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Some developments in the theory of modulated order.
I. The role of fluctuations in the axial next-nearest-neighbor Ising model

and the relevance of the Thouless-Anderson-Palmer equation
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The general mean-field theory of systems with modulated order is extended so as to include non-

trivial fluctuation effects through the use of the Kirkwood approximation. Application of the
theory to the axial next-nearest-neighbor Ising (ANNNI) model reveals that fluctuations (1) decrease
the size of the entire ordered region of the phase diagram, (2) decrease that fraction of the ordered

region that is most highly modulated, and (3) suppress the reentrant parts of the modulated region
that do survive. Physical reasons for this behavior are discussed. In addition, we note that our
ANNNI mean-field equations turn out to be precisely the Thouless-Anderson-Palmer (TAP) equa-
tions of spin-glass theory despite a number of rather different assumptions made in deriving the
TAP equations. Some of what this observation reveals about the TAP equations is discussed.

I. INTRODUCTION

From a historical perspective, the study of modulated
order in solids is at a stage comparable to the earliest days
of the study of ferromagnetic order with the Ising model.
The simplest mean-field theory has been worked out for
the simplest spin model showing interesting effects, name-

ly the axial next-nearest-neighbor Ising (ANNNI)
model. ' However, the effects of going beyond mean-
field theory, so as to include fluctuations, and the effects
of changing the models, have yet to be considered in any
systematic way. The beginning of just such a study will
be the goal of this and the succeeding paper.

One could, of course, make the argument that little will
be gained from this kind of study. For Ising-like systems
it turned out that neither the inclusion of fluctuations nor
small changes in the models made much of a difference in
the global structure of the phase diagram. To be sure, ap-
,plication of renormalization-group methods led to a
dramatic revision of our ideas about behavior near critical
points, but the "topology" of the Ising phase diagram has
remained unchanged from that predicted by the original
Curie-Weiss —Bragg-Williams mean-field theory.

Nonetheless, on experimental grounds alone, it is clear
that richer possibilities of modulated order leave us with a
wealth of questions unanswered at our current level of
understanding. For example, the rare-earth alloy
Er„Tb& „exhibits two different ground-state magnetic
orderings depending on the value of x, but at higher tem-
peratures a third kind of ordering is observed which does
not correspond to an experimental ground-state pattern.
In other words, there are modulated, ordered phases
which are not energetically stable (and are therefore not
ground states) but which become stable under the influ-
ence of thermal fluctuations. Even assuming that such
fluctuations will never stabilize any ordered phase in an
absolute sense, we are left with the questions —which are
unanswerable at the mean-field level of just how and

when fluctuations favor one modulated structure over
another.

In posing these questions, one is not limited to exam-
ples involving magnetic systems. Modulated order at fi-
nite temperatures is ubiquitous, with instances ranging
from the pseudo-one-dimensional ordering implicit in the
formation of staged graphite intercalation compounds to
the two-dimensional ordering of surface superlattices to
the fully-three-dimensional patterns defined by crystal
structures. One has no reason to suppose fluctuations
should even play the same role in these different dimen-
sionalities much less be equally ignorable.

What we will do in this paper is to consider what fluc-
tuations do in the best studied modulated-order model, the
ANNNI model. ' ' In models of this sort, Ising spins
are assumed to interact ferromagnetically with all their
nearest-neighbor spins, but along one specified direction
there is also an antiferromagnetic next-nearest-neighbor
interaction. The competition between the ferromagnetic
and antiferrornagnetic forces gives rise to at least the pos-
sibility of a variety of magnetization patterns along the
unique axis of the system. Parenthetically, the extent to
which this notion of competing forces is a necessary com-
ponent of models exhibiting modulated order (and, for
that matter, the extent to which it is the central feature of
the ANNNI model itself) is a subject which will be de-
ferred until the next paper. For the remainder of this ar-
ticle we will assume the paradigm of competing forces,
confining ourselves to the question of what happens to the
different energetically favorable ground-state patterns
once the temperature is raised above T=O.

From low-temperature expansions it is known that the
ANNNI model has an infinite number of modulated
phases in the vicinity of the T=O multiphase point. "
The remainder of the phase diagram has been studied ex-
tensively with mean-field theory, revealing a complex se-

quence of transitions between phases occurring as the
temperature is increased —a sequence that may very well
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be a devil's staircase. ' Once the temperature gets high
enough to be close to the paramagnetic boundary, the
mean-field equations can then be solved analytically.
These linearized equations indicate the existence of pat-
terns of all possible periodicities —including irrational,
and therefore incommensurate, ones. Thus the ANNNI
model also exhibits a commensurate-incommensurate
transition.

The mean-field equations themselves are an infinite set
of coupled nonlinear equations for the average magnetiza-
tion of each layer perpendicular to the unique axis. As
with any problem with nonuniform ordering, there is no
single-order parameter which solves these equations.
Rather, the set of layer magnetizations can be thought of
as an "order-parameter function, "much as is necessary to
the study of spin glasses. ' Had we reason to expect pure
sinusoidal patterns, the task of finding this order-
parameter function would simply be one of determining a
few Fourier components, but this is unfortunately not the
case. In practice, the hierarchy of mean-field equations
must be closed into coupled sets of P equations by assum-
ing structures with periodicity P. However, not only does
this approach preclude looking for incommensurate
phases (since P must be integral), but even the resulting
finite set of equations requires a root search which is
nonergodic in a way which is also reminiscent of spin
glasses. ' ' The character of the solution to the root
search inevitably mimics the character of the starting
guess, so one is clearly not sampling the space of possible
magnetization with any degree of completeness.

By way of anticipating our results, we might note that
these analogies with spin glasses should not be entirely
unexpected. As with spin glasses, the ANNNI model has
a mixture of ferromagnetic and antiferromagnetic interac-
tions, leading to an infinite number of ground states. If
one further considers the ratio of antiferromagnetic to fer-
romagnetic interaction strength to be analogous to the
width of the coupling-constant distribution in the spin
glass, even the global phase diagrams are closely related:
the paramagnetic, ferromagnetic, and nontrivially ordered
phases occur in the same places in the two models. ' Ap-
parently there has to be some fundamental distinction, in
that the ferromagnetic-antiferromagnetic competition in
the spin glasses arises out of a quenched-in distribution of
coupling constants. ' However, as we shall show in the
companion paper, even this distinction is somewhat il-
lusory. We will be able to show that the ANNNI model is
actually isomorphic to a random Ising model with an-
nealed (correlated) nearest-neighbor couplings and that the
vague analogy between the ANNNI and spin-glass phase
diagrams can be made a little more precise.

Our goal in this paper of course is not to seek such con-
nections but simply to explore the effect of fluctuations in
the ANNNI model. In the next section we will do so by
quite literally, retracing part of the history of the Ising
model which we alluded to in the first paragraph of this
section. Although this history seems largely to have been
swept away under the onslaught of renormalization-group
techniques, ' there was at one time considerable effort de-
voted to making systematic improvements in mean-field
theories. Because the improvements still led to classical

exponents for critical phenomena, the approaches associ-
ated with the names of Kirkwood, Bethe, ' and Kiku-
chi (for example) were quite naturally displaced as
theories of critical phenomena. Still, with the advent of
the richer phase diagrams afforded by models of modulat-
ed order, it is perhaps not inappropriate to use these
methods to ask again the same question which has already
been answered for the Ising model: how will our phase di-
agram be affected by fluctuations? A preliminary step in
this direction was recently taken by Taylor and Desjar-
dins, who studied the ANNNI model in the Bethe ap-
proximation. We will use the closely related Kirkwood
approximation to the same end but, intriguingly, it will
turn out that our particular choice leads precisely to the
TAP equation, the same equation Thouless, Anderson,
and Palmer used to study spin glasses 25,26

II. APPLICATION OF THE
KIRKWOOD APPROXIMATION

The approximation that Kirkwood developed in 1938
for the Ising model was one of the very first applications
of what has become a standard approach to many-body
systems: expansion of the free energy for the full interact-
ing system, F, about that of some noninteracting reference
system, Fp, as a series of cumulants in the interaction en-
ergy. Quite generally, if one writes the full Hamiltonian
as

A =A p+V, (2.1)

where ~p is the reference Hamiltonian and V is the in-
teraction term, then the exact partition function Q can be

'

written in terms of the reference partition function Qp
and an average in the reference system,

—P(A p+ V)

ln(e ~ )p ——In g (1/n!)( —P)"( V")p
n=p

(2.2)

quickly enables us to write the free energy as desired,

PF = lnQ = PFp+ g (—1/n! )(——P)"C„(V) (2.3)
n=1

In practice, the phrase "mean-field theory" usually
means to take this expansion and truncate it at the n = 1

level. However, with the exception of the first cumulant,
which is simply the average interaction energy,

Ci( V) = ( V)p,

the cumulants represent the fluctuations

(2.4a)

=Tre [Tr(e 'e ~ )/Tre '],
Q =Q.&e-")p,

which sets up the free energy perfectly to be expanded in
cumulants. Defining the relevant cumulants
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c (v)=&(v —&v) )2)

c3( V) = &( V —
& V)0)')0,

c,( v) = &( v —
& v&, )'&, 3&( v

(2.4b)

so that one has to go to an order beyond n = 1 to build any
of the effects of fluctuations into the theory, besides those
due to just the noninteracting reference. In this language,
what Kirkwood did, essentially, was to truncate Eq. (2.3)
at n=2 T.hough his procedure still led to a mean-field
theory in the sense of giving classical critical exponents
(as would truncating at any finite order), the inclusion of
nontrivial fluctuation corrections turned out to give a sig-
nificant quantitative improvement over the Curie-Weiss
theory.

Ideas of this sort have certainly been commonplace in
the literature of solid- and liquid- state physics for
many years. Indeed, for the vast majority of cases, the
form of Eq. (2.3) that one would employ would be di-

agrammatic, with the possibility of one or more topologi-
cal reductions (renormalizations) being performed before
the calculation was started. The series might even be
summed to infinite order in some approximate fashion.
For our limited purpose of simply seeing the role of fluc-
tuations, such an approach is less direct than the Kirk-
wood approximation. Before applying this approximation
to a modulated-order problem in Sec. IIB, however, we
will first take the opportunity to review the analogous
treatment of a uniformly ordered system. We do so not
only for completeness and to cast Kirkwood's somewhat
obscure derivation into a more modern language, but also
to make a few technical points about the effect of system-
wide constraints and the order-X ' terms they give rise
to. The importance of the same kind of terms in the
non-uniformly-ordered theory will, we hope, be rendered
somewhat less mysterious thereby.

A. A uniform system: The Ising ferromagnet

The ferromagnetic nearest-neighbor Ising model is the
canonical example of a uniformly ordered system and is

the case Kirkwood originally considered (in the model's

binary-alloy incarnation). We will start by considering the
more general Ising model described by the Hamiltonian

We define the order parameter for uniform ordering as
the magnetization, given by

m =X 'gp, (2.7)

Qo(m)=Tr e 'exp ' —A. Xm —gp.
j

(2.9)

Note that Eq. (2.7) is a constraint which must be satisfied
when evaluating sums over configurations. At the end of
the calculation the value of m is determined so as to mini-

mize the free energy, Eq. (2.3), but it is worth pointing out
that Eq. (2.7) commits us to look for uniform order re
gardless of the interactions Su.perficially, there seems to
be a paradox here. We have a single-order parameter
characteristic of a uniformly ordered state, yet the Hamil-

tonian, Eq. (2.5), includes the ANNNI model as a special
case. In fact if we were to carry out this calculation for
the ANNNI Hamiltonian, we would indeed find a solu-

tion (at least within a certain range of coupling-constant
values) but we would have ignored the essential physics of
the model by neglecting the possibility of modulated or-

der. We will rectify this problem in Sec. II 8, but the les-

son is that equations such as (2.7) are hardly innocuous.
We feel that some authors have been somewhat careless in

this regard when discussing annealed random Ising
models, but we defer discussion to the companion paper.

Explicitly assuming uniform order then, the first step
in our calculation is to break up the Hamiltonian as indi-

cated in Eq. (2.1),

—pA 0——gh(j)p, ,

(2.8)

pv= QK—(j~k)P,Pk
j,k

Both because it is needed for Eq. (2.3) and because of its
applicability as a generating function for cumulants, we

must next evaluate the free energy of the noninteracting

system. However, due to the condition embodied by Eq.
(2.7), there are still infinitely weak, infinitely long-range
correlations present. An easy way to deal with this com-

plication is to switch ensembles, which we do by introduc-

ing a Lagrange multiplier A, that will allow us to sum in-

dependently over all the spins in evaluating the nonin-

teracting partition function,

—pA = QK(j k))Li, pk+ gh(j)p. (2.5) The constraint will then be satisfied if A, is chosen so that

j,k

where the p's are Ising variables (p = + 1),
K j(,k)+K(kj ) is the interaction between spins on sites j
and k, and h (j) is the magnetic field at site j (the interac-
tion and the field both measured in units of —kT). Each
sum runs over all N lattice sites. For much of the calcu-
lation, the interactions can be taken as arbitrary but short
ranged, though we will adopt the conventions K(j,k)
=K(k,j) and K(j,j)=0. Thus the normal Ising fer-
romagnet corresponds to the choice

d lnQ0(m)

di.
(2.10)

= —AXm + g lnI2cosh[h (j)+A]j, (2.11)

On carrying out the trace indicated in Eq. (2.9), we ar-

rive at the reference free energy

—PFO(m) =lnQO(m)

K(j,k) =PJ/2 j,k nearest neighbors,

K(j,k)=0 otherwise .
(2.6)

with A, determined from Eq. (2.10) as a solution of

gtanh[h(j)+A, ]=Km . (2.12)
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In zero field, these equations can be combined to give

P—Fol&= —[(1+m )/2] ln[(1+m)/2]
C(pjpk)= —N '(1 m—), (2.16b)

= g&(J k)&pjpk &o

j,k
(2.14)

which can be evaluated simply by considering Eq. (2.11)
as a generating function. In particular, since it is straight-
forward to use Eq. (2.11) to calculate the multisite gen-
eralizations of the cumulants of Eq. (2.4),

C(p )=&p &o=a( —PF )/ah(j)

C(pjpk) (pjpk &0 (pj &o(pk &p

=8 ( PF )/dh (j)B—h (k),
(2.15)

C(p pkp~) =d ( —PFo)/Bh (j)Bh (k)Bh (I),
C(pfpkpgp ) =8 ( PFp)!dh (j)ah—(k)ah (l)ah (m),

it is convenient to compute not only the moment we need
here, but also the higher moments in terms of these cumu-
lants (as shown in Table I). Thus, taking care to include
the dependence of the Lagrange multiplier on the field, we
get for the cumulants (at zero field)

C(pj ) =m, (2.16a)

—[(1—m)/2] ln[(1 —m)/2]

= —f tanh 'x dx+ln2, (2.13)
0

the familiar Bragg-Williams result for the entropy of a
system of Ising spins at fixed magnetization m.

The entire Bragg-Williams theory results, as we have
previously mentioned, from the n=1 truncation of Eq.
(2.3). Were this our only goal, we would therefore need
only one cumulant

—pc, ( v) = —p( v&,

and therefore with the aid of Table I, Eq. (2.14) becomes

—PC((V)=[m —X '(1 —m )]QIC(j, k) .
j,k

(2.17)

kT, /J =z . (2.19)

To extend this development to Kirkwood's level of ap-
proximation we need to include the n=2 term in Eq.
(2.3). This term can be written concisely with the aid of
Eqs. (2.4) and (2.8) as

At this level it would have been much easier to claim
that the average (pjpk &p factor's, as one would expect of
a noninteracting system. After all, the error introduced
by doing this [which would be tantamount to neglecting
the correlations induced by Eq. (2.7)] shows up only to or-
der 2V

' in the average and thus to order 1 in the free en-
ergy. [It will turn out that Eq. (2.16b) does contribute at
the next order in Eq. (2.3), however. ] In any case, concen-
trating for the moment on the n= 1 level of Eq. (2.3) and
on the special case of the normal Ising model of Eq. (2.6),
we obtain, to order X,

—PC, ( V) =X(PJz/2)m

where z is the coordination number of the lattice, which,
with Eq. (2.13), gives for the total free energy at zero field

pF/X =In2——f tanh 'x dx+(zpJ/2)m

The magnetization can now be calculated by minimizing
Eq. (2.18),

m =tanh(pJzm),

leading to the standard prediction for the critical tempera-
ture,

(2!) '( —p) C2( V) =(2!) ' g X(j,k)X(l, m)((pjpkp(p~ &o—(pjpk &o(p(p~ &o)
j,k, l, m

(2.20)

(2!) '2+K(j,k)K(j, k)(1 —(pjpk &o) „

j,k
(2.21)

but it is convenient to evaluate it as a sum of three dif-
ferent types of terms: those with two repeated indices,

I

where the factor of 2 accounts for the equivalence of the
cases j =l, k =m and j =m, k =l; those with one repeat-
ed index,

TABLE I. Multisite moments in terms of multisite cumulants.

(pj) =C(pJ)
(pjpk) =C(pjpk)+C(Pj)C(Pk)

(pjp]t' )+C (pj ) {in the case of uniform order)

(pjpkpq) =C(pjpkp~)+C(pj)C(pkpI)+C(pk)C(pjpt)+C(pi)C(pJpk)+C(pJ)C(pk)C(pI)
= C(pjpkp])+3C(pj)C(pkp])+C (pj) (in the case of uniform order)

(pJPkpipm ) = C(pipkptpm )+C(pJpk )C(pqp~ )+C (pJpt)C(pkp~ )

+ C(pjp~ )C(p].p])+ C(pj)C(pkp]p~ )+C(p]. }C(pjp]p~ )+C {p])C{pjp]p~ )+C(p~ )C(pjpkp])
+ C (pj )C(pk )C(p]p~ ) +C (pj )C(p] )C(pkp~ ) +C (pj )C(p~ )C (pkp] ) +C (pk )C (p] )C (pjp~ )+C(pk )C(p~ )C(pj p] )
+ (:)C(.-)C("..)+ (..') (")CI.)C(.-) '.

= C(pjp]p]p )+3C (pjp], )+4C(pj)C(p]p]p~)+6C (pj)C(p]p])+C"(pj) (in the case of uniform order}
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(2!) '4 g J (j,k)K(j, m)

&(&pkP &0
—&PjPk &o&PJP (2.22)

(2.23)
I

where the factor of 4 accounts for the equivalence of the
cases j= 1, j= m, k = l, and k =m, and finally, those
with no repeated indices,

(2!) ' g IC(j,k)J (l,m)
j,k, l, m

&&(&9 PkljtP &o —&P~Pk &o&PIP &o)

where the primed summation restricts the summation to
no repeated indices. Note that expressions with three or
four repeated indices would not contribute, since
X(j,j)=0.

As before, Table I allows us to compute the necessary
moments in terms of various cumulants —two of which
we already have in Eqs. (2.16). Although in general one
also needs C(pjpkp&) and C(pjpkp&p ) in order to
evaluate the fourth-order moment &pjpkp~p~ &o, these
two cumulants turn out to be of order N and N
respectively, so they are unnecessary to this order of cal-
culation. Thus using (2.16) and Table I, we find for the
sum of terms (2.21), (2.22), and (2.23), respectively (to
leading order),

j,k, l, mj,k
(2!) '( —p)2C2(V)=(1 —m~) gK (j,k)+2m (1—m ) g K(j,k)IC(j, m) —2N 'm (1—m ) g E(j, k)K(l, m) .

(2.24)

m

pF/N =ln2 ——f tanh 'x dx
0

+(pJ/2)zm +(pJ/2) z(1 —m ) (2.25)

The magnetization in the Kirkwood approximation must
therefore satisfy the minimum condition

m =tanh[(P J)zm (PJ) zm ( 1 —m—~)], (2.26)

from which the critical temperature may be determined
by solving the quadratic equation

(P,J)z —(P,J) z = 1,
leading to

kT, /J =z [1+(1—4z ')'~ j/2 . (2.27)

To gauge the improvement we have obtained by includ-
ing the first fluctuation term in Eq. (2.3) (taking ordinary
mean-field theory into the Kirkwood approximation), we
can compare the critical temperatures predicted for a
simple-cubic lattice in three dimensions (z=6). The ordi-
nary mean-field temperature, Eq. (2.19), is

Tc/J =6

It is worthwhile to point out that in writing these formu-
las, we were able to regard C(pjpk) as being zero (ignor-
ing the long-range correlations) for Eqs. (2.21) and (2.22),
but not for Eq. (2.23). There, the sum itself is of order
N, so we have to keep terms of order N ' in the sum-
mand.

Equations (2.13), (2.17), and (2.24), when substituted in

Eq. (2.3), constitute the Kirkwood approximation for the
most general Ising-like Hamiltonian, Eq. (2.5), providing .

we assume uniform ordering. If we again specialize to the
normal Ising model though, Eq. (2.24) reduces to

(2!) '( —P) C2(V)=N(PJ/2) z(1 —m )

and on appending it to Eq. (2.18), one gets for the free en-

ergy

and the Kirkwood result, Eq. (2.27), is

kT, /J =3+~3=4.731,
whereas the "exact" result from series expansion ' is

kT, /J =4.511 .

Hence the Kirkwood method does indeed take into ac-
count the way in which fluctuations depress the critical
point (see Fig. 1). In particular, unlike the Bragg-
Williams theory, the improved method correctly predicts
that one dimensional systems ( z=2) hive no finite-
temperature transition, although it incorrectly predicts
that the two-dimensional hexagonal lattice (z=3) also
does not have a transition. Presumably this approach is
not as good in two dimensions as it is in three (where fluc-
tuations play a less dominant role). However, the success
in three dimensions (3D) gives us some confidence that
the approach will be able to help us in the next section
when we study the influence of fluctuations in the 3D
ANNNI model.

B. A modulated system: The ANNNI model

In this section we want to extend the results of Sec. II A
for uniformly ordered systems so as to be able to study the
effect of fluctuations on more complicated orderings. As
we have previously suggested, our generalization does not
involve a change in the Hamiltonian of Eq. (2.8), and con-
sequently does not invalidate the free-energy expansion
encompassed by Eqs. (2.3), (2.14), and (2.20). It simply re-

quires us to replace the single order parameter defined by
Eq. (2.7) with a set of order parameters and to compute
the necessary cumulants in terms of these new order pa-
rameters.

A convenient framework for this calculation is provid-
ed by breaking the system up into sublattices, each of
which has a distinct order parameter. At a very simple
level, this same idea is used to treat the Ising antifer-
romagnet. There one divides the lattice in advance into
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1.0

T T ~~ T T ~T ~ '~ ~ T

iams

ma=&a '

l

(i &S )

(2.28)

0,8

~~ 0.6

C$
~ 0,4

~ ~

giving for the reference free energy analogous to E .
(2.11)

us 0 q.

—PFO(m(, . . . , m„)

~aNama+ g lnI 2 cosh[h (j)+A~]}
J

(jES )

0.0
0 O.P5 0.5

RT/zI
0.75 with the now, n ~. s determined by the n equations

(2.29)

FICx. 1. Magnetization of an Ising ferromagnet on a simple-
cubic lattice vs temperature. The Bragg-Williams and Kirk-
wood approximations are shown, plotted as m vs T in units of
zJ/k, where z is the coordination number of the lattice and J is
the coupling constant. Notice how the magnetization in the
Kirkwood approximation is always less than or equal to the
Bragg-Williams result.

two interpenetrating sublattices such that each site is on a
different sublattice than its nearest neighbors. Of course,
for the antiferromagnet one knows that the form of the
ordered state is consistent with this division. Not having
any such foreknowledge in general, we will have to break
up the X-site lattice formally into n sublattices, denoted

(a= 1, . . . , n). Each sublattice is disjoint from the
others and is assumed to contain a macroscopic number
of sites N so that

g N~=N .
a=1

Fortunately, the physical location of the sublattices
need not be specified at this stage, but it is clear that this
kind of approach will only prove useful if the sublattices
turn out to be uniformly ordered themselves. In principle,
this requirement could be translated into necessary and
sufficient conditions for the permissible interactions
A(j, k) between sites j and k as a function of which
sublattice(s) j and k are in. However, such a translation is
tantamount to solving the highly nontrivial problem of
prescribing what characteristics a Hamiltonian has to
have to generate modulated order. We will eschew any
real attempt in this direction here, though we will impose
the physically similar requirement that the interaction be-
tween the spins on any two given sublattices, a and P
(whether a and p are the same or not), involves only one
energy scale. That is, we can define a set of constants J
such that

an s

X(j,k)=0 or PJ~&/2

if 'HS and L:j d k&Sp, regardless of the exact location of
and k.

ion 0 j
With this rp oviso, we can introduce a separate rnagneti-

zation for each sublattice,

tanh[h(j)+A, ]=N m
J

(j~s )

(2.30)

Then, as before, the multisite cumulants can be derived by
using Eq. (2.29) as a generating function. In particular,
the analogs of Eqs. (2.16) are

C(pj ) =m (2.318)

C(pjpi, )= —N '(I —m )5 p,
where Pj ES, Pk HSp, and 6 p is the Kronecker delta

=p, 0 if a&p). Note that cumulants contri-
bute only if all the p's are on the same sublattice (because
there is no correlation between the sublattices).

Equations (2.29)—(2.31) are enough to enable us to
evaluate the zeroth- and first-order terms in Eq. (2.3)—the
Bragg-Williams mean-field theory. Using Eq. (2.14) im-
plies that (ignoring terms of order N )

n n—PC (I )= g g g g lt (j k)&p, pg &o
a=1 j P=1 k

(jets ) (keS&)

(2.31b)

K(a,p)m~m p,
a, P=1

where

E(~,p)—= g g e(j,k)
j k

(J cs ) (kesp)

(2.32)

so that, the Bragg-Williams free energy for zero field is

PF =N ln2 —g I —tanh 'x dx
0a=1

+ g E(a,p)m mIi.
a,P=1

(2.33)

The rnagnetizations are therefore the solution of a set of
coupled nonlinear equations

m =tanh g X(ci P)mp (a= 1, . . . , n) . (2.34)
P=1

Unlike the superficially very similar case of a uniform
system ( n = 1), these equations will usually have a very
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large number of roots, making the necessary multidimen-
sional root search reasonably difficult.

To apply this fully general theory, we have to specify
the interactions in more detail. Accordingly, just as we
used the Ising model as an example in Sec. IIA, let us
consider the three-dimensional ANNNI model as an ex-
ample here. The model consists of Ising spins on a
simple-cubic lattice with interactions

K(j~k) =PJo/2 (Jo )0)

if j and k are nearest neighbors in the x-y plane,

(2.35a)

K(j,k)=PJ(/2 (J) )0) (2.35b)

ifj and k are nearest neighbors in the z direction, and

K(j,k)=pJ2/2 (J2 &0) (2.35c)

(pJ(/2)m—~(m~+)+m~ ))

—(pJ2/2)m (m +2+m z)

if j and k are next-nearest neighbors in the z direction.
Otherwise, the interactions vanish. Because of the way in
which the interactions are arranged, the modulation
occurs only along the z axis, which suggests that each x-y
plane be considered a different sublattice. If we do so,
Eqs. (2.33) and (2.34) become

n m

PF/N =—ln2 —n ' g f tanh 'x dx 2PJom—~
a=1

o, . . . I, . . . I. . . , I. . . J
0 0.8 0.4 0.6 0,8 i

c = —Jq/Jq

FIGr. 2. Phase diagram of the ANNNI model in the Bragg-
Williams approximation, plotted as reduced temperature vs the
ratio of antiferromagnetic to ferromagnetic coupling. The num-
bers 4, 5, 6, . . ~ are the wave numbers q of the various modu-

1 1 1

lated phases. Thus q=O corresponds to the ferromagnetic re-
gion. The critical line between the paramagnetic and ordered re-
gions is marked by arrows indicating the points at which the re-
gions associated with some selected phases terminate. Note also
the position of the Lifshitz point (circled). Near this critical
line, the value of q varies continuously, so the assumption of an
integral periodicity (which we used to calculate the diagram)
breaks down. We have therefore not extended our phases boun-
daries up to the line. As with Ref. 2, we have labeled each
phase with the q value of its largest Fourier component.

m =tanhp[4Jom +J&(m +~+m~ ~)

+J2(m +2+m 2)] .

(2.36)

(2.37)

These equations are precisely the ANNNI mean-field
theory that has already been extensively studied in the
literature. The only exact analytical result available from
Eq. (2.37) is the temperature at which ordering first
occurs, ' but numerical studies have revealed a rich struc-
ture at somewhat lower temperatures. Most notably Bak
and von Boehm and Yokoi, Coutinho-Filho, and Salinas

have used the method mentioned in the Introduction of
decoupling Eq. (2.37) by assuming modulated structures
of finite periodicity P. For purposes of comparison with
what is to come, we have reconstructed the Bak and von
Boehm phase diagram in Fig. 2, extending their calcula-
tion to I' as high as 20.

Continuing the analogy with Sec. IIA, the next step is
to go to higher order in Eq. (2.3): to implement the Kirk-
wood approximation for modulated order by evaluating
Eqs. (2.20). Rewriting this fluctuation term as a sum over
sublattices gives

n

(2!) '( —p) C2( V) =(2!) ' g g g g g K(jk)K(l m)F(jk 1 rn), (2.38)
a, p, y, 5=1jFS kES& l&S m.&S&

where
F(J k l m)=(PjPkPlP ~0 (PjPk }0(PlP ~0 (2.39)

can be calculated by using Table I and Eq. (2.31), at least through .order N '. Note that F vanishes unless the pairs j,k
and I, m are connected in the sense that they have at least one sublattice in common.

This latter observation suggests that it may be helpful to partition the sums in Eq. (2.38) further with respect to the de-
gree of sublattice connectivity,

8 n n

K(j,k)K(l, m)F(j, k, l, m)+ g g g g g g K(j,k)K(l, m)F(j, k, l, m)
a, y=l j k l m a=1 P j k l m

(j&S~)(k&S ) (I&S ) (m &S~) (p&a) (j GS ) (kES~) (l&S ) (m 6S~)
n n

+ g g g g g g g K(j,k)K(l, m)F(j, k, l, m)
a=1 y P j k I m

(y&a) (p&y) (j&S ) (kESP)(l&S ) (mCS&)

+ g g g g g g g K(j,k)K(l, m)F(j, k, l, m) .
~,y P 5 j k I m

(p&y) (5&a,p) (j &S )(kES&}(IES ) (m&S&)

(2.40)
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Indeed, it turns out that only the first two terms of Eq. (2.40) yield nonzero results. (For proof, the reader is referred to
the Appendix). Thus, the final, fully general result for the first fluctuation correction to the mean-field theory of modu-
lated order is

a=1 j,k, l, m&S
K(j,k)K(l, m)F(j, k, l, m)+2 g g Kj(,k)K(l, m)F(j, k, l, m)

y jm&S
[&+&] k, les

(2A1)

where F is defined by Eq. (2.39), Table I, and Eq. (2.31). Although it is difficult to read much into Eq. (2.41) without ex-
phcttiy defining the interactions, it is worth pointing out that even at this level, the form of the equation is indicative of
a feedback or polarization effect (an Onsager reaction field ). Remembering that K(j,k) can always be written as some
PJ /2 tells us that only feedback terms such as Jar show uP in Eq. (2.41): sublattice a affects sublattice y which, in
turn, affects sublattice a. Cross terms such as Jap J&s do not appear.

We are now, finally, ready to apply all of the ideas of this paper to the ANNNI model. With the aid of Eq. (2.35) we
find the Kirkwood approximation to the ANNNI free energy by adding Eq. (2.41) to Eq. (2.36),

n m

PF/N=—ln2 n' g— tanh 'xdx+Pn ' g (2Jpm +Jim m +i+J2m m +2)0a=1 a=1

+P (2!) 'n ' g [2Jp(1 —ma) +Ji(1—ma)(1 —ma+i)+ J2(1—m )(1 ma+2—)] .
a=1

When minimized, this free energy gives us the desired coupled set of equations for the layer magnetizations,

m =tanh[4PJpm +PJi(ma+i+ma i)+PJ2(ma+2+ma 2) —4(PJp) ma(1 —m )

—(PJi) ma{2—ma+i ma 1)—(PJz)—ma(2 ma+2——ma —z)] .2 2 2

(2.42)

(2.43)

m& =
I 4PJp +2PJi cos(2?rq) +2PJ2 cos(4?rq)

—[4(PJp) +2(PJi) +2(PJq) ]]md, (2.44)

As with the previously derived, lower-level mean-field
theory, Eqs. (2.36) and (2.37), it is possible to locate the
second-order-transition line analytically (that is, to find
the line between the disordered high-temperature phase
and the ordered low-temperature phases analytically).
Near the critical temperature T, we can linearize Eq.
(2.43), yielding a set of coupled difference equations

ma =4PJpma+PJi(ma+i+ma i)+PJ2( m2a—++ m2a)

—[4(PJp) +2(PJi) +2(PJi) ]ma

wnich can then be decoupled into separate equations for
the Fourier components of the magnetization, m&,

where, in standard notation,

m =~e''qm a .

cos(2?rq, ) =J, /4Jz ——(4a ) (2.46)

Let us adopt the standard definition of the ratio of fhe
antiferromagnetic to the ferromagnetic interaction,

(2A5)

and make the standard assumption that Jo ——J&. The crit-
ical line can now be specified by finding the maximum
temperature such that the brace on the right-hand side of
Eq. (2.44) equals 1. If a & —,', maximizing the temperature
give us the same critical wave number q, as the Bragg-
Williams theory,

TABLE II. Critical temperature of the ANNNI model.

0.100
0.250
0.271
0.600

T, (Bragg-Vhlliams)'

5.800
5.500
5.458
5.617

T, (Kirkwood)

4.446
3.949
3.880
3.880

T, (Monte Carlo)

4.20+0.02'
3.80+0.02'
3.70+0.02'
3.82+0 03

T, (series)

4.24+0.02'
3.78+0.02'
3.72+0.02'
3.82+0.02

'Standard mean-field theory, Ref. I (all temperatures are in units of Jl /k).
The present work.

'Monte Carlo data from Ref. 10(a).
Monte Carlo, with finite-size scaling corrections, from Ref. 10(b).

'High-temperature-series expansion of S. Redner and H. E. Stanley [Phys. Rev. B 11, 133 (1978); J.
Phys. C 10, 4765 (1977)],as quoted in Ref. 10(a).
Redner and Stanley, quoted in Ref. 10(b).
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kT, /J) ——(11+V 23)/4= 3.9490,

which is also at the same ~, but at a lower temperature
than the result of the lower-order mean-field theory
(kT, /J& ———", ). For completeness, we note that the Bethe
approximation of Taylor and Desjardins leads to a numer-
ical estimate of v-0.27 at the I.ifshitz point. In Table
II and Fig. 3 we make a more extensive comparison of our
results for the critical line with the results from the litera-
ture.

The remainder of our predicted phase diagram, calcu-
lated numerically from Eqs. (2.42) and (2.43), is shown
in Fig. 4. By comparing it with Fig. 2 we observe that the
diagrams are qualitatively similar, but there are nonethe-
less pronounced quantitative differences. Most obviously,
the entire ordered region becomes smaller when fluctua-
tions are included —T, is lowered just as it was for the Is-
ing model. But, in addition, within the ordered region, the
portion occupied by the high-order modulated phases has
shrunken noticeably. For example, the q = —,

' region
spans a range in ~ of only -0.10 as compared with -0.15
in lower-order mean-field theory. Apparently, modulated
phases are more susceptible to destruction by fluctuations
than are more conventionally ordered phases. Further-
more, considering just these modulated phases, we also see
that reentrant behavior is suppressed by fluctuations (as
shown in greater detail in Fig. 5). That is, there is less
likelihood of encountering the same phase twice as one in-
creases temperature at constant a (proceeds vertically in
Figs. 2 or 4). This result is consistent with what had been
observed previously in the case of the Ising antiferromag-
net and in Monte Carlo studies of the ANNNI model
itself ' ' '

Before discussing these findings in any depth, as we
will do in the next section, there is still a final point worth
making. The analogies between the models of modulated
order and spin glasses that we alluded to in the Introduc-
tion have largely been physical, not computational. Thus
it is somewhat surprising to find that the Kirkwood self-
consistent equations for the magnetization, Eq. (2.43), are
precisely the Thouless-Anderson-Palmer (TAP) equa-
tions

m; =tanh g pJ J mj —m; g (pJ~ ) (1 —mJ )

J J

used in studying spin glasses.

III. DISCUSSION

Probably the most important general contribution of
this paper was to extend the mean-field theory of modu-
lated order to the Kirkwood level of approximation, Eq.
(2.41). With this extension (and the systematic inclusion
of higher-order terms in the free-energy-cumulant expan-
sion, if desired) one is now free to study at least some of
the effects of fluctuations on modulated structures. It
should be noted that the analogous cluster-variation, or
Bethe, method, had already been so extended, ' but we
find (as did Kirkwood himself ) that the Kirkwood
method is both somewhat easier to apply and interpret
and slightly more accurate.

and the fluctuation correction to it in Eq. (2 43),

—4(PJD) m~(1 —m~) —(PJ&) m (2—m~+~ —m~ ~)

—(pJ'2) m (2—m +2 m~ 2)—.2 2 2 (3.2)

Independently of any of the details, the overall minus
sign in Eq. (3.2) means that fluctuations always diminish
the magnitude of the effective field. Hence, as has long
been known, the ordered region will always be suppressed
by fluctuations, regardless of whether there are modula-
tions or not. However, in looking at Eq. (3.1) in more de-
tail, we see that modulated structures exist only because
the effective-field mimics, or is coherent with, the modu-
lation. The positive Jq term favors alignment with
nearest neighbors (a+1), whereas the negative J2 term
favors antialignment with the next-nearest neighbors.
Thus when the fluctuation term is added with—the J~
and J2 terms both coming in with the same sign one
finds that fluctuations must also diminish the coherence
of the effective field. Consequently, the width of the
highly modulated region shrinks, just as we observed in
the preceding section.

The final major result of this paper, the emergence of
the TAP equations in a context apparently not involving
random magnets, is difficult to discuss at this stage.
Indeed, although there are similarities between the phase
diagrams of the ANNNI and spin-glass models' and al-
though there is a certain amount of nonergodicity in the
numerical treatment of the ANNNI model, ' the two sys-
tems nonetheless seem to be very different. Appropriately
enough, a few of these differences actually showed up in
our derivation of the TAP equations.

For example, although both approaches needed to con-
sider some sort of order-parameter function, the function
introduced here was the magnetization as a function of
sublattice. Unlike the TAP equation, in which each spin
functioned as its own sublattice, we were forced to assume
sublattices of macroscopic extent. On the other hand, we
were not required to introduce an infinitely weak, infinite-
ly long-range potential. The practical result was that we
discarded terms of order N ', whereas TAP theory
neglects terms of order Z ' (Z being the interaction
range).

These very distinctions, however, permit us to point out
a few basic features of the TAP equations which are diffi-
cult to see when the equations are viewed solely in their
traditional spin-glass setting. First of all, the fluctua-
tion term which differentiates TAP theory from ordinary
mean-field theory can be important whether the equations
are applied to spin glasses or not. Certainly the removal

Almost as important as this general result was the
specific application to the ANNNI model, Eqs. (2.42) and
(2.43). Here again the Kirkwood method pays a bonus in
enabling us not only to calculate the phase diagram but
also to understand the results physically. Consider the ef-
fective (mean) magnetic field implied by ordinary mean-
field theory, Eq. (2.37),

4(pJo)m +(pJ, )(m~+~+m~ ~)+(pJ2)(m +2+m z),
(3.1)
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of the predicted transition in one dimension is a funda-
mental qualitative feature. Secondly, the order- N
terms which have to be kept in deriving the fluctuation
correction are also not unique to spin glasses, nor are they
unique to the use of a weak, long-range potential. Rather
they are a natural consequence of the system-wide correla-
tions introduced by fixing an order parameter. Finally,
the TAP equations are more closely connected with the
Kirkwood approximation than they are with the Bethe.
Thus, any worry about how to think about spin-glass frus-
tation on a lattice with no loops would seem to be ir-
relevant

Further connections between random magnets and sys-
tems with modulated order will, unfortunately, have to
wait until the following paper. For the time being
though, it probably suffices to emphasize our main point:
that it is both possible and useful to study the effect of
fluctuations, even far from critical points, when nontrivial
ordering is involved.
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APPENDIX

The purpose of this appendix is to show that Eq. (2.40)
reduces to Eq. (2.41); specifically, that the last two terms
in Eq. (2.40) vanish.

First, notice that the factor F(j,k, l, m) vanishes if all
the indices are on different sublattices, for if there are no
repeated indices, F(j, k, l, m) is given by (to leading order
inN )

C(p, )C(p. ~)C(pkp )+C(pJ )C(p )C(pkpI)

+ C(pk)C(pi)C(p, p )+C(pk)C(p )C(p; p)), (Al)

which is nonzero only if at least one pair of indices ap-
pearing in a multisite cumulant are on the same sublattice
[see Eq. (2.31)]. In evaluating (2.40), we therefore need
only consider cases where at least one of the pairs

a, y a, 6 p, y p5
involves only one sublattice.

With this in mind, we can write the contribution from
the last term in Eq. (2.40) as

n n n

K(j, k) K(l, m) F(j, k, l, m),
a=y=1 p 5 ' j k 1 m

(P&a) (5+a,P) (j &S ) (kES&) (EE.S ) (rn QS&)

(A2)

since only if a=y can we have a contribution. Here we have the possibility of a repeated index, in which case
F(j,k, l, m) is given, not by Eq. (Al), but by (again to leading order)

C(pk)C(p )[1—C(p )C(p~)]=m~ms(1 —m ) . (A3)

If there are no repeated indices, Eq. (Al) applies, and, with only j and i on the same sublattice, the value of F(j,k, l, m) is
—N mpms(1 —m ) . (A4

With Eqs. (A3) and (A4), Eq. (A2) becomes
n n

a=1 p 5
(p+a) (5+a,p}

N~ 'mpms(1 ——m~) g g g g K(j,k)K(l, m)
j k 1 m

(j&S ) {kES ) (EES ) (m&Sg)

+mpms(1 —m ) g g g K(j k)K(j m)
j k m

(jets ) (keS&} (meS5)

(A5)

where the prime on the I sum means the I =j term is ex-
cluded.

Now, if the value of the interaction depends only on the
sublattice indices, as we stated in Sec. II, the sum on / in
Eq. (A5) can be replaced by a factor N~K (j,m), because

K(j,k)K(l, m)
j 1

(jeS )(EeS )

=(N —1) g K(j,k)K(j, m) .
j

(j&S )

(The sum on j properly counts the coordination number. )

I

With this result, , we see that Eq. (A5), which is all that is
left of the contribution from the last line of Eq. (2.40),
vanishes.

To arrive at our desired result, Eq. (2.41), we now only
need to show that the third term of Eq. (2.40) vanishes
also. As this term is defined, P=5, but a may, or may
not, equal p. If a&p we are back to Eq. (A2) (exactly one
repeated sublattice index) so, by the same argument as
above, there is no contribution. In the case of a=p, both
j,I and k, m are on the same sublattice; there are now two
ways to get one repeated index. Also, two terms in Eq.
(Al) contribute, so that, just as in Eq. (A5), the contribu-
tion from terms with two repeated indices cancels with
that from terms with one repeated index.
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