. (2.24); this point is dis-
cussed more fully in Sec. IV. Similarly, a5 is not given
exactly by Eq. (2.24) plus the profile correction appearing
in Eq. (2.21). Except very near T„ these difference are
not important and the predictions of the Landau theory
are substantially in agreement with those of the full
mean-field theory except for quantitative details. Further,
the Landau theory provides a more convenient vehicle for
discussing scaling analytically.

The parameter space for the Landau theory is unre-
stricted but for the stabilization requirement a5&0. As
we focus on wetting, we have n —np~O and Ap &0. At
b p =0, a variety of different critical wetting transi-
tions occur, all signaled by the vanishing of
az ——(n~ np—)J[R —n~(T)], at temperature T,„defined
by Eq. (2.17), i.e., n (T,~)=R. We turn now to discus-
sion of the critical points.

+3 kp
3 g 7 g 7

t
(3.4)

in which t=az, a, =O, b, 3 —,', a—n—d b, = —,'. Analysis of
this case leads to d„=—,', v, = —,', and P, = —,'.

C. Critical wetting

For critical wetting only a2 ——0 at hp =0 and T, . The
free energy is stabilized by az & 0 and a4 and a5 may be
ignored. Then

(3.5)

'I

D. Critical end points and associated critical points

with j=a2, u, = —1, and 5=4. The upper critical di-
mension d„=—', is again less than 3 and v, = —, while

P, = l.

A. Fourth-order critical wetting

—a a3AQ=t 'I4 j' j'
in which t =a2, ag 3 A3 ——

function I'4(X, F,Z) is

Ap

—,, h4. ———,, and 6=2; the

1 X Y as
F4(X, F,Z)= z + 3 + 4 + 5

—Zg,
2g 3g 4g 5g

where g (X, Y,Z) is the solution of

g +Lg + Yg+a5+Zg =0 .

(3.2)

(3.3)

From c} (AQ)/B(bp) at Ap=0 we find the scaling rela-
tion 2v, =26,+a, —2 for the correlation length exponent;
thus v, = —', . Following Lipowsky' we find the upper
critical dimension d„ from the hyperscaling relation
2 —a, =v, (d„—1); it is d„= '7' . As d„&3, we expect, the
mean-field exponents to be exact. Letting the equilibrium
value lo

' of l ' be the order parameter, and defining P,
by lo '-t ~s at bp=O, we find from B(AQ)/B(hp) that
P, =b, —2+a, = —,. Table I presents the exponents and
upper critical dimension for this transition as well as for
the others discussed below.

B. Tricritical wetting

If az and az simultaneously vanish at bp=O while
a4 ~ 0, tricritical wetting is the result. In this instance we
may ignore the a5/l' term in b,Q(1) and find

When a2, a3, and a4 simultaneously vanish at Ay=0,
fourth-order critical wetting occurs. This is an important
special case which arises when V =BR', i.e., when the
substrate-adsorbate and adsorbate-adsorbate potentials are
identical except for overall strength. Minimization of
b,Q, Eq. (2.25), leads directly to the appropriate scaling
form. We find, letting

(n~ np)bp —=A—p,
(3.1)

If a 3 & 0 and a 4 & 0 (with a 5 & 0), critical wetting lines
can end in critical end points. These occur when, at
a2 ——0, AQ has equal minima at l =oo and at some
l & co. At such points a3a5/a4 ———,", . Critical end points,
if approached along a path such that l diverges continu-
ously, have the same exponents as the critical wetting
lines which they terminate. Associated with the critical
end points (see the discussion of Figs. 1 and 2 below) are
two-dimensional (2D) Ising critical points also occurring
at hp =0. They are located at aq ———V 3a3a5,
az ———a z /3v 3a5, and have lo ——~a3/3a5.

E. Prewetting critical points

When there are first-order wetting transitions, there are
associated prewetting' ' ' lines which extend into the re-
gion Ap &0 and terminate at critical points. These have
mean-field critical exponents within our Landau theory
and will have two-dimensional Ising exponents in general.

The various critical points are conveniently displayed in
pictorial form. For a typical R, —,

' &R & 1, Fig. 1 shows
series of phase diagrams with different values of a3 The
hatched sheets at b,p=0 represent first-order transitions
(bulk transitions) in which lo jumps from a finite value to
infinity. The sheets curving down to the right are first-
order prewetting surfaces, at which lo has a finite discon-
tinuity, ending on prewetting critical lines (dashed). Fig-
ure 1(a) is for az ——0. The line of dots at az t =0 is a tri-——
critical wetting line ending at a fourth-order critical
point 04. Along 043 there is a first-order wetting.
Near 04 the line 042 is described by
r —

~
a4

~

"=Laq ~

. The prewetting critical line is
1/h4 5/4, 4described by t

~
a4

~

' and —b,p- [ a4 [ =a4.
Figure 1(b) shows the ease az &0. The tricritical line has
become a second-order critical line (the usual critical wet-
ting) terminating in the critical end point C@. The
prewetting critical line ends in the critical point C (associ-
ated with C~ in the sense described in Sec. IIID above)
which coexists with the bulk phase. Along CCz, which
also coexists with the bulk dense phase, there is a finite
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//r'/, ~

1 I'r lit'04
1 I' ll/~

p/ / //////~
Xr' r'Xr'r'/r r r'

84

r' Z r'8/

r r' r' r' r'. /'

1/' i' r'0'eC J"

r'X I' /' r'r'/M~
. /'r/ r r 7 /'// r ~

=t=a,

= t=a2

(b)

ll //// 8„OI///1. ~///I//II/11.~
PX/ X/'Ao4/'/V/'/'8 ]

l l (a)

t=a2

a3

a4+0
111111/8/'/'/ .ct/ .////// Ps r

II///z )~~/'/'/ / / /////I .
Irr/Ir/rr//W~

XX/'/'/ Xr'/'r'll/'A+A~
83 (b)

/, ~//r rr rM/'////////K ~j'lr l/'r /'r'l6' y/ /// r
' /////i' r'J'1 r', /r'r'r'/ y/ir/7Z///l -y

r /i'//'////i//4 V
/ /// ////'//I v/r/r//'/r/'/////////// /f y/'/'r'/r/ 1/ l// /' i

/ //// r'r'/// r' /

84 -A

83&0

= t=a2

(c)

84~OI//rr. .
IIII//I ~

//ill//g~
A 4 (c)

—t =a2

FICi. 2. Qualitative phase diagrams in a3 t-hp spac-e for a
typical R in the wetting regime 2 &R &1 for (a) a4 ——0, (b)

a4 & 0, and (c}a4 & 0. A detailed description is given in the text.

FICx. l. Qualitative phase diagrams in a4 t-5p spac-e for a
typical R in the wetting regime 2 &R &1 for (a) a3 ——0, (b)

a3 )0 (c) a3 & 0. A detailed description is given in the text.

change in the film thickness as t is increased; the line
from CE to A is a line of ordinary first-order wetting
transitions across which lo jumps from a finite value to
infinity. For ai &0, Fig. 1(c), there is only first-order
wetting at Ap=O. Figure 2 shows a similar series of
phase diagrams for various values of a4. Again, the
hatched sheets at hp=O depict first-order bulk transi-
tions, while the sheets curving down to the right are
prewetting surfaces. Figure 2(a) is for a4 ——0. The dashed
line at a2 ——t=0 is a critical wetting line terminating at
the fourth-order point 04. Near 04 the line 042 is
described by t —

I a3 I

'=
I
a3

I
. The prewetting

1/h4
critical line is described by t —

I
a 3 I

and —Ap
—

I
a3

I

=
I
a3

I

. Figure 2(b) shows the case a4
5/A, 4

& 0, and demonstrates again the critical end point and as-
sociated critical point of Fig. 1(b). For a4~0, Fig. 2(c),
there is a critical wetting line (dashed) at t=O and b,p=0.
This line terminates in the tricritical point 03. Along

03A, described by t —
I
ai

I

'= Ia3 I, there is first-
order wetting. The prewetting critical line is character-

1/h3i«dnear O3 by t-
I
a3 I

—~p-
I
a3 I

The information contained in Figs. 1 and 2 at Ap =0 is
easily visualized in the plot of Fig. 3. There, 204 is a line
of tricritical points ending in the fourth-order point 04.

At 04 the tricritical line bifurcates' into the critical end-
point line 04E [line of points C@ of Fig. 1(b)]; CO4AB is
a plane of critical wetting points at t=O. The wing
ED04 extending to negative t is a first-order sheet at
which there is a finite jump in lp. To the left and below
CE04A is a first-order wetting sheet which curves to-
wards positive t. Near 04, the hne 04E is described by

~3/~4
a3 ——15a4/64a5, i.e., a3-a4 as noted in Sec. IIID

a2

84

Flax. 3. Qualitative phase diagram in a3 a4 tspace at gas---
liquid coexistence (Ay=0) for a typical R in the wetting regime

2 & R & 1. A detailed description is given in the text.
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where

lo b4/I 6b2[——R n( T"—')] ]
'

For —,
' &R & 1, then, T"'~T, as b4~ ao since

hn(T)~0 as T~T, . Thus, the first-order wetting sur-
face approaches T, at large

~

a4 . The full mean-field
theory predicts that this surface actually reaches T, at
finite y4, where drying phenomena come into play (see
Sec. IV). Nevertheless, Fig. 4 is instructive for its many
qualitatively correct features. We do not discuss the line
AB as it is at T, where the Landau theory completely
breaks down. We have also found the full mean-field
theory to be numerically intractable near AB as well.

84

I( a, =o

iB

'/~ ~ /c&~ —)~-----— A

Tc

FIG. 4. Qualitative phase diagram in R-a4- T space at a3 ——0
and at coexistence (hp =0) for the full wetting regime

2 & E. & I. A detailed description is given in the text.

while 04D is given by a3 ——a4/3a5, r =a2( —
~
a3

~

/
2 . ~3/d 4 1/~27a )g, i.e., a3-a4 and a2-a4 '. The first-order

sheet curving below the tricritical line AO4 is composed
of lines at constant a4 which are described by

1/h3
t -a3 ——a3.

The value of T, can be varied from 0 to T, as R
ranges from 1 to —,. Although the Landau theory is un-

reliable for computing exponents for critical points at T,
as well as for a4 too large and negative (as we shall see in
Sec. IV), it is instructive to display its predictions as a
function of R. In Fig. 4 we show an R-T a4 ph-ase dia-
gram for a3 ——0. The curve AD is a line of fourth-order
critical points, excepting point A. The sheet ABCD is a
tricritical sheet, excepting the line AB. This sheet is gen-
erated by sweeping the curve AD parallel to the a4 axis;
AD is determined by R =n ( T). The sheet below AD is a
surface of first-order wetting transitions. Under the as-
sumptions that a2 b2[R ——n—(T)]h n, a4 —— b4 bn,—and
a5 ——const, where b.n =n~(T) n~(T—) and b2 and b4 are
constants, the temperature T~ ' of the first-order sheet is
determined by

63~2 a b [R n(T ~ )]—5 2 a w

5 b 2

IV. NUMERICAL RESULTS

wo ———2J (4.2)

The numerical value of wc is quite unimportant with re-

gard to the wetting and drying transitions. The value
—2J is convenient because then Eqs. (4.1) and (4.2) give
pa= —2J and, in mean-field theory, kz T, =J. Finally, as
described in Sec. II, we will consider the effect of chang-
ing the coupling within the first layer only; specifically,
we let the coupling within this layer become wo ———2fJ,
f~ 1.

The mean-field equations were solved using anywhere
from 30 to 300 layers of adsorbate, 120 layers being typi-
cal. The procedure employed was that of Ng ' in which
one constructs the trial function for a given iteration in an
optimum fashion from the outcomes of P previous itera-
tions. We found the most rapid convergence to be ob-
tained for P=4 or 5. For T & 0.5T„ fewer than ten itera-
tions were generally needed to produce convergence of
all of the individual n (m)'s to within 10 ' . For
T=0.999T„several thousand iterations were generally re-
quired.

Extensive calculations have been done for wetting tran-
sitions as functions of R, T, bp, y4, f, and y5, and for
both wetting and drying transitions as functions of these
parameters. We discuss first the work using f= l.

At Ap =0 one expects, and we find, wetting transitions
for —, &R & 1. At y4

——y5
——0, there is fourth-order criti-

cal wetting which we were able to identify by showing nu-
merically that p, = —,

' as in the Landau theory of Sec. III.
In the wetting regime with y&

——0 and y4& 0 we find ordi-
nary critical wetting with p, = 1 (as in Table I) at T,
such that n&(T, )=1—R. As can be seen from Eq.
(2.24), this result is expected because a4 should be positive
for y4&0 [or R4&1 in Eq. (2.24)] when n =R. For
y&

——0 and y4 &0, but not too large in magnitude, there is
first-order wetting at some T (y4) & T,„.As y4 becomes
increasingly negative, T~(y4) approaches T„reaching
this temperature at some value y40. At y4O we apparently
find a crossover from first-order wetting to a regime of
critical drying at y4&y4O, the critical drying temperature
being T, . Let us now turn to detailed consideration of the
phase diagrams.

Figure 5 shows wetting phase diagrams in y4-T space
at several values of R for y5 ——0 and bp =0. For all R ex-
cept 0.6, y40 is too negative to appear on the figure; at

In this section we present results found from solving
the mean-field equations (2.5) using potentials of the form
(2.22). In regard to these potentials, preliminary calcula-
tions verified that the qualitatively important parameters
are the relative values y,~ —y„z, and therefore most of
the numerical work has been done using y~z

——0 for all P.
Thus we discuss here results obtained using

r

W~ = —J/m and V~ = —RJ
m p()4) m

(4.1)
where J is a positive constant. Notice that y„p is now
written simply yp, which should not be ambiguous as all

y p are zero. Furthermore, we take
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TABLE I. Critical exponents and upper critical dimension for the critical wetting transitions dis-
cussed in the text. For the prewetting critical line, including its end point C [see Fig. 1(b)], the ex-
ponents are those for Ising transitions in d —1=2 dimensions. Critical end points [CE in Fig. 1(b)], if
approached along a path such that l diverges continuously, have the same exponents as the critical wet-

ting lines which they terminate.

Exponents

a,

Wetting

5
2

11
5

Cntical
, prewetting

a(d —1)

6(d —1)

P(d —1)

v(d —1)

Tricritical
wetting

1

2

1

2

3
2

7
3

Fourth-order
wetting

1

3

2
3

1

3

1

3

7
6
17
7

R =0.6, y4O- —0.23. The point on each curve at y4 ——0 is
a fourth-order critical point separating a line (dashed) of
critical wetting transitions from a line (solid) of first-order
wetting transitions.

As shown in Sec. II, there are analogous drying phase
transitions in the regime 0&R & —,. Specifically, there
are phase diagrams identical to Fig. 5 given the reidentifi-
cation of variables R —&R'= I —R and y&~y4
= —y4R/(I —R). Further, the critical drying transition
temperatures T,d are such that n ( T,d )= 1 —R '.

Suppose next that both y4 and y5 are nonzero. Then,
for given R we shall examine the wetting transitions in
the space of yq, y5, and T at by=0. Figure 6 shows at
R=0.99 a set of wetting transition lines in y5-T space at
different values of y4, while Fig. 7 shows the same in yq-

0.04

Tcw
-0-01 = = -0.02

0.1
I

I

I

I

0.99
l

I
l

I

I

0.95
I

I
I

I

I

I

I

0.90~

0.02

0.0

-0.1
-0.02

—0.2

—0.04

0.3 0.4

T/Tc

0.5
I

0.5

-0.3 0.4 0.5 0.8 1.0
T/Tc

FIG. 5. Phase diagrams in y4- T space for several values of R
in the wetting regime with y5 ——0 and hp=O. Each line of criti-
cal wetting transitions ( ———) is joined at y4 ——0 at a fourth-
order critical point (~ ) to a first-order wetting line ( ). The
inset shows the first-order line at R =0.99 close to y4 ——0.

FIG. 6. Phase diagrams in y5-T space for several values of
y4 at R=0.99 and hp=0. The lines shown are first-order wet-
ting (at T & T, ) or partial wetting (at T & T,„) transitions.
The line of critical wetting transitions (not shown) is at constant
T=T,„=0.4265T, and is, for any given y4, above the corre-
sponding first-order line in the figure, terminating at the point
where it intersects that line (~). For y4&0, this point is a criti-
cal end point; for y4&0, a tricritical point; and for y4 ——0, a
fourth-order critical point.
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feet as the term with p=5. As discussed in Ref. 33, the
salient point regarding such terms is that they affect the
part of the free energy that varies as I/1 through their
effect on the density of the adsorbed film, and therefore
lead to qualitatively the same phase diagrams and precise-
ly the same critical exponents in general.

At bp&0 we find sheets (in y4- T-hp space at fixed R
and y5) of first-order prewetting (or predrying) transi-
tions. Each sheet ends, at bp=O, on one of the first-
order lines discussed above (e.g., Fig. 7) and, at bp&0 on
a line a prewetting critical points. This line of critical
points terminates at the end of the first-order line at
hp=0, and it lies entirely at temperatures below T, .
Mapped onto a4-T-hp space using the information in
Fig. 8, they appear as sketched in Fig. 2 (for T & T„' for
T near T„see below). The prewetting sheets lie at
hp&0, while the predrying sheets are at Ap&0. The
prewetting and predrying phase diagrams are identical
under the transformation R ~R ' = 1 —R, y&

—+y&
= —y&R/( I R), and—bp~bp'= —bp.

The most striking feature of the prewetting (and, of
course, the predrying) transitions is that they do not ex-
tend far from bp=0 and T = T~. For given potentials,
the prewetting critical point is typically at
Ap p — 0 001kg T and T p T —0 02T The
difference between the pressure at the prewetting critical
point and that at gas-liquid coexistence at the same tem-
perature is thus bP=np

~
hp, z~ ~

—10 npk~T„suggest-
ing that the prewetting transitions lie so close to the bulk
gas-liquid transition as to be very difficult to detect exper-
imentally. It is worth noting that if the adsorbate parti-
cles interact only with nearest neighbors then the Ising
lattice-gas model produces significantly longer prewet-
ting lines such that hp= —0.03k&T, . As real materials
are more faithfully represented by the present model with
van der Waals interactions, our results give some indica-
tion why presetting transitions have been so elusive to ex-
perimentalists.

We turn next to results obtained using an altered cou-
pling within the first layer which represents possible ef-
fects on the adsorbate-adsorbate coupling produced by the
proximity of the substrate. Within the mean-field
theory, the altered coupling is represented by replacing wo
for the first layer only by fwo with f&1. Thus the con-
tribution woN&/2 the free energy, Eq. (2.4), becomes
fwoN&/2 and the mean-field equations (2.5) are altered
accordingly.

In what follows we shall keep yz ——0 throughout. Fig-
ure 9 presents, for R=0.99, wetting phase diagrams at
coexistence in the y4- T plane for various values of f. For
each value of f there is the usual critical wetting line (not
shown for reasons of clarity) at T, running from positive
y4 to its intersection with the appropriate line of first-
order transitions. For f~ 1, this intersection is a tricriti-
cal wetting point and the line of first-order wetting transi-
tions terminates here.

The tricritical point moves toward negative y4 as f in-
creases. In the regime of first-order wetting, T~ decreases
with increasing f at fixed y4. For f&1, on the other
hand, the critical line terminates at a critical end point at
y4~0, while the first-order wetting line continues below

0.04

0.02

0.0

-0.02

—0.04
0.4 0.5 0.6 0.7

FIG. 9. Phase diagrams in y4-T space for various values of
f, the first-layer coupling enhancement factor, at R=0.99,
y5 ——0, and Ap=0. The lines shown are first-order wetting (at
T & T,„)or partial wetting (at T & T,„)transitions. The line of
critical wetting transitions (not shown) is at constant
T =T,„=0.4265T, and is, for any given f, above the corre-
sponding first-order line in the figure, terminating at the point
where it intersects that line (~ ). For f& 1, that point is a tricrit-
ical point, for f& 1, a critical end point; and for f=1, a fourth-
order critical point. 4

T,„as a partial wetting line. Overall, the phase diagram
resembles Fig. 7 which is a y4-T plot for f= 1 but with
various values of yz. This fact is not surprising; an in-
creased (decreased) coupling in the first layer or layers
near the substrate is in some respects comparable to a
short-ranged attractive (repulsive) substrate potential in
that both would enlarge (depress) the density near the sub-
strate, and therefore should have analogous effects on the
free energies of films of a given thickness. Comparison of
Figs. 7 and 9 shows that the foregoing is indeed true, at
least for the case shown. At the same time, one expects
that there must be other respects in which the two types
of potential are not equivalent; a large f implies a raised
critical temperature for any surface phase transition that
may take place close to the substrate while a substrate po-
tential -y5/n will have no such consequences. This
point is discussed further below.

Cxiven f~l, the phase diagrams in the drying regime
0& R & —,

' are similar to the wetting phase diagrams but
there is no simple exact symmetry as in the case of f=1.
We show in Fig. 10 the drying phase diagram at Ap =0 in
y4- T space for R =0.01 and y5

——0 for several values of f.
In the case of f&1, the first-order drying lines become
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0.04 —0.6

0.02 -0.8

'Y4/99

0.00 -1.0

—0.02 -1.2

—0.04 -1.4
0.7 0.8 0.9 1.0

0.40 0.50 0.60

FIG. 10. Phase diagrams in y4- T space at various values off
at R'=0.01 (in the drying regime), y5 ——0, and hp=O. The
vertical axis is y+99, i.e., (1—R')y&/R', to facilitate compar-
ison with Fig. 9. The inset shows the region around y4 ——0 and
T =T. .

critical drying lines at tricritical points lomted at values
of y4&0; these values are very small and can be dis-
tinguished only in the inset. For f& 1, the critical drying
line terminates at critical end points where the first-order
drying transition becomes a partial drying transition.

The behavior of the wetting and drying transitions near
the bulk critical temperature when f&1 is quite interest-
ing. Let us consider one particular case with R & —, in
some detail, specifically, R =0.9. As y4 decreases toward
some value y4p(R, f) the first-order wetting transition
temperature T approaches T, . For given R, y4O is a de-
creasing function of f. For y4&y4p, there is, as stated
earlier, no wetting transition. Rather, at T, there is a
critical drying transition, and, depending on f and y4, a
partial drying transition, in which the thickness of a gas
film beneath bulk liquid changes discontinuously by an
amount on the order of several atomic layers, may occur
at T & T, . The temperature of the latter transition in-
creases with y4 and may or may not extend as high as T„
depending on f. For f &fp (fp=1 60 at R=. 0.9), the
partial drying transition line ends at a critical point at
some y4 & y4p and T & T, . For f &fp, the line ends at y4p
and T, . In Fig. 11 the wetting and partial drying transi-
tions are shown as solid lines in a y4-T plot for f= 1.3,
1.5, and 1.7. The dashed lines joining the lines of wetting
transitions are partial wetting transitions, or surface tran-
sitions, in which the finite film's thickness jumps by
several layers (from about zero to three or four layers).

T/Tc

FICi. 11. Phase diagrams in y4-T space for f=1.3. 1.5, and
1.7 at R=0.9, Ap=O, and y5 ——0. In each case, the first-order
wetting lines intersect the line T = T, at some y4 y4O(f). Fo——r

f=1.7, the wetting line meets a line of partial drying transitions
at this point. In the cases of f= 1.3 and 1.5, the partial drying
line does not reach up to T, but ends at a critical point at some
T & T, . The dashed lines at f= 1.5 and 1.7 are lines of partial
wetting transitions, each one intersecting the corresponding wet-

ting line at a triple point and ending at a low-temperature criti-
cal point. Both the partial wetting and the partial drying transi-
tions may be thought of as surface phase transitions brought
about by the strongly enhanced first-layer coupling. Critical
drying lines (not shown) extend downward from points 3 and
8'.

I =g[n(m) —n ], (4.3)

where n~ is the bulk liquid density, as a function of
t = ( T, —T) /T, at fixed y4 & y4p. We find that

~

I
~

in-
creases as t approaches zero; however, we cannot tell de-
finitively from the numerical work whether or not it
diverges at T, bemuse of convergence difficulties at
t &0.002. Any divergence that may appear at T~T, is
evidently quite weak, e.g., logarithmic. This is consistent
with a scaling theory for the mean-field case; a more gen-
eral scaling argument predicts a stronger divergence. We
present the scaling argument shortly.

For f=1.5 and 1.7, the behavior of the wetting and

The line of these transitions, brought about by the
enhanced adsorbate-adsorbate coupling near the surface,
ends in a critical point, subject always to the caveat ex-
pressed earlier.

For each f, the critical drying transitions lie along a
line (not shown for clarity) at T, running from negative
y4 up to the intersection with the line of wetting transi-
tions at y4O. The critical drying has been explored by
studying the coverage e, defined by
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first-order lines (noted above) then suggest that h4 ———, for
A, 1 for C, and —, for 8'. Exponents for the various tran-
sitions at T, are collected in Table II.

The transition at 8'is similar to the extraordinary tran-
sition of Nakanishi and Fisher. The exponents
a, =a+v and A, =h are the same while their exponent
5& ———', for their surface field h, is the same as our 5&———',
for the field Ay4, which can be thought of as a surface
field controlled by changing the van der Waals coupling
between the adsorbate and the first substrate layer. The
transitions are different, however, in that we have a par-
tial drying line terminating at 8' in lieu of a drying line.
Further, a critical drying line at T, terminates at 8" there
is no analog of this line in the case of the extraordinary
transition. The transition at C has the same similarities
with and difference from the special point of Nakanishi
and Fisher. The exponents es and 6s are the same, as is
the surface field exponent. Once again both partial drying
and critical drying lines terminate at C, possessing no
analogs at the special point. Our additional relevant field
at C, bf=f fo, is physi—cally the same as the enhance-
ment of surface coupling field g in Ref. 22 at the special
transition. For the case of short-ranged potentials there
appears to be no analog of our critical point A.

The crucial difference between our work and that of
Nakanishi and Fisher is, of course, the potential-range
difference. In particular, for short-ranged potentials the
surface field alone determines whether or not one has wet-
ting or drying. For van der Waals potentials both y4 and
R play this role. It is therefore not surprising that wet-
ting and drying transitions are more complex in the van
der Waals case. What is surprising is that the surface
field exponents at C and W are (within numerical accura-
cy) the same as at the special and extraordinary points, at
least within mean-field theory.

qualitative fashion, how to design an experimental system
in which critical wetting phenomena may be observed.
The model will allow the positioning of the adsorbate
layers with respect to the substrate (the "excluded
volume" effect) to be determined variationally. Our con-
clusion will be that the excluded volume effect is likely to
produce first-order wetting, as in the work of Kroll and
Meister. ' The model is then generalized to the case
where the substrate is coated with a monolayer of a third
material. Results indicate that an appropriately chosen
coating can produce critical wetting.

e begin by introducing the "discrete layer model" in
which the substrate atoms and adsorbate atoms are treated
as being continuously distributed within discrete layers.
The substrate layers are at z'= —m'a„m'=0, 1,2, . . . ,
while those of the adsorbate at z =ma+5, m =1,2, . . . .
The distance 5 is introduced to allow for the excluded
volume effect; 5 will be determined variationally by
minimizing the substrate-adsorbate interaction energy.

Let a pair of atoms in the substrate interact via a
Lennard- Jones (6-12) potential,

12

p, (r) =4e, (5.1)

4m
Um m'= nsu&u

5 m'a, +ma +5

and a pair of adsorbate atoms, by a 6-12 potential P with
range and depth parameters o. and e~. Finally, a sub-
strate atom and an adatom are assumed to interact via a
6-12 potential P„with parameters o„and e„; we shall set
o, =(o;+0 )/2.

Integration of P, over the m' layer of substrate atoms
gives

10

V. INTERACTIONS AND THEIR TUNING
5 Ou

2 m'as+ma +5 (5.2)

In this section we study the forms of V„and W„within
a model which possesses some important features of real-
istic physical systems. Our goal is to understand, in a

U~ ~ is the interaction energy of layer m' of the substrate
with an adatom in layer m, given that n, is the density of
atoms in a layer of the substrate. The corresponding ex-

TABLE II. Critical exponents for transitions near T, . The top entry in each case is the mean-field
result, while the second entry is the expected exact result in terms of critical exponents for the Ising
model in d=3 dimensions.

Exponents
Critical
drying

a(d)+ v(d)
3
2

4(d)

0
v(d) —P(d)
3
4

v(d)

a(d)+ v(d)
3
2

A(d)
1

0
v(d) —P(d)
3
4

v(d)

2

u(d)+ v(d)
3
2

b(d)
1

0
v(d) —P(d)

3
4

v(d)

2

a(d)+ v(d)
3
2

a(d)
3

0
v(d) —P(d)

4

v(d)



32 WETTING TRANSITIONS IN SYSTEMS WITH van der WAALS FORCES 1571

pression for the interaction energy of an adatom with a
layer of adatoms I layers away is

R4 ——(a, —25)/a,

Rq ——(a, —6a,5+65 )/a
(5.10)

4m
~m = n~o ~6~

S

10
5 ou

2 am

4

(S.3)
Let us now introduce a value 5o of 5 arrived at by the

purely geometrical consideration, a +5O ———,(a, +a), or

V = g v~ ~ and@' = g tv~+ (S.4),
m'=0

Noting that

m'=0

where n, is the atomic number density in a layer of adsor-
bate. The total substrate potential in layer m, V, and
the analogous quantity within the adsorbate, 8', are

5O ———,'(a, —a) . (S.1 1)

The excluded volume effect is naturally defined with
respect to 50. If 5&50, the adsorbate is at a greater dis-
tance from the substrate than one would naively expect;
there is a volume near the substrate from which the adsor-
bate is excluded. If 5 & 50, the opposite is true.

In terms of 5o, R& and R5 of Eqs. (5.10) may be rewrit-
ten as

we find, for large m,

2m' 2 o u)
n, o. e~

3 a

'4

while

4

1 3/2 1

, +O(1/m')m' m4 m'

(S.S)

(S.6)

R4 —1 = —2(5—50)/a,

(S.12)
R5 —I =[—,(a —a, )—6(5—50)a+6(5—5O) ]/a

It is clear from Eqs. (2.24)—(2.25) that it is desirable to
have R4&1 at T, (where R =n ) to observe critical
wetting. From Eqs. (S.12), then, a positive excluded
volume effect (5 & 50) will prevent critical wetting, leading
to first-order wetting. A negative excluded volume effect
(5&50) will lead to critical wetting if R5 —1 is not too
negative.

%e have determined 6 by minimizing the substrate-
adsorbate interaction energy

2m 2 oI
Vm = — n, o-„

3 a a' s

U(5)= g V . (5.13)

I 3a, /2a
X

(m +5/a) (m +5/a)3 4

(S.7)

2m' g o p
nso Uev a a,

3(a, /2 —5)/a
m

+ m4

(a, /a)
+ 5 +O(1/m )

(m +5/a)'
The latter may be expanded in powers of 5/ma to give

The results of this calculation are very close to those ob-
tained by minimizing just the interaction energy of the
first layer of adsorbate with the first layer of substrate,
i.e., by minimizing U& 0. The latter procedure gives

6/o, = 1+ 1— (5.14)
os

2'

5/o, as found from Eq. (5.14) is typically about Q.Q2

larger than the value found by minimizing U(5).
racies engendered by the use of Eq. (S.14) may be ignored
given the qualitative nature of arguments based on the
discrete-layer model. From Eqs. (5.14) and (S.IQ),

'

we find

5 —5o——(o, +o —a, —a ) /2 . (5.15)

(a, —6ag5+65 )/a+, +0(l/m')m'

From Eqs. (2.22), (2.23), (S.6), and (S.S), we find
6

ns&Uou a
6

ng&g)o gp as

y, g
——3(a, /2 —5) /a, y„4——,',

y, ~=(a, —6a, 5+65 )/a, y 5=1

and

(S.8)

(S.9)

In most fairly-densely-packed materials one expects core
parameters to be greater than lattice interplanar spacings.
For example, if a is the spacing between (111) planes of
atoms in an fcc structure at T=Q, assuming a (6-12) in-

teratomic potential, then a =0.89o. . As a general rule,
then, we expect, from Eq. (S.1S), that 5—5O& 0, i.e., that
there is a positive excluded volume effect. Further, first-
order wetting is to be expected, as observed experimental-
ly 6

Consider next the generalization of the discrete layer
model, a monolayer of a third material being put in place
of the first substrate layer. Let the distance between this
layer and the substrate be a and the distance between
this layer and the adsorbate be a +5. After a modicum of
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computation, we find that Eqs. (5.12) are replaced by

R~ —1 =2[—(5—5p)+ (ra, —a~ )]/a
(5.16)

R5 —1 = [—,(a —a, ) —6a (5 5—p)+6(5 5—p)

+6a~ (a~ —a, ) —12(5—5p)(ra, —a~ )

+6(a —a, )(ra, —a~ ) ]/a

where r =n~ e~ cr~ In, e„cr„measure the ratio of
monolayer-adsorbate interactions to substrate-adsorbate
interactions. Also, n~ is the density of monolayer atoms,
and e and o. are the parameters for the monolayer
atom-adsorbate atom (6-12) potential.

A calculation such as that leading to Eq. (5.15) provides

5 5p —5 ——5p+—(cr —og )/2, (5.17)

5—5p being given by Eq. (5.15). Thus, if we choose
monolayer molecules which are sufficiently smaller than
the substrate molecules, we can arrange that 5—5p & 0. If
the monolayer molecules attract the adsorbate more than
do the substrate molecules as well, we can guarantee that
ra, —a &0. From Eqs. (5.16) we then have R4&1. The
same assumptions about thy monolayer molecules, will, as
we see from Eq. (5.16), tend to make R5 & 1 as well, espe-
cially if a & a, .

In this scenario the excluded volume effect is overcome
and conditions for critical wetting are achieved. It may
be possible in practice that one of these critical wetting
criteria (e.g., ra, —a~ & 0) is sufficiently well satisfied that
another (e.g., small monolayer molecules) need not be, the
desired goal still being met.

It follows from the discussion here and that of Sec. IV
that critical drying at T, can perhaps be found by revers-
ing one or both of the criteria leading to R4 & 1, thus
making y4 (in Sec. IV) sufficiently negative.

space of couplings and temperature (see Fig. 3) is found
for the simplest class of potentials, where the substrate-
adsorbate and adsorbate-adsorbate interactions differ only
by a single relative strength parameter.

A study of transitions at and near T, as a function of
varying first-layer coupling, using the full mean-field
theory, yielded an interesting crossover from a first-order
wetting regime to one of critical drying at T, . Associated
with this crossover are three apparently new kinds of crit-
ical points, the points A, C, and W of Sec. IV. Two of
these points bear both striking similarities to, and striking
differences from, the special and extraordinary points
found for the case of short-ranged interactions.

A simple analysis of potentials (Sec. V) within a model
possessing more realistic features of real systems than the
pure lattice-gas model suggested why only first-order wet-
ting has yet been observed. This analysis also suggested
that critical wetting may be observable in nature by use of
the device of plating the substrate with a layer (or perhaps
layers) of a third material made of molecules whose most
important property must be that they interact more
strongly with the adsorbate than do the substrate mole-
cules.

It is, of course, exceedingly unlikely that a system could
be tailored so as to allow direct observation of fourth-
order critical wetting. Nevertheless, second-order critical
wetting seems within reach, and systems might be chosen
so that the presence of critical end points as well as tricrit-
ical and fourth-order points might influence experimental
results to the extent that data analysis should account for
these phenomena.

The possibility of observing critical drying at T, is very
intriguing. This would most likely occur for the case
where the substrate is plated with a material which at-
tracts the adsorbate rather more weakly than does the sub-
strate.

VI. SUMMARY

In this work we have studied the influence of realistic
long-ranged forces on wetting (and drying) phenomena.
For temperature below the bulk critical temperature T„
our mean-field theory maps onto a simple Landau theory
which yields a rich spectrum of critical wetting transi-
tions, including fourth-order, tricritical, critical end-point,
and second-order phenomena. A hyperscaling argument
showed that the upper critical dimension for these transi-
tions is in each case less than 3; the mean-field exponents
are thus expected to be exact. The fourth-order wetting
point, a key feature of the phase diagram in the relevant
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