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Simulation studies of radiation linewidth in circular Josephson-junction fluxon oscillators
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Detailed simulation studies of the dynamics of fluxons in long circular Josephson tunnel junctions
under the influence of external microwave radiation and internal thermal noise are presented. The
simulation algorithm uses a pseudospectral method well adapted to vector processors (CRAY-1-S},
which. gives a speed-up factor in computing time of typically 22 in comparison to conventional
high-speed computers, and also provides results with a relative accuracy of less than 10 thereby
making possible the study of the very narrow radiation linewidth of such oscillators. Comparison of
calculated linewidths with experimental results shows good agreement.

I. INTRODUCTION V~ cPn —s—in% =ay, +l'+rl(x, t) . (2.1)

Josephson-junction fluxon oscillators continue to attract
research interest both theoretically, in studies of nonlinear
wave dynamics, and experimentally, where the very nar-
row linewidth of the emitted microwave radiation prom-
ises potentially interesting applications. This very nar-
row linewidth makes the numerical study of the detailed
dynamics of such oscillators very CPU time consuming.
In order to overcome these difficulties we have developed
a pseudospectral algorithm for solving the perturbed
sine-Gordon equation which describes the oscillator. This
algorithm employs a Fourier transformation of the spatial
variable together with a finite-difference approximation to
the time variable. The extensive use of fast Fourier
transforms in the algorithm has made the implementation
natural on a CRAY-1-S vector processor. The Fourier
treatment of the space variable requires spatial periodicity
in the model. In physical terms this means that we are
studying a circular junction oscillator of the type first
proposed by McLaughlin and Scott. This device, as well
as providing a convenient mathematical model because of
periodic boundary conditions, has in recent years begun to
attract research interest in its own right. '

The paper is structured as follows. In Sec. II we
describe the mathematical model of the circular junction.
Details of the numerical techniques employed are present-
ed in Sec. III. In Sec. VI we study the behavior of the os-
cillator under the influence of a sinusoidal driving term in
the bias current, which models external microwave irradi-
ation. Section V contains calculations of the linewidth
under the influence of Gaussian white noise, which
models internal thermal noise in the junction. In Sec. VI
we compare our results with existing experimental obser-
vations. In all of the sections we are focusing on a config-
uration with a single propagating fluxon, which corre-
sponds to the first zero-field step in the current-voltage
characteristic of the oscillator.

II. MATHEMATICAL MODEL

As a model for the Josephson tunnel junction of overlap
geometry we use the perturbed sine-Gordon equation,

Novi)pV=
2m

and the current along the junction,

I= —JO~JV'x ~

i.e., boundary conditions

tp, (O, t) =cp, (l, t),
tp„(O, t)=tp (l, t) .

(2.2)

(2.3)

(2.4a)

(2.4b)

Here y is the quantum phase difference between the two
superconducting layers in the junction. Space and time
are normalized to the Josephson penetration length
A J—( C Q/2srj oL& )", and the inverse of the plasma fre-
quency co& ——(2srjo/CoC)'~, resPectively, where 40 is the
magnetic flux quantum given by C&o——h /2e =2.064
&10 ' Wb. I.~ and C are the inductance and the capa-
citance per unit length of the junction. The first of the
perturbation terms on the right-hand side of Eq. (2.1)
represents the loss due to tunneling of normal electrons, in
normalized units a=6/co&C, where 6 ' is an effective
normal resistance per unit length. The second term is the
normalized bias current y measured in units of jo the
maximum Josephson current per unit length. In this pa-
per we include a third term g(x, t) representing either an
externally applied sinusoidal driving term connected to
the bias, or an internal thermal noise term connected to
the loss. In this second case we assume a distributed
Gaussian white noise with zero mean value.

The normalized length of the Josephson junction
l =I./XJ is assumed to be large compared with unity and
the normalized width u = 8'/A, z small compared with un-
ity, allowing us to use a 1+1 dimensional model. Be-
cause the aim of this investigation is to isolate the influ-
ence of the term q(x, t) on the solution to Eq. (2.1) we
avoid phenomena connected with collision with junction
boundaries by considering a long annular junction. There-
fore, we demand spatial periodicity with period l in the
two physical quantities, the voltage drop across the junc-
tion:
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The fluxon traveling wave solution to the unperturbed
version of Eq. (2.1) is given by

Calculate initial
conditI ons

q) =2 sin '[cn(g, k )], (2.5)

with g=(x —ut)/[k(1 —u )' ]. Here u is the velocity of
the wave and k is the modulus in the Jacobian elliptic
function. Spatial periodicity requires I /(1 —u )

'

=2nkIC(k), where n is the winding number, i.e., the num-
ber of fluxons minus the number of antifluxons, and K(k )
is the complete elliptic integral of the first kind. In Ref. 9
it is shown by Hamiltonian perturbation theory that the
steady-state fluxon velocity dependence on the loss and
bias parameters is

' Make solution
pet lodlc

Calculate Transform solution
nonlinear term to k —space vI a FFT

Make solutjon Add sinusoidal
aperIodic or noise drive

Transform solution Advance solution
to x—sPace vIa FFT one timestep

u =1/(1+(4a'lay) )'~ (2.6)
FIG. 1. Schematic diagram of numerical simulation pro-

cedure.

with a'=aE(k)lk, where E(k) is the complete elliptic
integral of the second kind. For I ) 8 (assuming n= 1)
Eq. (2.5) reduces to the kink for the infinite line
y=4 tan '(e~) with g=(x —ut)/(1 —u )'~, and the
velocity given by u = 1/[1+ (4a/my) ]'~ . In the numeri-
cal simulations we have used l =8, 12.8, 20, and n =1.

III. NUMERICAL TECHNIQUES

The very narrow linewidth of the radiation em&tted
from a Josephson-junction oscillator (less than 1 kHz at
10 GHz)' suggests that a relative numerical accuracy of
at least 10 is essential. We solve Eq. (2.1) numerically
by using a pseudospectral method. " This method, a
Fourier transform treatment in space together with a leap-
frog scheme in time, has the advantage of simplicity and
high-order accuracy in the approximations to the space
derivatives. Expansion of the fluxon wave into truncated
series of sines and cosines demands periodicity not only in
p„and p, but also in y itself. Observing that the fluxon
is a localized kink connecting two ground states separated
by 2m we introduce a new periodic function y 2'/l-
whose Fourier representation we denote W(t) with the su-
perscript p =0, +1, . . . , +p

Transforming Eq. (2.1) into the following set of ordi-
nary nonlinear coupled differential equations:

—kzW(t) 4„(t) F~I si—nyI—
=a@',(t )+ ly5~, +X~(t ), (3.1a)

y(x, O) =f(x,O) —sin '(y),
y(x, dt)=f(x, —dt) —sin—'(y),

(3.3a)

(3.3b)

where f(x, t) is the fluxon traveling wave solution to the
unperturbed sine-Gordon equation as given by Eq. (2.5)

ing sing and then transforming again to k space as indi-
cated schematically in Fig. 1.

Figure 2 shows the computed y„as a function of time
at an arbitrary point on the junction. This signal consists
of an almost-periodic sequence of pulses. In fact, it is the
deviation from perfect periodicity that gives a nonzero
linewidth of the radiation. Since the deviation is small it
is necessary to devise a very accurate method for deter-
mining the revolution periods T„ for the circulating flux-
on. We do this by calculating T„as the time for the
mean value of the phase over x to change by 2n. The
fundamental frequency of the signal then becomes
fo I/(T„), ——where brackets denote an average value.
We take the power spectrum of the signal near fp to be
the distribution of the computed values of 1/T„.

Figure 3 shows the calculated T„'s in a computer ex-
periment with the driving term rI =0 in Eq. (2.1). As can
be seen from Fig. 3, the relative accuracy
AT/(T„) (10 . In fact, examination of the numerical
output shows that it is approximately 7&10 . The long
transient arises from the fact that the initial conditions
given by

k =2'/l, @=0,+1, . . . , +p (3.1b) x 4

in which FI' and K~ are the Fourier components of sing
and g, respectively, and 6z 0 denotes the Kronecker sym-
bol, and using second-order central differences to approxi-
mate the time derivatives we get an explicit scheme for
the time evolution of the Fourier components

@1+)——[ 2C~J —(1 adt/2)@J. —
dr'(SJ'+ ly+%,'—)]!(1+adr/2),

4j~+( ——[ (2—dt kp )&j (1 adtl2)4)~— —

dr'(SJ+XJ)]l(1+adt/2),
~ p—I

~0,

(3.2a)

(3.2b)

where pf equals F~[sinyj at time j dt, calculated each
time step by transforming WJ+~ back to x space, calculat-
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FIG. 2. Time dependence of the space derivative of the flux-
on wave form, showing the nth period of revolution T„ for
a=0.01, y=0.02, g=0, and l'=12. 8.
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Revolution period

9.482515

9.482510-

from Hamiltonian perturbation theory, Eq. (2.6). The re-
sult is seen in Fig. 4. The deviation for large bias values is
expected because the perturbation theory is only valid for
small y values.

IV. SINUSOIDAL DRIVING TERM

9.482505-
In this section we investigate the behavior of the fluxon

velocity when the driving term is given by

tl(x, t ) =11(t)= riosin(Qt ), (4.1)
9.482500

l
'

l
'

l
'

I
'

l
'

l

120 140 160 180 200 220

Revolution number n

FIG. 3. Revolution period T„as a function of revolution
number n for +=0.01, @=0.02, g=O, and l=8 showing high
level of computational accuracy achieved.

and sin '(y) is the ground state, are not exactly equal to
the final propagating configuration.

We note at this point that the accuracy of the results
was checked by doubling p,„ in Eq. (3.1b), in order to
ensure that no spurious Fourier modes due to the discreti-
zation in x space are produced, and halving At in Eqs.
(3.2). The values used for p,„ranged from 64 to 256 and
those for ht from 0.075 to 0.0025, depending on the pa-
rameters l and y.

The computer program was implemented on an IBM
3033 in double precision (approximately 16 significant
digits) and on a CRAY-1 vector processor in single pre-
cision (approximately 15 significant digits) using optimiz-
ing FORTRAN compilers. In the former case we have used
the IMSL-routine FFT2C for fast Fourier transform. ' In
the latter case, by making full use of vectorization of the
computer code and the CRAY routines for Fourier
transform and vector copying CFFT2 (Ref. 13) and
CCOPY (Ref. 14) we gained a speed-up factor in comput-
ing time of 22. Each long simulation requires typically
5)&10 time steps on a 512-point spatial lattice and uses
approximately 10 min of CPU time on the CRAY-1-S as
opposed to approximately 4 h on a scalar machine.

Finally, we have compared the steady-state fluxon ve-
locity, given by u=l/(T„), with the predicted value

p(t)= —I p» pidx (4.2)

and separating the phase into a kink part and a back-
ground part' tp(x, t)=y"(x, t)+tp (t), and assuming that
the length of the junction is large, allowing expressions for
the infinite junction to be used, we get the following equa-
tion for the momentum p of the kink,

Revolution frequency f„
(o)

0.115—

0.110 -l

0.105—

0, '100—

0.095—

0.090 I I I I
l

I I I I
l

I I I I

25 50 75

Revolution number n

Revolution frequency f„

as a function of the driving frequency Q. This might be
considered as a model of microwave irradiation of the
junction. Using the definition of the normalized momen-
tum

Ucalc 0pert
103

0.10550—

0.10545—

10-4

0,10540

10-5
0.0
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0.1
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0.2
Bias current

I
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I I I I

l
I I 'I I

l
I I I I

25 50 75

Revolution number n

FIG. 4. Difference between average propagation velocity as
computed numerically u„i, and calculated from perturbation
theory u„„, from Eq. (2.6) as a function of the bias for a=0.01,
g=O, and l=8.

FICr. 5. Revolution frequency f„as a function of revolution
number n for sinusoidal drive, q(t)=gosin(Qt), with 0.=0.01,
y=0.02, 0=0.86, go ——0.01, and l=8. {a) Numerical simula-
tion. {b) Kink model.
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de k 7f

dt 4
+ap"= —y+ rjosin(Qt )+a

dt dt'

(4.3)

and

91——tan '(II/a)

02 ——tan 'taQ/[(1 —y )'/ —0 ]I .

(4.5b)

Thus, the background motion becomes an effective
driving term for the kink part. From Eq. (2.1) we derive
the linearized equation for y =y +sin '(y), assuming
that y "« 1,

dt
+a +(1—y )'/ p = —rosin(Qt) . (4.4)

Combining Eqs. (4.3) and (4.4) we obtain for the kink
momentum

p (t)=——+ 9Q
sin( Qt —6I I )

( 2+ II2) 1/2

gQQ
cos(Qt —82),

I [(1 y2)1/2 ~2]2+~2II2] 1/2

(4.5a)

with

=1u "/[I+(p )']' '.
(4.6)

Figures 5—7 show a comparison of the results from this
linearized model and from numerical simulations of Eq.
(2.1) with 0=0.86, 0.89, and 1.10, respectively. In all
cases it is seen that the kink model is able to reproduce
the fluctuations in the revolution frequency f„=1/T„ in
great detail.

As a measure of the amplitude of the frequency fluc-

The instantaneous kink velocity is then calculated from
p"=u/(1 —u )' . In order to compare this approximate
theoretical description with the numerical result we calcu-
late the nth period T„according to the formula

n —1 nf " ' "ddt=I,

Revolution frequency f„
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0.100 -I

Revolution frequency

0.1220—
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0.095-- I I I I
)

I I I I
f

I I I I 0,1195 I I I
I

I I I . I
I

I I I I
I
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Revolution number
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Revolution frequency Revolution frequency
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0.12114
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I I I I
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I I I I
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i
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FICx. 6. Revolution frequency f„as a function of revolution
number n for sinusoidal drive, g(t)=pepsin(Qt), with +=0.01,
y=0.02, 0=0.89, gp

——0.01, and l=8. (a) Numerical simula-
tion. (b) Kink model.

Revolution number
FICx. 7. Revolution frequency f„as a function of revolution

number n for sinusoidal drive, g(t)=pepsin(Qt), with a=0.01,
g =0.05, 0= 1.10, Y/p=0. 01 and l =8. (a) Numerical simula-
tion. (b) Kink model.
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Standard deviation a,

't 0

Hamiltonian perturbation theory for the fluctuations hu
in the fluxon velocity leads to the power spectrum for
au, "

Sa„(to)= —,
'
cr„(1—uo)

CO +A
(5.4)

&
Q-'-.

&
0-'-,

1Q I
I

0.4 0.6
I

I
I

I
I

I
I

I
I

I
I

I
I

I

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Driving frequency 0

(5.5)

Thus bu(t) is a normal process with zero mean and
standard deviation'

with the average velocity uo given by Eq. (2.6). By a
Fourier transform of Eq. (5.4) we obtain the autocorrela-
tion function for Au as an exponential

cr (1—uo)
Rg„(r)= e

16m

FIG. 8. Standard deviation of revolution frequency of as a
function of driving frequency Q. Solid curve, numerical simula-
tion; dashed curve, kink model; parameters, a=0.01, y=0.02,
gp =0.01, and l =8.

tuation, which is essentially the linewidth of the oscillator,
we have calculated the standard deviation of the revolu-
tion frequency crf =[((f„—(f„)) )]' for values of the
cyclic driving frequency Q between 0.4 and 2.0.

The full curve in Fig. 8 shows the results from the nu-
merical simulation and the dashed curve those from the
kink model. The kink model predicts a resonance just
below the plasma frequency A = 1, whereas the numerical
simulation yields this peak at a somewhat lower frequen-
cy. Moreover, the numerical results exhibit a hysteresis
not seen in those of the kink model and a difference in
scale. The discrepancy in resonance frequency and hys-
teresis behavior is attributable to the fact that we have
used a linearized kink model. Presumably, the use of a
higher-order expansion in Eq. (4.4) would yield a behavior
analogous to that of a soft nonlinear spring' thus reduc-
ing these discrepancies. It is not clear, however, to what
extent the difference in scale would be resolved by such a
refinement.

V. GAUSSIAN WHITE NOISE

a (I —uo)'"
7l

~au =
4n 1/2 (5.6)

s+(T&
bf = I b,u/1dt .(T (5.7)

From Eq. (5.7) it follows that bf has a normal distribu-
tion with zero mean and the standard deviation, '

1 2/
2Qo

1 —&o
I " 0.1

(5.8)

A numerical simulation with o.
z ——8.8& 10 is seen in

Fig. 9 showing a typical frequency distribution of hf
about the fundamental frequency fo ——uo/1. The connec-
tion between the standard deviation and the half-power
linewidth is

1 —exp( —a1/uo)
al

bf,&2
——V8 1n2trqf (5.9)

when hf is normal distributed.
Figures 10 and 11 show a comparison of the standard

deviation predicted by this model Eq. (5.8) and the results

Defining the period of a fluxon revolution according to
Eq. (4.6) we calculate the average frequency fluctuation as
the average of the instantaneous frequency fluctuation
b,u/1 over one average period of revolution

The term q(x, t) in Eq. (2. 1) is here considered to be
Gaussian white noise with zero mean (ri(x, t)) =0 and
autocorrelation function

R„(g,r) = (ri(x, t)t1(x+g, t+r) ) =o'„5(g)5(r) . (5.1)

The variance of the noise oz is connected with the loss a
and the absolute temperature T through'

Distribution density

3.0x1 0

2.0x10'-

o —4wcxk T/Nojokg, (5.2)

where k is the Boltzmann constant.
In the vectorized algorithm we find it convenient to in-

troduce the noise term in p tspace, N~(t), as-
1.0x105-

NI'(t ) =E 'I tr„exp(i(8~+8„))I, (5.3)
A

I I
I

I

0.046782 0.046784 0.046786
where I' ' denotes the Fourier transform from ~ to t
space, and 0& and O„are stochastic variables uniformly
distributed between 0 and 2m. , with an upper limit in p
and m of p,„=1/2' and co „=m/ht, Ax and At being
the resolution in space and time, respectively. Standard

Revolution frequencies

FIG. 9. Distribution of revolution frequency f„. Numerical
simulation with Gaussian noise drive: a =0.01, y =0.034,
o.„=8.8&(10,and i=20.
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