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Statistical mechanics of pentagonal and icosahedral order in dense liquids
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A Ginzburg-Landau model of short-range icosahedral order in bulk liquids, and of pentagonal or-
der in two-dimensional fluids, is used to calculate density correlation functions in these systems.
The theory predicts peaks in the structure factor, at positions determined by symmetries of ideal
curved-space "crystals. " The peaks are broadened in a way which reflects the inability of icosahe-
dra and pentagons to form a close-packed lattice in flat space. The results in three dimensions pro-
vide a good fit to experiments on vapor-deposited metal films and to computer simulations.

I. INTRODUCTION

A. Theoretical background

Understanding the structure of dense liquids near the
glass transition is a challenging problem. Correlations
present in undercooled liquids are presumably frozen in

when one drops below the glass-transition temperature

Tit. The frustrated short-range order present in glasses is
important, in part because it may play a role in the spec-
tacular temperature and volume dependence of the shear
viscosity and diffusion constants just abave Tg. Metallic
glasses, in particular, have rather sharp peaks in the struc-
ture factor. ' The peaks are especially pronounced in one-
component vapor-deposited metal films. Conventional
theories of the liquid state do not satisfactorily explain
these features, particularly for single-component systems.
Microcrystalline models appear to be inadequate as well.
Although vapor-deposited films are not glasses in the
traditional sense, it is believed that similar particle config-
urations would form if one could cool fast enough directly
from the melt. One does indeed find the structure factor
characteristic of vapor-deposited films when caoling a
I.ennard-Jones liquid at the very rapid rates possible with
molecular-dynamics simulations.

There is growing evidence that the short-range order in
simple undercooled liquids and metallic glasses is predom-
inantly icosahedral. The growing icosahedral correla-
tions found in recent computer simulations are consistent
with the rise in specific heat observed experimentally in
undercooled liquid metals. ' Especially-long-range corre-
lations in the orientations of icosahedral packing units ap-
pear in large "amorphon" cluster models of structure in
metallic glasses. " Density waves with a long-range
icosahedral symmetry have been observed in rapidly
cooled aluminum-manganese alloys by Shechtman
et al. ,

' suggesting that short-range icosahedral order
may be present in Al-Mn melts.

A number of authors' ' have argued that short-range
icosahedral order can be understood by referring it to an
ideal, icosahedral crystal (called polytope I3, 3,5)), con-
sisting of 120 particles embedded in the surface S of a
four-dimensional sphere. Regions of short-range f3,3,5J
order in most glasses are broken up by a tangled array of

—72' disclination lines, forced in by "frustration" —the
incompatibility of flat space with a space-filling
icosahedral crystal. The Frank-Kasper phases' of
transition-metal alloys are ordered arrays of disclination
lines in an icosahedral medium, rather like an Abrikosov
flux lattice in a type-II superconductor. In Appendix A
we review the properties of the Frank-Kasper phases, and
show that the radially averaged Fourier transform of the
81-atom unit cell of A132(Zn, Mg)49 is qualitatively rather
similar to the structure factor of metallic glasses. A
disordered network of 72 disclination lines provides an
appealing model for structure in metallic glasses. '~

In this paper we explore the consequences of a statisti-
cal mechanical description of frustrated short-range
icosahedral order in liquids. ' A set of order parameters
Q„~~ (r) is obtained by projecting a local particle con-

figuration onto the surface of a four-dimensional tangent
sphere which can accommodate the perfect icosahedral
lattice, and then expanding the projected particle density
in hyperspherical harmonics' Y„[seeEq. (1.5)].
The index n=0, 1,2, . . . denotes different irreducible rep-
resentations of SO(4) while the azimuthal quantum num-
bers m, and mb vary in integer steps in the range

n /2 &—m„mb & n /2. Only the representations
n=0, 12,20,24,30,32,36, . . . are allowed for particles sit-
ting at the sites of the icosahedral lattice defined by po-
lytope t 3,3,5 I.'

Similar order parameters can be defined in d dimen-
sions. In two dimensions (2D), for example, we can ex-
pand particle configurations projected onto a three-
dimensional sphere in the usual spherical harmonics YI~
to obtain a set of order parameters Qi~(r). As discussed
in Sec. II, this procedure is helpful in understanding 2D
liquids with a high degree of short-range pentagonal or-
der. The figure analogous to polytope [ 3,3,5] is a regular
icosahedron, for which only spherical harmonics with
1=0,6, 10,12,. . . are allowed (see Appendix C). We also
show that one can obtain an order-parameter description
of one-dimensional liquids by mapping particles onto a
tangent disk.

I.et Q„(r)be a "vector" of order-parameter components
obtained by projecting particles in d dimensions onto the
surface of a tangent sphere in d + 1 dimensions. Here, n

represents an allowed irreducible representation of
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=0.628 (1.2)

The physical origin of the peculiar "covariant-
derivative" coupling in Eq. (1.1) is as follows. Consider
two adjacent particle clusters in d=3, both with short-
range icosahedral order. How should the centers of mass
and orientations of these clusters be related? If they are
orientationally mismatched, a grain boundary will appear
at their interface. If they are out of registry by a transla-
tion, a stacking fault will appear. The simplest way to
avoid these high-energy structures is to require that the
two configurations be related by "rolling" their projec-
tions onto the tangent sphere along the path joining them.
Minimizing the gradient term in (1.1) leads to a relation
between the order parameter at r and at a neighboring po-
sition r+5,

SO(d+1) for a (d+1)-dimensional Platonic solid. The
azimuthal quantum numbers lead to (n+1) -component
"vectors" in three dimensions and (2n+1)-component
"vectors" in d =2. In Ref. 17, a Ginzburg-Landau free-
energy functional of the Q„'swas proposed for liquids
with short-range icosahedral order, namely

F„=—,
' J d"r[K„~(d„&«—o"„)Q,

~

+r.
I Q. I

')+o«') .

Here the L o„arematrix generators of the nth irreducible
representation of SO(d+1). These generators rotate the
plane spanned by a unit vector e& (in the "physical" direc-
tion p, ) and a unit vector eo normal to physical space. In
addition to these d generators, there are d (d —1)/2 addi-
tional generators denoted I „"„,which r'otate the tangent
sphere in planes (p, ,v) which keep the point of tangency
fixed. The quantity l~ is the inverse radius of the tangent
sphere, while K„and r„arephenomenological coupling
constants. In three dimensions, the parameter ~ is related
to the geodesic separation d of neighboring particles in
the ideal icosahedral solid by'

d/R Hcz

when rolled around a closed circuit. The effect of this
frustration is to force a finite density of —72' wedge dis-
clination defects into the ground state. '

Figure 1(a) shows our qualitative expectations for the
phase diagram of simple fluids in d =3 with a high de-
gree of short-range icosahedral order, as a function of
temperature and curvature. By "curvature" we mean
d/R, where R is the radius of a four-dimensional sphere
on which particles with an average nearest-neighbor
separation d are embedded. An elementary calculation
shows that d/R =3.10/N'~, where N is the total number
of particles. As the curvature increases from zero, the
frustration, together with the disclination density in the
ground state, decreases until it vanishes completely for
%=120. At high temperatures, when all the masses r„
are positive in Eq. (1.3), we have a high-temperature
liquid, which can be regarded as a tangled mass of +72'
disclination lines. At low temperatures, when the r„'sare
large and negative, the ground state is a Frank-Kasper lat-
tice of —72' disclination lines. Such lattices can be de-
fined, even for nonzero curvatures, when N ~ 120.' '

We expect that r&z, the mass corresponding to the
smallest allowed value of n, changes sign at the mean-
field instability temperature To of the unfrustrated liquid
with %= 120. Because cubic invariants are allowed in the
Landau expansion (1.1), the liquid will transform into an
icosahedral crystal via a first-order phase transition'7 at
temperature T, somewhat higher than To. The locus of
instability temperatures To ——To(d/R) is shown in Fig.
1(a). The frustration present for N&120 will depress
these instability temperatures (and the corresponding
first-order freezing transitions) relative to their values for
%=120. The coupling r&2 determines the amount of lo-
cal icosahedral order, and should be insensitive to the glo-
bal curvature. The depression in the instability tempera-
ture in the N= ao flat-space limit is due to the aL o&

'

term in Eq. (1.1).

Q„(r+&)=e'"-'" "Q„(r), (1.3)
0.628

, (H)

which corresponds to rolling the tangent sphere a distance
5 along ez. This rolling covariant derivative was adapted
from a continuum elastic theory of glasses proposed by
Sethna. ' In Appendix B we show that a related continu-
um elastic theory follows from Eq. (1.1) in a low-
temperature, "fixed-length" limit.

One might think, in view of Eq. (1.3), that the "vector
potential" lcLo& in Eq. (1.1) could be eliminated entirely
by the change of variables

Q„(r)=—e -'""Q„'(r). (1.4)

In three dimensions, this transformation implies that the
order is now measured relative to a 1 3,3,51 template
which has been rolled in straight lines out from the origin
in all directions. Contributions from the vector potential
remain, however, because of the noncommutivity of the
generators I.o„. Problems arise because the reference
sphere will not, in general, return to its initial orientation

(d/R) Tc 7

-Hcp

(a) (b)

FIG. 1. (a) Hypothetical phase diagram of simple fluids with
short-range icosahedral order as a function of temperature and
"curvature", i.e., d/R. To(d/R) is the mean-field instability
temperature of the liquid towards a Frank-Kasper-1&ke crystal.
Its value in flat space is To. T is the melting temperature of a
fcc lattice. The curvature d/R =~d =0.628 just accommodates
polytope I3,3,5I. Since X& 00, the transitions at finite curva-
tures will, of course, be smeared by finite size effects. (b) Phase
diagram of an extreme type-II superconductor in a magnetic
field. T, is the critical temperature in the absence of a magnetic
field and H, 2(T) is the locus of transitions into an Abrikosov
flux lattice.
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Figure 1(a) is closely related to the phase diagram of an
extreme type-II superconductor, ' as a function of tem-
perature and magnetic field [see Fig. 1(b)]. A locus of
critical fields &,2(T) separates the superconducting and
normal regions. As discussed in Ref. 14, unfrustrated
tetrahedral particle packings on S are like superconduc-
tors in zero field, and the Frank-Kasper phases in flat
space are like the Abrikosov fiux-lattice state. The curva-
ture mismatch between flat space and polytope I3,3, 5I
acts like an applied magnetic field. The locus of super-
conducting transition temperatures T,2(H) is like the
curve of instability temperatures To(d/R ) in Fig. 1(a). In
this context, it is interesting to note that the critical value
of the field necessary to suppress the superconducting
transition temperature to zero occurs when the cores of
the Abrikosov flux vortices begin to overlap. The dis-
clination lines in the Frank-Kasper phases are separated
by only two or three atomic spacings. Hence, we would
expect the instability temperature in flat space,
To(d/R =0)—=To, to be depressed far below its value in
the unfrustrated 120-particle system.

The above discussion applies to 1'iquids in (possibly
metastable) thermodynamic equilibrium. To understand
why Fig. 1(a) may be relevant to flat-space glass transi-
tions, we first note that the disclination lines in the high-
temperature liquid carry non Abelian -SU(2) matrix
charges. As a result, there are strong topological barriers
inhibiting line crossings at low temperatures. ' One
would expect the kinetic constraints associated with this
entanglement to increase with the amount of short-range
icosahedral order, becoming more and more severe as the
liquid is cooled below its freezing transition T to, say,
an equilibrium fcc crystal. Entanglement will inhibit both
the transition to the fcc crystal and to a Frank-Kasper
phase of ordered disclination lines. In this picture, good
glass formers will drop out of equilibrium due to entan-
glement at a temperature Tg & T~ before reaching the in-
stability temperature To to a Frank-Kasper phase [see
Fig. 1(a)].

Recent Monte Carlo simulations by Straley support
this view of the kinetics of glasses. Straley finds that 120
particles cooled on 5 can easily find their [3,3,5 I
ground-state configuration when annealed at temperatures
somewhat below the flat-space freezing. transition. Simi-
lar numbers of particles in flat space require annealing
times at least 100 times longer to find the corresponding
fcc ground state, even with the help of periodic boundary
conditions. - This difference in timescales is presumably
due to the frustration and entanglement present in flat
space. Since +72' disclinations occur in roughly equal
proportions in liquids cooled on S, entanglement is much
less important in this case.

Straley has gone on to show that the equilibrium freez-
ing temperature of 120 particles on S is about twice the
flat-space fcc freezing-transition temperature T . We
expect the transition to a metastable Frank-Kasper crystal
to be even low'er than Tm ~ and that, in particular,
To « Tm.

These ideas suggest that we can evaluate density corre-
lations in a glass, or in a liquid just above Tg, by averag-
ing over order-parameter configurations weighted by

B. Results and outline

In the remainder of this paper, we use the above ideas
to evaluate density correlation functions in glasses. The
theory is a kind of unconventional microcrystalline model.
Standard microcrystalline models of glass require crystal-
lites separated by grain boundaries. In contrast, we model
the structure by patches of icosahedral crystal interrupted
by disclinations. In three dimensions, the order parame-
ters Q„(r)can be used to define a density on the

tangent sphere at every point r via the relation

p(r, u) = g Q„, ,(r) &„", , (u) .
n, m„mb

(1.5)

Here, u is a unit vector specifying a position on the
tangent sphere. The physical particle density p(r) is given
by p(r, u= —1), where —1 denotes the point of tangency,
which we take to be the south pole, —1 = ( —1,0,0,0). Cal-

exp( F—/k~Tg ), where F is a sum of Landau free energies
like Eq. (1.1). We assume timescales such that the only
structural changes possible below Tz are isoconfiguration-
al. The glass is modeled as a frozen liquid, which has
dropped out of equilibrium due to entanglement. We do
not deal explicitly with the dynamics of entanglement, al-
though this was what presumably controls the dramatic
behavior of transport coefficients near Tg. The entangle-
ment kinetics we have in mind bear some resemblance to
the behavior near polymer glass transitions, with disclina-
tion lines playing the role of polymers.

As a first approximation, we can truncate the expan-
sions in Eq. (1.1) at quadratic order in IQ„J,since the
large intrinsic density of defects forces these order param-
eters to be small. To appreciate this point more fully, im-
agine that the microscopic local order parameter, defined
by the procedure of Ref. 17, is averaged over a volume of
liquid containing several disclinations. This coarse-
grained order parameter must be small, because it drops at
the disclination cores, and because it adds destructively in
the regions surrounding the disclinations. This point of
view differs from the fixed-length continuum elastic
theory of Ref. 15, which does not allow explicitly for am-
plitude fluctuations. For the reasons sketched above, we
expect smooth variations in the amplitude of the coarse-
grained order parameter whenever the averaging size
exceeds the spacing between disclinations. Since the dis-
clination network forced in by the frustration is very
dense, ' amplitude fluctuations will be important at virtu-
ally all length scales, even at temperatures near Tg.

Our approach is also different from the interesting
mapping alogorithms of Sadoc and Mosseri, ' ' who
model glass structure by a literal mapping of polytope
I3,3,5I into flat space, via the introduction of disclina-
tions. The resulting structures appear to be rather more
ordered (similar to the Frank-Kasper phases) than conven-
tional metallic glasses. ' By appealing to the statistical
mechanics of liquids in metastable equilibrium, we are, in
effect, averaging over a Boltzmann-weighted ensemble of
disclination configurations. Although all types of dis-
clinations are allowed, the gradient coupling in Eq. (1.1)
ensures a bias toward the —72 wedge disclinations which
must be present in the ground state.
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culations of the structure factor,

s(q) = (
~
p(q)

~

'),
require that we carry out Gaussian integrals over the fluc-
tuating order-parameter fields Q„(r),which in turn
means diagonalizing the quadratic form defined by (1.1).
The theory is similar in spirit to the Ornstein-Zernicke
and Cahn-Hillard theories of order-parameter fluctua-
tions near liquid-gas and binary-mixture critical points.
Our calculations are more involved, however, because of
the matrix character of the icosahedral order parameter.
To make progress with the ( n + 1) -dimensional order pa-
rameters required in three dimensions, it is essential to
understand and exploit fully the transformation properties
of the hyperspherical harmonics under the group of four-
dimensional rotations.

As discussed in Sec. III 8, the theory leads to
frustration-broadened peaks in the structure factor, at po-
sitions determined by the symmetries of the ideal,
curved-space icosahedral crystal. The results provide a
good fit to experiments on single-component amorphous-
metal films, which exhibit peaks corresponding to the
icosahedral representations n=12, 20, and 24, and an ad-
ditional peak which appears to be a composite of n=30
and 32 [see Figs. 8(a), 8(b), and Table III]. Upon estimat-
ing the effect of the nonlinearities in Eq. (1.1), we find
that the n =24 peak is moved closer to the experimentally
observed position, with much smaller shifts in the remain-
ing peaks.

peak heights and widths are used to fit the
phenomenological Landau parameters r„and E„appear-
ing in Eq. (1.1). The relative peak positions, however, are
a consequence of the theory. All the r„'sturn out to be
negative, suggesting a high degree of short-range
icosahedral order. These systems are characterized by a
temperature which is well below the temperature at which
120 particles would order on the surface of a 4D sphere.
The Gaussian theory is stabilized, despite these negative
masses, by the frustrated gradient couplings.

The theory also gives a goad description of the struc-
ture factor of "computer glasses, " formed when liquids
interacting with simple pair potentials are cooled at the
very rapid rates possible with molecular-dynamics simula-
tions. The single-component amorphous metals dis-
cussed above are not glasses in the conventional sense, be-
cause they are made by deposition from the vapor, rather
than by cooling the melt. Binary metallic glasses can be
prepared from the melt, and exhibit peaks in S(q) which
are broadened relative to single-component systems. ' By
allowing for an additional, fluctuating-composition vari-
able, we can easily account for these more common metal-
lic glasses.

Some of these ideas may be applicable to other kinds of
glassy materials. Organic glass formers, for example,
are made with bulky molecules like toluene. It is possible
that the awkward molecular shape serves mainly to slow
down the kinetics, and that the centers of mass will be
correlated in a way similar to the particle positions in a
metallic glass. To our knowledge, the careful diffraction
measurements necessary to test this hypothesis have not
been done.

It may also be possible to apply curved-space models to
amorphous semiconductors. One appealing candidate
for describing tetr ahedrally coordinated structures is
"polytope 240," which is a regular lattice of 240 parti-
cles arranged in six-membered boat-shaped rings inscribed
on S . Particle configurations with short-range
polytope-240 order are also characterized by nonzero hy-
perspherical harmonics with n= 12,20,24, ; . We have
found that the theory constructed here does a poor job in
explaining the experimentally observed peak positions in
vapor-deposited amorphous Ge, although there is some-
what better agreement is found for III-V compound semi-
conductors. ' The discrepancy with a-Ge may be due
to odd-membered rings, which are absent in polytope 240,
and suppressed energetically in III-V compounds. One
additional complication is that there are actually two
chiral variants of polytope-240. Consequently, one
might expect the short-range order in semiconductors to
be disrupted by domain walls separating regions of dif-
ferent chirality, as well as by disclination lines. We have
examined the Connell- Temkin model of III-V com-
pounds, which is a hand-built tetrahedral random net-
work, made of only even-membered rings. The model
consisted of one large region (90% of the atoms) of right
handed polytope-240 short-range order, separated from a
small region of left-handed polytope-240 order by a
domain wall. The model contains eight- as well as sixfold
rings; most of the eightfold rings are concentrated in the
domain wall.

In Sec. II we discuss density correlations in uniformly
frustrated Ginzburg-Landau models of liquids in one and
two dimensions. The two-dimensional model describes
fluids with a high degree of short-range pentagonal order
using a template which is a regular icosahedron. The
mathematical apparatus necessary to obtain results in
three dimensions is described in Sec. III. The effect of
nonlinearities is treated in Sec. IIID. In Appendix A we
review the architecture of the Frank-Kasper phases and
their relationship to the theories discussed in this paper.
In Appendix 8 we discuss the behavior of the theory in a
low-temperature fixed-length limit. The selection rules
for ordinary spherical harmonics projected onto the
icosahedral point group are worked out in Appendix C.

II. LOW'-DIMENSIONAL MODELS

In this sectian we study low-dimensional analogs of the
"rolling-sphere" model. Their mathematical simplicity
and the ease of visualization will add additional insight to
our analysis of icosahedral ordering in three dimensions.

A. One dcmensson

~e examine the theory of a liquid of particles con-
strained to move along a line, with interactions -favoring a
mean interparticle spacing d. The ground state of such a
system is obvious: the particles are regularly spaced a dis-
tance d apart. At any finite temperature, however,
thermal fluctuations destroy this ordering. We attempt
to describe the statistical mechanics of this system using
an ideal template consisting of a circle inscribed with p
regularly spaced particles. This "Platonic disk" plays a
role similar to the solids discussed in the Introduc-
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tion. The label p distinguishes between the infinite
number of ideal polytopes that could be used in one di-
mension. The inverse radius ~ of the disk must clearly
satisfy the relation

ed=2m jp . (2.1)

F=—1

2

m =0, +p, .
f [I|.

~

(8„i—am )g

(2.4)

p(x, 8) —= (x)esme (2.3)

The flat-space particle density is p(x)—:p(x, 8=0). A
Ginzburg-Landau expression for the free energy in terms
of the order parameters g (x) reads

In the limit p~ oo, we recover the conventional reference
lattice for phonon displacements in a one-dimensional
crystal.

The representations of U(1), the symmetry' group of the
disk, are one dimensional, the representation m being gen-
erated by the function e', where 8 is an angular coordi-
nate on the disk. The representations which are invariant
under the symmetry operations of the Platonic disk of p
particles are given by m =jp, where j is an integer. We
now project density fluctuations on the line onto a
featureless tangent disk of radius ~ ', and expand the
projected density in the basis functions of these irreducible
representations. Although all values of m are possible in
a disordered-particle configuration, we expect that short-
range crystalline order wi11 give rise to large Fourier coin-
ponents for m =0,+p, +2p, . . . . Accordingly, we approx-
imate the statistical mechanics of the partially ordered
liquid by restricting our attention to the special Fourier
components,

Ho

(x)= d8e ' p' (8), m =0, +p, +2p, . . . .
20o —~o

(2.2)
Here p„'(8) is the projection of the particle density onto
the disk at the point x, and +I90 denotes the boundary of
the projected averaging "volume. " (See Fig. 2.)

We can use these Fourier components to define a densi-
ty p(x, 8) which depends on both position x and the angu-
lar coordinate 0 of the Platonic disk,

The E~ 's are elastic constants and the r~ 's are
temperature-dependent masses. The form of the gradient
term ensures that it will be minimized when
g~(x+5) =e'" f~(x). The same phase relationship be-
tween Fourier modes would be obtained for particles
deposited on the x axis by rolling the p-fold reference Pla-
tonic disk from x to x+5. In terms of the Fourier-
transformed order parameter

(q) = J g~(x)e'~"dx, (2.5)

the gaussian part of the free energy (2.4) becomes
1F——
2

m=G, +p, . . . q

(q) j [K (q —am) +r ] . (2.6)

E (q —am) +r
(2.7)

This structure factor is a series of Lorentzians with peak
positions at q =~m and temperature-dependent widths
determined by the r 's. The peaks occur at precisely the
positions of the reciprocal-lattice vectors of the ordering
at zero temperature.

Although pedagogically interesting, this system is of
course unfrustrated. This can be seen in two ways: (a)
The eigenvalue of the gradient term, i.e., X~(q ~m),
goes to zero at q=~m, which means that the correspond-
ing coupling in Eq. (2.4) can be made to vanish. (b) If we
make a gauge transformation of the order parameter
[analogous to Eq. (1.4)]

(x)=g' (x)e' (2.8)

the free-energy density becomes

(2 9)

At high temperatures, fluctuations restrict the magnitude
of 1((r), and truncation of the free energy at quadratic or-
der will be a good approximation. Alternatively, we can
work with a small order parameter by coarse-graining the

(r)I over a flat space of average size I. large com-
pared to the transitional correlation length ((T). This re-
stricts the allowed q values in (2.6) to q (I. '. The struc-
ture factor S(q) of this system can now easily be calculat-
ed from the equipartition theorem,

~(q) = (
~
p(q)

~

')

Averaging voIurne x axis

We are left with the standard Landau gradient coupling.
Variations in the phase of g~(x) now correspond to the
small phonon displacements entering conventional contin-
uum elastic theories.

FIG. 2. Schematic showing the projection of a configuration
of particles along a line onto a tangent disc. go is the angle over
which an integration is performed to define the order parameter.

S. Pentagonal order in two dimensions

Frustration does appear in two-dimensional liquids
with interactions that strongly favor fivefold coordina-
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tion. Although it is impossible to make a lattice of parti-
cles which is everywhere five-coordinated in the plane,
twelve particles, each having five nearest neighbors, can
be accommodated on the surface S of a sphere in three
dimensions. The centers of the particles form a regular
icosahedron which plays a role similar to polytope t 3,3, 5 J

in three-dimensional packings. If the great circle distance
between the particles on S is d, it is straightforward to
show using the geometry of an icosahedron that

', vS
Kd =cos

5

(2.11)
1=0,6, 10,. . . m= —I

Let us take the point of tangency of S and R to be
the south pole u=uo ——(0,0,—1). Since

1/2

F~ (uo)=( —1)
21+ 1

4m
(2.12)

the physical particle density is given by

The resulting expansion coefficients Q& (r) can be used to
define a density on all of S at every point r, namely

I

p(r, u)—= g g Q~ (r)&~ (u) .

=1.11, (2.10) p(r) =p(r, u, )

where x is the inverse radius of the sphere.
Comparison with the corresponding result (1.2) for po-

lytope I3,3,5I shows that this system is considerably
more frustrated. Figure 3 shows a high-density configu-
ration of particles obtained by annealing small aluminum
pentagons in a vibrating-dish apparatus. These penta-
gons would form a regular dodecahedron on S . Note
that essentially every particle is six-coordinated, and that
the centers of the pentagons appear to form a hexagonal-
close-packed lattice) This result is less surprising when we
remember that the average coordination number Z in a
plane is constrained topologically to be six, regardless of
the form of the interparticle potentials. We may also
think of the six-coordinated sites as —72 disclinations in
the twelve-atom reference "crystal" discussed in the
preceding paragraph. We would expect that the frustra-
tion of pentagonal order in flat space could be accommo-
dated by a regular Frank-Kasper lattice of point disclina-
tions. It is evident from Fig. 3 that the large frustration
forces virtually all particles to sit on defect sites.

The high defect density makes a regular icosahedron a
slightly awkward template for describing order in the
plane. Nevertheless, this point of view provides a useful
testing ground for the theoretical ideas used to make more
substantive predictions in Sec. III. The approach does
surprisingly well in predicting the positions of the peaks
of the structure factor associated with the sixfold order in
Fig. 2.

The symmetry group of S is SO(3). Its irreducible
representations, labeled by a non-negative integer l, are
generated by the spherical harmonics Fi (u). Here,
u=u(8, $) is a unit vector parametrizing S~. Just as in
one dimension, we can project the particles in the plane
around the point r=(x,y) onto S . The radius of this
tangent sphere should be chosen to satisfy Eq. (2.10),
where d is the geodesic interparticle spacing of the pro-
jected pentagons. As shown in Appendix C, only the rep-
resentations 1=0,6,10,12,15,16,. . . are allowed for parti-
cles on 5 with an icosahedral symmetry. We make the
approximation that only these modes appear when we ex-
pand the projected particle density in spherical harmonics.
From the projected particle density p,(u) we can define an
order parameter QI (r) given by

Qi (r)= I p,(u)YI (u)du

integrating over a small region hS around the point r.

1=0,6, 10, . . .

1/2

Q(0(r)( —1)' .
4m

(2.13)

To determine the form of the gradient coupling in a
Landau expansion in the order parameters IQ~~(r)I, we
require that p(r+5, u) be obtained by rolling the density
on the sphere at r along the vector 5. Consider for con-
creteness the case 5=(5,0). Then we demand that

p(x +5,y, u) =p(x,y, R -( —v5)u), (2.14)

where R -„(0)rotates u by an amount 8 about the n axis.
Equation (2.14) will be consistent with Eq. (2.11) for small
5 provided

Here, Q~ represents the (21+1)-component vectors Q~

and the sums over (p, ,v) extend over (x,y). Again the X~'s
are elastic constants and the rl's are temperature-
dependent masses. The quantity e& is the 2)&2 antisym-
metric tensor with e ~

= 1.
The free energy (2.16) is frustrated, in much the same

way as the corresponding description of I3,3,5I order in
three dimensions. ' To see this, consider what happens
when we try to minimize the gradient term around the
small plaquette shown in Fig. 4. The gradient energy will
be minimized along a line connecting two neighboring
points provided

(2.17)

Here, and henceforth, we drop the representation index on
the generator L for simplicity. Adding up the changes
caused by traversing the plaquette with edge length a in
Fig. 4, we obtain

(2.15)

~e have used the summation convention and denoted by
I-,'" the (2l+1)X(2l+1) matrix generator of rotations
about the i direction, acting on the lth representation of
SO(3). A similar analysis of rolling in the y direction
leads us to a free energy with a gradient term that mini-
mizes the density difference between points on the plane
and nearby points on the spheres, namely

f «W'i
I
(dp+«&p& ~")QI

I

1=0,6, 10, 12, . . .

+&I
I Qi I

'1+ o(q') (2 16)
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FIG. 3. Snapshot of a configuration obtained by "annealing" a high-density "liquid" of small aluminum pentagons. This configu-
ration was obtained by gradually increasing the density of pentagons in a vibrating-shake-table apparatus (Ref. 37).

i ecL a i aL a iaL a —i'„a—
=[1—(i~a) [I.„,L y]]Qi(r)

=e ' "' -*q,(r) . (2.18)

We see that the order parameter will not in generai return
to its initial value, and has instead been rotated about the
z axis by an amount proportional to the area of the plaRR

quette. This frustration can be accommodated provided

the plaquette contour encircles an integral number of
—72 wedge disclinations.

We will now use this free energy to calculate the struc-
ture factor of a disordered liquid of hard-disk pentagons
in two dimensions. Because of the frustration we expect
pentagonal ordering to be small, so it may be reasonable
to truncate the free energy at quadratic order in the Qi 's.
It follows from Eq. (2.13) that the structure function is
given in terms of the Fourier transforms p(q) and Qi (q)
by
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diagonal terms only mix together the odd-m and the
even-m subspaces separately. For large values of P the di-
agonal terms dominate and we can treat the off-diagonal
terms as a perturbation. The eigenvalues to order 1/P are

(P), where

(P) =P +ZmP+ 1(1+1) m

2 2

+ 1 (1+m )(1—m + 1)(l+m —1)(l—m +2)
16 4P+2m +2
1 (1 —m)(1 +m +1)(1+m +2)(l —m —1)

16 4P+2m +2
(2.25)

FIG. 4. Elementary plaquette along which the sphere is
rolled. The order parameter at r is rotated from the order pa-
rameter obtained by traversing the plaquette.

This expression has a minimum as a function of P at

(2.26)

1 1 (21 + 1)
8 (1+1)

(2.27)

The lowest eigenvalue occurs for m = —1 and is given by

~(q)=& Is(q) I')

1=0,6, 10,. . .
(2.19)

The eigenvalues can also be determined for small values
of P. Again taking q=(q, O), but returning to a quantiza-
tion scheme along the z axis, we can rewrite Eq. (2.20) as

To calculate these averages, we Fourier-transform the free
energy (2.16), and note that we need to diagonalize the
quadratic form

Qr*, (q):-, ,(q)Q(, (q),

where the =~ are the matrix elements ofm&m2

=q +ZKEp+pL~+!c (LX+Ly ) .

(2.20a)

(2.20b)

Ly I
lm ) =m

I
lm ), m = —1, . . . , +1

L 2
I
lm ) =l(l+ 1)

I
lm ),

L+
I
lm ) =v'(1+m)(1+m+1)

I
l, m+1),

where

(2.22a)

(2.22b)

(2.22c)

(2.23)

Using this basis and defining 13—=q/a. , we can rewrite
(2.21) as

a —'=(P) =P'+ ZPm + —,
' l(l + 1)

+ —,'m ——,'(L+L++L L ) . (2.24)

The last two terms of Eq. (2.24) couple different m in-
dices, and have to be diagonalized. Note that these off-

It is tedious, but straightforward, to show that both the
eigenvalues and eigenvectors of:- are independent of the
direction of q in the (x,y) plane. Taking for concreteness,
q=(q, O), we note that " can be rewritten

2 2

:-(q)=q +ZaqL„+2a L + ,'~2L~+ a2. —(2.21)
2

The first four terms are diagonal in an (unconventional)
"angular momentum" basis set

I
lm ), such that

:-(q)=P +L L, +213Ly-
=P +l(1+1)—m +2/3Ly . (2.28)

The off-diagonal terms are now negligible for small values
of P. The eigenvalues are doubly degenerate for P=O but
the degeneracy splits for nonzero values of P. Up to order
P the eigenvalues of:- are given by x A,~(P), with

A, (P) =P'+l(1+1)—m'+P'
2m +1

z (1+m )(1—m —1)0-
2m —1

(2.29)

where m refers to a different basis set than in Eq. (2.25).
The eigenvalues decrease quadratically with P for all m
and no minimum is in sight.

It is straightforward to diagonalize the quadratic form
on a computer. A plot of all the eigenvalues as a function
of P for 1=6 is shown in .Fig. 5. Table I shows the
minimum eigenvalues and the values of P for which it
occurs. We find the large-P perturbation theory gives a
good estimate of the size and position of this minimum.
Let us denote the ith eigenvalue for a given 1 by A,~(q).
The eigenvalues are ordered such that A,I(q) is a monoton-
ically increasing function of i and 1&i &21+1. Note
that all the eigenvalues are bounded below by a positive
constant. This is a consequence of the frustration in-
herent in the packing of pentagons in the plane. It is im-
possible to make the gradient term in Eq. (2.16) vanish
identically.

After carrying out a unitary transformation to the
eigenvalues of:-(q), the free energy (2.16) may be written

21+2
F= —,

' g g g I
a~(q)

I
fICIA'I(q)+rI j, (2.30)

1=0,6, . . . i=1 q

where aI(q) is a variable measuring the strength of the ith
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40

by the minimum in the smallest eigenvalue. Also shown
are these ratios as determined by estimating a root-mean-
square wave vector ql on S associated with lth-rank
spherical harmonics. This can be done by averaging

~
VF~~

~

over S, to obtain

qs =a f—dQ"
I

VYsm(u) ]

30 =~ l(l+1) . (2.33)

20

10

0 I I

0 1 2 3 4 5 6 7 8 9 10

FIG. 5. A plot of the eigenvalues of the gradient part of the
quartic free energy describing pentagonal ordering in two di-

mensions. The eigenvalues are shown for the l =6 representa-
tion.

Finally, we show the Bragg vectors of a 2D hcp crystal,
divided by the smallest Bragg vector qo. The magnitudes
of these Bragg vectors are presumably a good approxima-
tion to the peak positions of the structure function of any
liquid with hexagonal interparticle correlations, as is the
case for the pentagons in Fig. 3.

The Gaussian approximation is meant to be a good
description of a disordered liquid of defects. We would
not expect the ratio of the positions of minimum eigen-
values to match exactly with the ratios of the Bragg peaks
of the hcp lattice. Nevertheless the Gaussian approach
does appear to work rather well for the first three peaks in
the structure factor.

eigenmode. Writing
2l+1

('q) = X ~I(q)el (2.31)

III. ICOSAHEDRAL ORDER
IN THREE DIMENSIONS

A. gaussian free energy

where e~~(q) denotes the components of the ith eigenvec-
tor in a basis quantized along the z axis, we see from Eq.
(2.19) that

S(q) =
l=0, 6, . . .

2l+1; j ~ jQ (~I(q)c l( —q) &cia(q)elo(
4m.

+ AT
1=0,6, . . .

(2.32)

In the last step, we have used the equipartition theorem
and the normal-mode decomposition (2.30).

It is straightforward to check that the eigenvectors are
only weak functions of q, so that the dominant wave-
vector dependence in S(q) comes from the eigenvalues
displayed in Fig. 5. Assuming that the lowest eigenmode
dominates, we see that there will be one peak in S(q) for
every allowed value of l. Table I shows the peak posi-
tions, relative to the first peak, assuming these are given

We now study icosahedral order in three dimensions.
As stated earlier, because of the impossibility of tiling flat
space with icosahedra, one looks for ideal tessalations in a
curved space. On the surface of a sphere in four dimen-
sions (S ) there exists a polytope of icosahedrally coordi-
nated particles —polytope I3,3,5I. The strategy, in keep-
ing with the ideas developed in Sec. II, is to associate a
tangent sphere with each point in flat space and minimize
the density difference between flat space and the sphere.

We need to develop a convenient coordinate system on
the sphere, and analyze the representations of SO(4) and
their transformation properties. We use the well-known
isomorphism' between S and SU(2) to represent points
on S by 2&2 unitary matrices with unit determinant. A
convenient parametrization of the point u is

w +iz ix +y
u~u =w+ir o = u=—(w, x,y,x)ix —y w —iz '

(3.1)

TABLE I. Relative peak positions in the structure factor of a 2D pentagonal liquid. The fourth
column is the theoretical prediction, which should be compared to the result for a hcp lattice of penta-
gons (see Fig. 3) in the last column. The fifth column is the prediction which follows from Eq.(2.33).

6
10
12
15
16

p; (I)

5.77
9.67

11.63
14.57
15.55

&(p; )

1.69
2.45
2.78
3.26
3.41

p; (I)/p; (6)

1

1.68
2.02
2.53
2.69

1

1.62
1.93
2.39
2.54

qh, ~/qQ

1

1.73
2.00
2.65
3.00



32 STATISTICAL MECHANICS OF PENTAGONAL AND. . . 1489

where cr is the vector of Pauli matrices, and [setting
r=(x,y, z)]

(3.2)la +r =I.
Henceforth, we shall think of a point on S both as a
four-vector and as an SU(2) matrix. We shall denote a
point by u when we want to use four-vector notation, and
simply write u when we mean an SU(2) matrix. Rolling
of S in this coordinate system is straightforward to
parametrize. We use the fact that the geodesic distance s
between the points u and v [regarded as SU(2) matrices] is
given by

its =cos '[ ,'T—r(uv )], (3.3)

TLpp
——Ap+Bp,

L,p
——Ap —B~,

(3.5a)

(3.5b)

where the matrices A& and 8& are generators of two in-
dependent, 1=n/2 representations of SU(2). The matrix
B„is the transpose of B&. The matrix A„acts only on
the m, index of Y„~ while 8& acts only on the mb in-
dex. It is easy to verify that this parametrization satisfies
the SO(4) commutation relations. '

%'e now check that the generators L& do indeed rotate

where a ' is the radius of the sphere. Let
uo ———( —1,0,0,0) be the point of tangency of a sphere
placed at the origin of flat space. In SU(2) notation, this
point corresponds to minus the identity matrix. If we roll
S from the origin along the direction r, then the point on
S which will roll onto the point r will be

u =cos(ar)+ir crsin(ar)

ixE; r.cr ) (3.4)

It follows from Eq. (3.3) that the geodesic distance be-
tween u and uo is s =r, as required by the rolling opera-
tion.

We shall be interested in the irreducible representations
of SO(4). The six generators of SO(4) rotate the six dis-
tinct planes (o,x), (oy), (oz), (xy), (yz), and (xz) of a
four-dimensional coordinate system. Here, x, y, and z
denote directions in the physical flat space we are interest-
ed in, and o a direction eo orthogonal to these three. We
shall use Greek indices to denote x, y, or z. The genera-
tors L&„rotate the tangent sphere, keeping the point of
tangency and the axis eo fixed. These generators are relat-
ed to conventional SO(3) angular momentum operators
L~ by L, ~

——2m~»L& .' ' The generators Lo roll the
sphere in the direction p.

The so-called "diagonal" irreducible representations of
SO(4) are obtained using the hyperspherical harmonics
Y„~~ (u) as basis functions. The representation index n

assumes the values n =0, 1,2, . . . , while the azimuthal
quantum numbers m, and mb range in integer steps from

n/2 to n/2—. These hyperspherical harmonics are them-
selves proportional to the Wigner matrices of SU(2) for
the representation 1=n/2. ' ' The matrix elements of
the generators of the nth representation of SO(4) can be
expressed using the homomorphism between SO(4) and
SU(2))&SU(2). We have '

i8—AY (u)e+i8.B

Y (e i8 —cri2.ue+i8 o/2.
) (3.6)

In the last step, we have used the fact that Y„(u)is a
Wigner matrix and the group property of the SU(2)
Wigner matrices. Upon writing u in its SU(2) matrix
form u =m+ir. a., it is easily shown using the properties
of the Pauli matrices that

exp( iL~B—„)Y„(u)= Y„(tv+i(R8r) tr), (3.7)

where R ~ is a 3&(3 rotation matrix which rotates r an
amount 0 about the axis 6. The operator Lz does indeed
rotate the spacelike coordinates of u, leaving the coordi-
nate m unchanged. Similar manipulations can be used to
show that

exp( iLO&co—&)Y„(u)=e '~' Y„(u)e
= Y„(u'), (3.8a)

where the components of u' are obtained from the com-
ponents of u by rotating the plane spanned by e, and co

an amount m. This rdationship can be expressed in terms
of SU(2) matrices by

—im cr/2 —&co cr/2 (3.8b)

It is the same transformation as would be effected by rol-
ling the tangent sphere a distance s=~~ ' in the direc-
tion co. Thus, the generator L,o„produces the curved
space analog of a "translation" in the p direction.

Just as in Sec. II, we imagine projecting the particle
density at r in flat space onto S, and expanding the re-
sulting density p,(u) in the hyperspherical harmonics. If
we denote the resulting Fourier coefficients byQ„~(r), they are given by

Q„, ,(r) = f,p,(u)Y„,(u)d Q-„, (3.9a)

where the integration volume AU' on the sphere has a
length scale several times the spacing between defects.
We can now define a density p(r, u) by

p(r, u) = g Q„",(r)Y„,(u),
s, m wb

(3.9b)

where the physical density at the point r is given by
p(r, u, ), u, =(—1,0,0,0). The density at the point r+5
will be the same as the density obtained by rolling the
sphere from the point r if

p(r+5, u) =p(r, u '), (3.10a)

where u' is related to u by rolling in the 5 direction.
Writing u and u' as SU(2) matrices, we have, using Eq.
(3.8b),

the sphere about its point of tangency. Consider the ac-
tion of the operator exp( i—B„L„)on the hyperspherical
harmonic Y„~ (u), which we shall write, suppressing

the azimuthal indices, as Y„(u). We shall show that the
vector B parametrizes a rotation of B about the 8 axis.
%'e have

exp( iL—&B")Y„(u)=e ' 'Y„(u)
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g ' —e '&'~age

=(1+ ,'i—5o)u(1+ ,'—i5o) . (3.10b)

where the d~ ~ are the reduced rotation matrices. Wemb

now recall the property of the D matrices that

Using Eq. (3.9b) and requiring that (3.10b) be satisfied to
lowest order in 5 gives us a condition on the Q„~~ (r),
namely

(3.11)

where Loz' is a generator for the nth representation of
SO(4). For notational convenience we have writtenQ„asa (n +1) -dimensional "vector" Q„.

A Landau free energy which incorporates the physics
embodied in Eq. (3.11) is'

F= —,
' g [rC„~(a„—L,'"„')Q„~'+ „~Q„~']+a(Q„').

(3.12)

The sum on n wil1 be restricted to representations which
have a component invariant under the symmetries of po-
lytope I3,3,5], i.e., n=12,20,34,30,32. . . . We neglect the
unimportant uniform density mode at n =0, As we have
already argued in the Introduction, the high density of de-
fect lines that are present even in the supercooled liquid
will force the order parameter to be small and make quad-
ratic truncation of this free energy a plausible first ap-
proximation.

D(R ')L;D(R ) =R;JLJ, (3.14c)

where L; are matrix generators of SU(2). Inserting the
unit matrix in the form D 'D and using (3.14c), the gra-
dient part of the free energy can be transformed into

C'„(k)[k —2~k(A, +B, )+x (A+8 ) ]C„(k), (3.15)

where Q„~~ is related to the C„~~ by (summation
convention implied)

Q„=D"—(R ')C„——D~ (R ), (3.16)

S

:-(p)=p —2p(m, +mb)+n —+1
2

and we have used the decomposition (3.5a). As in the
preceding subsection, we define P=k/a. . It is easy to
check that C„~~ behaves under the action of A and 8
like the composite angular momentum kets

~
n/2 m„n/2 mb ), where m, and mb are eigenvalues of

3, and B,. It follows that to diagonalize the gradient
part of the free energy we must diagonalize the
(n+1) &&(n+1) matrix,

B. Diagonalization of the free energy
+2m, mb+A+B++A B (3.17)

As in the preceding section, a first step in the further
analysis of the density fluctuations is the diagonalization
of this quadratic form. We first perform a Fourier
transform and express the gradient part of the free energy
in Fourier space:

Q"„(k)[k—2vk. (A+8 )+a. (A+8 ) ]Q„(k). (3.13)

where A+ and B+ are standard quantum-mechanical
raising and lowering operators. The first four terms are
diagonal in the m„mb basis, while the last two terms are
off diagonal. An important property of the off-diagonal
terms is that they do not mix states with different values
of M, where M is given by

Now let R be a rotation which rotates k into the z
direction,

M=m, —mb .

This is related to the fact that the quantity

(3.18)

(3.14a)R;Jkj =k5;, .

If (8„-,$-„)are the spherical polar coordinates of k, a con-

venient choice for R is a rotation about the z axis by an
angle —Pk followed by a rotation of —Ok about the y
axis. The l =n/2 Wigner matrix corresponding to R is

(3.14b)

A=k(A —8 ) (3.19)

commutes with original free energy (3.13). It follows that
the quadratic form breaks into (n —

~

M
~
+ 1)-

dimensional subspaces indexed by the value of M.
The eigenvalues can be determined for large P by

straightforward perturbation theory applied to the quad-
ratic form (3.17). To order I/P the eigenvalues of:- are

,=p —2(m, +mb)p+n —+1 +2m, mb—

n n n—+m, +1 —+mb+1 ——m,

2m, +2mb+2 —4P

n —mb
2

n
+mg

n n—+mb ——ma+1
2 2

2m +2mb —4p —2

n——mb+1
2

(3.20)
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This expression has a minimum as a function of P. The
smallest eigenvalue occurs when f3=n for m, =mb ——n/2
into the M =0 subspace and equals

n(n+2)
A, ;„()= (3.21)

The eigenvalues can also be determined for small values
of P. We now have to return to the expression (3.13). The
angular momentum generator B& is equivalent to a gen-
erator —C& by a simple unitary transformation given by

:-(P)=P 2P(A, ——C, )+ n —+1 —2A.C . (3.22)

This matrix, expressed in terms of the m„m, basis, is
mathematically the same as the Hamiltonian for two
spin-(n/2) particles in a staggered magnitude field, in-
teracting via a Heisenberg exchange interaction. It is
clear that the P-independent terms will be diagonal in a
basis in which A„C„A,+C„andJ =(A+C) are di-
agonal. This basis is related to the m„m, basis via a uni-
tary transformation using standard quantum-mechanical
Clebsch-Gordan coefficients. 9 The states in this basis are
labeled by indices J,M with 0&J&n and —J &M &J.
The eigenvalues up to second order in n can now be deter-
mined using the standard properties of the Clebsch-
Gordan coefficients and the Wigner-Eckart theorem. The
J,M eigenvalue is

XJ M(p) =n(n +2)—J(J+1)+p'

( m, m, ) =(—1)
~
m, mb—) .

Here C& is a generator of SU(2) and satisfies the usual
SU(2) commutation relations. In terms of the generators
A& and C&, the matrix = can be shown to be equivalent
to

0 I I 4 I I I I I I

0 q/z 15

FIG. 6. A plot of the eigenvalues of the gradient part of the
quadratic free energy describing icosahedral ordering in three
dimensions. The eigenvalues shown are the three lowest eigen-
values for each M subspace of the n =12 representation. The
eigenvalues belonging to the M =0 subspace are shown as heavy
solid lines.

tor in the M subspace and A,~; be the corresponding
eigenvalue. The eigenvalues are ordered such that XM; is
a monotonically increasing function of i Note th. at both
the eigenvector and the eigenvalues are independent of the
direction of k. We can now expand both the free energy
and the order parameter in terms of these eigenvectors.
We get

aM;(k)D" —(R ')

(J —M )[(n+1) —J ]
J(4J —1) F= —,

' g ~
a";(k)

~

[K„A,";(k)+r„],
k, M, i, n

(3.24a)

(3.24b)

[(J+1) —M ][(n+1) —(J+1) ]
(J+1)[4(J+1)'—1]

(3.23)

The eigenvalues decrease quadratically with P and there is
no minimum in sight.

By exploiting the angular momentum decomposition
described above, it is straightforward to diagonalize the
quadratic form numerically on the computer. The numer-
ical computation is greatly aided by the fact that the dif-
ferent M subspaces do not mix. The result of numerically
determining the lowest three eigenvalues in each M sub-
space for n =12 as a function of P is shown in Fig. 6.
The eigenvalues in the +M and —M subspaces are de-
generate. The perturbative estimates for the value and po-
sition of the minimum eigenvalue are consistent with the
numerical calculation. As in the two-dimensional case,
the fact that these eigenvalues are always positive is due
to the frustration embodied in the gradient term.

Now let e„~~ be the exact orthonormal ith eigenvec-

where aM; is a number parametrizing the strength of the
ith eigenmode. The condition that the density be real
gives us the constraints

g„...,(k)=( —1)
+ 'g„' . (3.25a)

Using Eq. (3.24a) and the properties of the Wigner D ma-
trices, this relationship can be shown to be equivalent to

aM, i(k) ( 1) aM, '( (3.25b)

Using the expressions (3.24) and (3.8) and the group of
properties of the Wigner matrices, we obtain

p(k, u) =/aM;(k)e„' (k)F„~(R 'uR), (3.26)

whel e

M=m~ —mb . (3.27)

The physical density is the density on the south pole of
the sphere: u=u, . Using the expression (3.26) above,
and the fact that
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1/2

,( —1)=(—1)"
0.693 I W ~ i

ao;(k)e„'

the physical density can be shown to be
1/2

p(k) = g ( —1)"
n, i, m

(3.28) p(r)

We can understand the position of the minimum eigen-
value in Fig. 6 by directly rolling S . I.et the system have
density fluctuations only in this eigenmode for n =12.
The physical density in a direction parallel to k is given

by
1/2

p(r)=g 2 e~2 (k;„)cos(k;„r).O, 1

m

(3.29)

—0.605
0

(a)
0.8

Now begin at the origin and roll 5 in the direction paral-
lel to k. Using the expressions (3.26) and (3.4) the density
deposited by S at a distance r from the origin is

p( r) =pe &z' (k;„)Re&&2 [cos(xr )+icr, sin(~r )] .

(3.30)

The two densities (3.29) and (3.30) are plotted in Fig. '7(a).

We can perform a similar exercise in a direction perpen-
dicular to k. The two densities in this case are

1/2
13

p( r) =g 2
e ~2'~~ (km;„) (flat space)2'

(3.31)
p( r) =pe &z' (k;„)I'~2 [cos(ar )+icr„sin(~r)]

(unrolled from S ),
and are plotted in Fig. 7(b). The density rolled from the
sphere is quite close to the physical density. The free en-

ergy is designed to minimize the square of the difference
of these two densities, averaged over all directions.

C. Structure factor of metallic glasses

Using the Gaussian free energy introduced in the

preceding subsection, we can calculate the density-density
correlation function of a metallic glass. As argued in the
Introduction, truncation of the Ginzburg-Landau expan-

sion at the quadratic order is reasonable because the large
density of defects will force the order parameter to be
small upon coarse graining. From Eq. (3.28) for the phys-

ical density in flat space and the free-energy density

(3.24), we obtain

p(r)

-0.6 —0.6
(b)

FIG. 7. Comparison between the density fluctuations of a
given wave vector in flat space and those obtained by rolling the
sphere. The sphere is constrained to have density fluctuations
only in the mode with the minimum eigenvalue for n =12. The
dotted lines represent the density rolled from the sphere, while
the solid lines represent the density in flat space. Panel (a) ex-
hibits the comparison in a direction parallel to the wave vector,
while panel (b) shows the comparison perpendicular to the wave
vector.

values i(,M;. We now turn to a description of the evalua-

tion of the factor in the numerator:
2ge„' (k)

As k tends to oo, the quadratic form (3.17) becomes diag-

onal in the m„m~ basis. So we clearly have

S(k) = (p(k)p( —k) ) lim ge„'~(k)=1 .
k~ ce

(3.33)

n 12 20 24 2~' ~n~O i(k)+rn in
n

(3.32)

As k tends to 0, the quadratic form is diagonal in the J',M
basis introduced in the section following Eq. (3.22). It fol-
lows that

Note that because the physical density depends only upon
the diagonal elements of Qn ~ ~, it couples only to the

M =0 subspace. In the preceding subsection we have al-

ready described a perturbative evaluation of the eigen-

lime„' (k) =
k~o

nl2 nl2 J
( —1) &2J+ 1, (3.34)

with J=n i +1. Th—e symbol on the right-hand side of
the equation above is the usual 3-j symbol of the group
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SU(2). Using well-known properties of the 3-j symbol, we
may deduce that

limine„' (k)=( —1)"i~Qn + lgJo .
k +0

n™m (3.35)

ge„' (k)
m

For intermediate values of k numerical calculations show
that

S(q)

2.0—

j

I

/

l I

I

1',

Theory
————Experiment

interpolates smoothly between its values at 0 and oo.
From the expression (3.32), and the fact that e„'~~is a

smooth function of k, we see that there is a peak in the
structure factor for each representation of SO(4) which is
nonvanishing on polytope I3,3,5I. The peak occurs at
the position of the minimum eigenvalue in the M =0 sub-
space. The calculation as presented above is directly appl-
icable to monatomic metallic glasses. While it has not yet
been experimentally possible to make such substances by
cooling the melt, one can make thin films of amorphous
metals by vapor deposition onto a cold substrate. It is be-
lieved that essentially the same structure would result if
one could cool the melt fast enough. Figure 8(a) shows a
fit of our results to the measurements of Leung and
Wright on amorphous cobalt. Two parameters,
K„/k&T+ and r„/k~Tg, have been adjusted for each peak.
The peak positions q„,however, are completely deter-
mined by the theory once ~ is known: we find that
q &z

——11.25~, q20 ——19.20~, and q24
——22.96~. The theoret-

ical value of the ratio q2p/qi2 is 1% higher than the ex-
perimental value of 1.69, while the ratio q24/qi2 exceeds
the experimental value 1.97 by 3.5k. The n =30 and
n =32 peaks are quite close to each other and appear as a
single peak in the experiment. The fits determine a set of
masses ri2, r20, r24, . . . which are all negative, consistent
with the physical picture discussed in the Introduction.
Table II shows the values of K„and r„determined from
the fit.

The value of a. for amorphous cobalt is determined by
fitting the result qi2 ——11.25~ to the position of the first
peak. The particle spacing d on the polytope then follows
from the relation ~d =m/5. We find that d is about 10%
less than the position of the first peak in the flat-space ra-
dial distribution function, lying approximately at the
point of inflection. The smaller value of d is to be expect-
ed, since the mapping from flat space onto the tangent
sphere (see, e.g., Fig. 2) compresses distances.

The behavior of X„and r„with n is summarized in
Table II. To determine the peak widths and intensities,
we note that, to a good approximation, we can assume
that each peak in the structure factor is given by the
minimum in the eigenvalue A,o i(q) for a given n The.
eigenvalue Ao i(q) has a quadratic minimum at q„,and we
see that the center of each peak is approximately a
Loreatzian. The width of this Lorentzian 8'„and the in-
tensity of the peak I„(this is the number multiplying a
normalized Lorentzian) are therefore given by

0 rr
0 10

I

15
l

20

(a)

25
I

30
q/K

Theory
————Experiment

s(q)

2.0—

1.0—

/
ir l

0 " 10
I

15
l

30
q/K

I

20 25 35

(b)
FIG. 8. (a) Comparison of the structure factor obtained by

fitting the theoretical expression (3.32) to the experimental data
on amorphous cobalt films obtained by Leung and Wright (Ref.
3). There are two adjustable parameters for-each peak which
determine its width and height. The peak positions, however,
are a consequence of the theory. (b) Similar fit to the data of
Lauriat (Ref. 4) for amorphous iron.

12
20
24
30
32

K„/kgTg

0.18
0.16
0.32
0.30
0.16

r„/kgTg

—0.89
—1.03
—2.37
—2.49
—1.23

0.63
1.29
1.36
1.68
2.21

In

6.9
5.2
2.8
2.7
4.0

TABLE II. Landau parameters I;„/k&Tg and r„/k~1 and
peak widths and intensities for amorphous cobalt (Ref. 3) as a
function of n. All quantities are measured in units such that
v=1.
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[IC„A,0 &(q„)+r„]
IC„I —,

'
[d2A, o;(q)/dq ] Iq&n

1/2

(3.36a)

+ I os k~T
™m n

([IC Ao ~(q )+r ]K„I—,
' [d Lo ~(q)/dq ]Iq )'~ (3.36b)

The values of 8'„and I„aretabulated in Table II. Ex-
amining this table we observe a uniform trend in increas-
ing peak width as we move to higher n. The peak intensi-
ty decreases with n for the first four peaks. The increase
in peak intensity with the n =32 peak is probably not real
as the fitting parameters for the n =30 and 32 peaks are
not reliable.

We have also performed a fit to experiments of Lauriat
on vapor-deposited amorphous iron. Figure 8(b) shows a
comparison between the experimental data and the best
theoretical fit. The ratio of the peak positions are a direct
consequence of theory and a glance at Table III shows
that the agreement between theory and experiment is
good. Table III also contains data obtain. ed from comput-
er simulations of supercooled Lennard-Jones liquid. This
data serves as a direct check of the applicability of the
theory to bulk systems.

Thus far all of the metallic glasses which have been
made in the bulk by spin-cooling the melt have two or
more components. Such substances can be incorporated
into the theory above in the limit when most of the metal-
lic glass is made up of one component. The effect of the
other components can be represented by an additional
luctuating impurity concentration c(r). The c(r) will

tend to destroy the local icosahedral ordering and we
therefore expect it to broaden the peaks in the structure
factor. The simplest way in which c(r) can couple to the
order parameter is via the replacement

1 cF F+ J d r gy„cI Q„I
+— cb, , (3.37a)—

2 X

where 5 is the concentration susceptibility, the y„are
coupling constants, and 6 is an impurity chemical poten-
tial. y„and 6 must both be positive if an excess impurity
concentration destroys the local icosahedral ordering. The
impurity concentration can also change the local value of
a, but this effect will be small if the system is mostly one
component. It is straightforward to integrate out the im-
purity concentration in expression (3.36). Its only effect
on the Q„to lowest order in y„is to replace

&n~&n+ 2Xn~&- (3.37b)
This replacement simply leads to a broadening of the
peaks in the structure factor without significantly chang-
ing their positions. This seems to be what is observed ex-
perimentally. '

D. Effect of nonlinearities

We have argued that a Gaussian truncation of the free
energy is a plausible first approximation to describing
icosahedral ordering in supercooled liquids. In this sec-
tion we shall attempt to estimate the effect of nonlineari-
ties. In particular, we shall be interested in how the
third-order terms in the free energy shift the positions of
the peaks q&2, q2O, and qz„ in the structure factor. We
shall try to understand, in particular, the small discrepan-
cy between theory and experiment in the n =24 peak (see
Table III). We shall focus on the data tabulated in Ref. 3
[see Fig. 8(a)].

Following Ref. 17, we deduce the form of the third-
order term by simply writing down the most general
terms consistent with the symmetries of polytope I 3,3,5I,

F= 2K[&m I(di & &Lop)Q'n
I

+ra
I Qn I

]+ g u. , n Q ',
, Q —Q—

n 7l ),7l2, lf3

m&, m2, m3

%),Pf2, PT73

71) n2 n3 n $ 712 7l3

(3.38)

m2 m3 . ,En' mz m3

Theory
Amorphous Amorphous

cobalt' ironb
Computer

simulations'

q2O~q12

q24~q12

1.71
2.04

1.69
1.97

1.72
1.99

1.7
2.0

'Reference 3.
"Reference 4.
'Reference 5.

TABLE III. Relative peak positions in ihe structure factor. where the parentheses on the right-hand side denote the
usual Wigner 3-j symbols of SU(2). Notice that we have
introduced a large number of unknowns w„„„asthe1l ]7l2ll3

coefficients of the third-order terms. This shall not prove
to be a disadvantage because we shall argue that the effect
of the nonlinearities on the structure factor at a given q is
dominated by a single third-order term. We shall examine
the variation of this term for wave vectors near the peak
position. In this way we shall be able to estimate the rela-
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tive size of the shifts of the peak positions and find that
the n =24 peak is moved closer to the experimentally ob-
served position, with much smaller shifts in the n = 12
and 20 peaks.

The gist of the argument is as follows. The dominant
contribution of the third-order terms can be represented
by the bubble graph of Fig. 9. There are three factors
which determine the magnitude of a graph: (1) the vertex
coefficients, which are slowly varying functions of q; (2)
the magnitude of the propagators, which tells us to con-
centrate upon modes with M =0, l'=1, and q near q~2,
(3) the phase-space factor. It is the phase-space factor
which gives the most rapid variation in the self-energy.
In particular, it gives a sharp maximum in self-energy
near 2q&2, pulling the position of the n =24 peak towards
2q&2

FIG. 9. Lowest-order bubble graph for the self-energy.

We begin by writing the free-energy density (3.38) in
terms of variables which diagonalize the quadratic form:
aM;(q). In these variables the free energy is a sum in
Fourier space of terms Fz, where

ni n2 n3

M2 M3
~M', , ;,(qi)~~, „(q2)~M,„(q).

n, n2n3

v V
+q =

2 g Ã.~~, ;(q)+&.11&~, (q)
I

'
(3.39)

n, M, i

92 93
q1 q2 q3

(q1+q2+q=O) Qi
n1 n2 n3

M1,M2, M3
I

l 1)l2) l3

We have introduced a coupling coefficient which has the following expansion in terms of the 3-j symbols, the D ma-
trices, and the normalized eigenvectors of the quadratic form

n~ n2 n3

M) M2 M3

l3

Qi 92 93

n( n2 n3 n) n2 n3
D '', (R ')e ',', (qi)D ', ' (R )mi m2 m3 m~ m2 m3 1m1 1 nlmlm 1 m 1m1 ~1

It satisfies the equality

m2m2 -&2 (3.40)

n) n2 n3

M) M2 M3

l3

Qi 92 Q3

n] . n2 n3

+Mi +MP +M3
1 ™2™3~

l3

—g) —
Qg —Q3

(3.41)

We shall focus our attention upon the form of the a-a Green's function:

(3.42)

Oi2
G.,o,;.,o,(q) .

m

The structure factor can be expressed as a sum over these Green's functions:
1/2

(n&+1)(nz+1) „,+,, o(,s(q) =
4m.

)))
(3.43)

The effect of the nonlinearities can be expressed in a ma-
trix self-energy X(q) which changes the Green's functions
in the manner

G '(q)=Go '(q) —X(q) . (3.44)

The bare Green s function Go is a diagonal matrix with

its matrix elements being the eigenvalues of the quadratic
form.

We now argue that the largest term in the self-energy at
any wave vector q to second order in the w's is given by
the graph shown in Fig. 9. The propagators in the graph
lie at a wave vector within the first peak of the structure
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factor. If a propagator belongs to the mode I n, M,i I, it
contributes to the graph a factor which is k&T times the
reciprocal of K„A,M;(q)+r„. This factor will clearly be
large for the modes dominating the maximum in S(q).
These modes belong to M =0, i = 1 and lie at a wave vec-
tor near q„corresponding to the minimum eigenvalue of
the gradient term for the representation n. It is this same
minimum eigenvalue which gave rise to peaks in the
structure factor. It is clear therefore that as a first ap-
proximation we need only consider the effect of modes
with M=0 and i =1 at wave vectors near the minimum
eigenvalue. The size of the propagators for these modes
will be roughly proportional to the size of the peak in the
structure factor for the corresponding n.

From the argument above and Eqs. (3.43) and (3.44), it
follows that the position of the peak belonging to the rep-
resentation n will be sensitive to the magnitude of
X„p~.„p&(q). A positive value of X„p~.„p~(q) will increase
the height of the structure factor at that q. It is therefore
necessary only to examine the behavior of X„p&.„p&(q)for
q's which are near q„.The maximum of X„p~.„p~(q)will
give the position at which the peak in the structure factor
would lie if it was solely determined by the third-order
term. We expect the peak in the structure factor belong-
ing to the representation n to lie somewhere between the
minimum in Ap ~ and the maximum in X„p&.„p&(q). The
exact position will be determined by the magnitude of
~n, &2, &2

We now estimate the position of the maximum of
X+p& p~(q) by evaluating the graph in Fig. 9 with the
propagators lying at q~2. As the n =12 peak in the struc-
ture factor is sharp this should give a reasonable estimate
of the position of the maximum of X„p~.„p~(q). The phase
space remaining after so constraining the propagators is a
circle of radius [q~2 —(q/2) ]'~ . Therefore we can ob-
tain a good estimate of the position of the maximum of
X„p&.„p&(q)by looking at the variation of

n 12 12

0.0020—

0.0016—

0.0012—

0.0008—

0.0004—

HO( E' G)

10.20 10,38 10.56 10.74 10.-92 11.10 11.28 1146 Il,64 11.82 12.0

q/K

0.0020—

0.0016—

0.0012—

z»(q)

0.0008—

0.0004—

qHO qE qG

0 I I I I I
I I I I I I I

18.20 18.38 18.56 18.74 18.92 19.10 19.28 19.46 19.64 19.82 20.0

(b) q/m

0.0020-

0 0 0
~q» —(«)'1'" ~ (3.45) 0.0016—

q qi2 qi2

Figures 10(a), 10(b), and 10(c) show A„(q) plotted for
n =12, n =20, and n =24, respectively. The ranges for
the wave vector q are chosen to lie in a small interval
around the respective q„'s. From Fig. 10(a) we note that
the position of the maximum of A&2(q) occurs very close
to the experimental value. A~2(q) also varies rather slowly
across the peak. We therefore do not expect the cubic
terms to have any significant effect on the n =12 peak.
Figure 10(b) shows that A2p(q) is also a slowly varying
function of q. The experimental peak lies in between the
quadratic prediction for the peak in the structure factor
and the maximum in Aqp(q). This fact is consistent with
the discussion above, indicating that nonlinearities could
introduce a 1% shift in the position of q&2. From Fig.
10(c) we note that the vanishing of the phase space for the
graph for A24(q) at q=2q&2 forces A24(q) to decrease to
zero at 2q&2 with a square-root cusp. This rapid variation

0.0012

0.0008

0.0004

qHo qE

0 I I I I I I I I I
I I I I

21.20 21.38 21.56 21.74 21.92 22.10 22.28 22.46 22,64 22,82 23.0
q/K

FIG. 10. These figures show plots of A„(q)for n =12, 20,
and 24. The line at qE marks the position of the peak in the ex-
perimental structure factor, that at qG marks the theoretical
prediction in the quadratic approximation and that at qHQ

marks the position at which the effect of the cubic terms is at a
maximum.
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=0.46—0.40

=0.06 . (3.46)

in the self-energy should have a pronounced effect upon

q24. The experimental position again lies in between the
quadratic prediction for the peak in the structure factor
and the maximum in Az4(q). We have thus exhibited a
mechanism by which it is possible to have a negligible
shift in the peak position for n = 12 and a much larger ef-
fect upon the n =24 peak than the n =20 peak.

We now make an order-of-magnitude estimate of the
values of Xz401.z401(q) and w241z 1z necessary to produce
the necessary shift in the n =24 peak. The self-energy
will shift the position of the maximum in the structure
factor from the Gaussian prediction qG

——q24 to the exper-
imental position qE if the magnitude of X24 0 1.z4 0 1(qE) is
approximately

24, 0, 1;24,0, 1(qE) [+24&0,1(qE)+1' ] [K24A0 1(qG)+P ]
24

The parameter w241z 1z is a dimensionful parameter, so
we need suitable units to judge its magnitude. A natural
unit of length in this problem is ~ '. In units where K„
and r„aredimensionless, w241z 12 has units of a . In
all our subsequent discussion, the value of w24 1z 1z will be
expressed in these units. A simple way to implement
these units is to perform all q-space integrals in units of a.

To make an estimate of the value of X24 0 1.z4 0 1(qE ) we
need to perform the integral in q space of the graph in
Fig. 9. We make a crude approximation by assuming that
the integrand is significant only in a tube of radius

[q1z —(q/2) ]' with a cross-sectional area given by the
square of the width of the first peak in the structure fac-
tor. This cutoff in cross-sectional area arises from the
fact that the propagators in the graph are large only when
they carry a momentum near q12. In units of 1r the width
of this peak is approximately 3. So a rough estimate of
the value of X24, 0, 1;24,0, 1(qE) 1s

2 1 1 2
X24,0, 1;24,0, 1(qE) ( 24, 12, 12) 1rA24(qE) , (3)

[+12~0,1(q 12 ) +"12]

24, 12, 12 (0 075 )
2 (3.47)

Comparing this with Eq. (3.46) we see that the value of
~24 ~2 ~2 must be approximately 0.8 to shift the peak to
the experimental position. This value of w24, 2,2 is of the
same order of magnitude as the IC„'sand the r„'s How-.

ever, when a value of 10241z 1z in this range is coupled
with the q-space integrals and the Clebsch-Gordan coeffi-
cients, under conditions in which these factors are largest,
it yields a value of the self-energy correction to G
which is only 10% of the value of G0 '. [See Eq. (3.46).]
As we have argued earlier, a self-energy correction of this
magnitude has a pronounced effect upon the position of
the n =24 peak and is ineffective in shifting the position
of the n =20 and n = 12 peaks.

Examining the effect of bubble graphs with the inter-
mediate propagators lying at other q„,we find no other
vanishings of phase space near the first three peaks, im-

plying that these graphs should not have a significant ef-
- fect upon the peak positions. Furthermore, the overall

magnitude of these graphs is smaller at least by a, factor
of 2 from the magnitude of the graphs in which both the
propagators lie near q1z. This is because the size of the
n = 12 peak in the structure factor is at least a factor of 2
greater than the other peaks.

We have now shown that a Gaussian truncation of the
free energy yields a self-consistent fit to the experimental
data. The self-energy corrections to G ' are at the most
10% of the value of G0 '. A self-energy correction of this
magnitude has a pronounced effect upon the n =24 peak
simply because of the accident that qz4-2q12. The effect
of the self-energy upon t11e n =12 and n =20 peaks is
much smaller.
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APPENDIX A: THE FRANK-KASPER ALLOYS

In this appendix we will compare the short-range order
in the Frank-Kasper alloys to the ordering in metallic
glasses. The strong local icosahedral ordering in these al-

loys is broken up into a regular array of disclination lines.
This is in contrast to metallic glasses where the degree of
icosahedral ordering is smaller and the network of dis-
clination lines is disordered. It is nevertheless instructive
to compare the structure factor of a metallic glass and a
Frank-Kasper phase with a very large unit cell, e.g.,
Mg32( Al, Zn)49 This particular Frank-Kasper phase' has
a bcc lattice with a unit cell of 81 atoms. Within each
unit cell this alloy starts out with three shells totaling 45
atoms placed in a way so that their mutual coordination is
exactly the same as in polytope [3,3,5I. The remaining
36 atoms are placed in the outermost shell to make a
structure with the shape of a bcc unit cell. To make a
comparison between the structure factor of Mg3z(A1, Zn)49
and a metallic glass, it is important to factor out the part
of the structure factor which arises from the long-range
bcc ordering in the crystal. This may be done most sim-
ply by calculating a spherical average of the form factor
of a unit cell E(q). We assume, for simplicity, that all
atoms are identical, 5-function scatterers, and obtain

(Al)

It is a pleasure to acknowledge useful conversations
with E. Chason, B. I. Halperin, F. Spaepen, J. P. Straley,

The sum over i and j extends over all 81 atoms in the unit
cell. The coordinates of the particles in a unit cell were
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F= —,K(B;n, «;,k~k)' . — (A2)

This is simply the second term of the free-energy density
(B13) written in the I = 1 representation. An important

l

determined by allowing the system to relax in a nearest-
neighbor jLennard-Jones pair potential. The initial coordi-
nates were chosen to be consistent with the symmetries
and coordination numbers of Mg32(A1, Zn)49. Figure 1 1

shows a comparison between the structure factor of amor-
phous cobalt films and the spherically averaged form fac-
tor of the Mg32(Al, Zn)49 structure. The value of ~ for the
form factor was chosen to make the first peaks coincide.
Two points should be noted: (1) the peaks of the
Mg32(AI, Zn)49 structure are broader than those of the me-
tallic glass, presumably due to the constraints of bcc sym-
metry upon the third shell of atoms in the unit cell; (2) the
gross structure of the first three peaks is similar in the
two systems.

It is important, however, not to lose sight of the fact
that the Frank-Kasper crystals are described by a low-
temperature approach to icosahedral packing while metal-
lic glasses are high-temperature realizations. We now ex-
amine whether the low-temperature fixed-length analysis
of Appendix 8 can be related to the structure of the
Frank-Kasper phases. There, we show that the two SU(2)
groups present in the SO(4) symmetry of S decouple in
the fixed-length limit. The gradient term in the SU(2)
free-energy density (813) predicts a "twist" in the order
parameter in all directions. Stated differently, in moving
between two neighboring points, the order parameter
tends to rotate about an axis joining the two points. This
is very reminiscent of what happens in cholesteric liquid
crystals. There the reference order parameter is a nearly
uniaxial director which, because of an intrinsic chirality,
tends to rotate between neighboring points. The one-
Frank-constant approximation for the free-energy density
of the cholesteric liquid crystal is

difference is that the trace is over a uniaxial director
which is not equivalent to an isotropic average. This pro-
pensity for inducing twists in all directions is the reason
for the existence of the "blue" phases. The blue phases
are ordered networks of disclination lines. The defect-free

. regions tend to have a uniaxial director twisting in all
directions.

In the case of interest the twists in the two SU(2) order
parameters combine, as expected, to roll polytope I3,3,5I
between neighboring points. If polytope I3,3,5I is rolled
along any equator, the icosahedra centered at two neigh-
boring points are found to be twisted relative to each oth-
er by an angle of m/5. To complete the picture of the
Frank-Kasper phase it would be satisfying to identify this
twist in the crystalline Frank-Kasper structures. In their
analysis, Frank and Kasper' noted that the requirement
of icosahedral coordination among atoms leads inevitably
to approximately planar layers of atoms. A basic struc-
ture which appeared naturally when one tried to make a
"primary" layer of defect-free atoms was the Kagome net
(see Fig. 12). All the Frank-Kasper phases with trigonal
symmetry —the Laves phase (MgZnq, MgCu2, MgNi2,
CaZnz), the p, phase Fe7W;, and a host of other hypotheti-
cal structures proposed by Frank and Kasper —are made
up of layers of Kagome nets alternating with layers of de-
fect sites. By introducing "sequence faults" in the Ka-
gome nets one can also obtain structures consistent with
cubic symmetry: the cr phase, P-uranium, and CuA12 are
examples of such structures. A Kagome net with "se-
quence faults" as occurring in the o. phase is shown in
Fig. 13. Every atom on the Kagome nets is at the center
of an icosahedron. The atoms lie along straight lines ex-
tending in three different directions. A remarkable prop-
erty of these straight lines of atoms is that the icosahedra
centered on them rotate from one atom to the next by an

S(q) ll

. ll

l
I

I
l

i l

l I

————Metallic Glass
Unit Cell of
Mg (Ah, Zn)

20 50 40 50
q/K

FIG. 11. Comparison between S(q) of a metallic glass and of
the Frank-Kasper phase Mg32(A1, Zn)49. The scale of the S(q)
of Mg32{AI, Zn)49 has been adjusted to make the first peaks coin-
cide. FIG. 12. A Kagome net of atoms.
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In a region of strong icosahedral ordering, the n =12
order parameter Q&2 takes on the following value for
a particular orientation of the coordinate axes

icoso hedro l

sites
disc lino tion

lines 0 0 0
Q12,m mg Q6, m Q6, mbq

where

Q', = -,' (O, —v 7,O, O, O, O, v 11,O, O, O, O, v 7,O)

(8 la)

(8 lb)

FIG. 13. A Kagome net with sequence faults as in the cr

phase.

angle of n./5. This is remarkably similar to the twist
along any equator of polytope I 3,3,5 I.

APPENDIX B: FIXED-LENGTH I IMIT

In this appendix we will present a synopsis of a low-
temperature, fixed-length approach towards understand-
ing the physics predicted by the free-energy density (1.3).
By fixed length we mean that amplitude fluctuations are
neglected except at the cores of defects, and the dominant
fluctuations are simply rotations of a reference
icosahedral order parameter. Such an approach will pro-
vide a good description of the order parameter at low tem-
peratures in a configuration in which the cores of the de-
fects are well separated. Because the defect density in the
Frank-Kasper phases is large and the defect cores almost
overlap, the fixed-length approach may be of limited use.
Here, we (1) write down the form of the free energy after
eliminating all degrees of freedom except for rotations of
the icosahedral order parameter and an overall magnitude
fluctuation near the cores of the defects: in this limit,
theory is related to the continuum elastic approach of
Sethna (2) we use the homomorphism between SO(4)
and SU(2)C3ISU(2) to simplify considerably the form of
the free-energy density; and (3) we evaluate the energy of
a low-density configuration of parallel disclination lines.
A Frank-Kasper phase has disclination lines running in
several directions. Evaluation of the energy in such a sit-
uation is difficult even in the fixed-length limit. We will
concentrate in this appendix Upon the physics of
icosahedral ordering in three dimensions. It is straight-
forward to extend the analysis of this appendix to analyze
the low-temperature limit in the two-dimensional system
with pentagonal ordering.

and q is a real number representing the magnitude of the
order parameter. We will assume therefore that the order
parameter only takes on values which are rotations of
Q tz m m . For simplicity we will concentrate on the

ma mb

n =12 representation, but as we shall show later, the re-
sults will be independent of the representation chosen.
The amplitude q will be constant at most places but will

go to zero at the cores of the defects.
We parametrize the order parameter as

Q, 2 (r )=D —(r)Q, 2 (r)D (r), (82)

where D and D are independent Wigner matrices be-

longing to the 1=6 representation of SU(2). D" and D
together generate all possible rotations of SO(4). An im-
portant property of Q6 is that

Q6 L„Q6—— Tr(L„)=0,(»+1)

Q6 L L„Q6—— Tr(L„L )=—,1(l+1)5p„
(2l +1)

(83)

with / =6. Here L+ is a matrix generator of SU(2) in the
I =6 representation. The above property indicates that
averages over Q&2 m m are the same as averages over an0

isotropic state. This property can be shown to hold to up
to products of four generators of SU(2).

We will now insert the ansatz (82) into the free-energy
density (1.3). An important property of the D matrices is
that the expressions D 'd&D and D 'L&D belong to the
Lie algebra SU(2). But we noted in (83) that averages
over the reference icosahedral parameter were equivalent
to traces. So we may replace the Q &z

's in the expres-

sion above by traces. We also note the properties

TrD 'BpD =0, TrD L,pD =0 (84)

because all the elements of the Lie algebra SU(2) are trace-
less. Using these properties, the free-energy density asso-
ciated with Eq. (1.3) becomes

K„Tr[(Bpq)—(D" BqD i'" A„D—") (D ' d„D i—~D~ ' B„D ) —]+r„q2 n+1 (85)

with n =12. Two remarkable properties of the expression above should be noted. (1) We have used the homomorphism
between SO(4) and SU(2)SU(2) to show that the two SU(2) groups decouple in the fixed-length limit. After a simple
unitary transformation, the free energy of the two groups in Eq. (89) is the same up to an unimportant change in sign of
sc. Therefore from now on we will drop the second group from all our expressions, assuming that it has been treated in a
manner similar to the first group. (2) The expressions D 'd„Dand D 'L„Ddepend only upon the properties of the
SU(2) algebra and are independent of the representation of the D matrices and the Lz. Expression (85) is manifestly
dependent only upon the commutation relations of SU(2). We use this independence upon representation, to work in the
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simplest possible representation of SU(2): the /= —, representation in which the D matrices are 2&&2 unitary matrices.
Also note from (84) that the trace over two or fewer matrices of SU(2) is independent of representation up to a change of
scale. Let k denote a 2&&2 unitary matrix. Then the free-energy density becomes

2

F= ,
' IC„—(B„q)— q Tr 4 tB„+— k to„+ 2+ 2rnq (86)

where the o„arethe Pauli matrices. This free-energy density is almost identical to the continuum elastic model of Seth-
na. ' Sethna uses the vector representation of SO(4) and does not decompose SO(4) into its component SU(2) groups.

Similar operations may be performed in two dimensions. Instead of the group SO(4) we now have to deal with a single
SU(2) group. The free-energy density in this case becomes

L,,=-z; (a q)—21(l + 1) 2 t iK
2 l q Tr k 3 4 — e"4' o. +l 2 IJ J + 2rIq

2 (87)

The sum over i and j extends over x and y and 2 is again
a 2 && 2 unitary matrix.

We are looking for configurations which are local mini-
ma of the free energy to describe the system around a de-
fect line. It can be shown that

CT2-4'( x,y) =exp i —4&(x,y)
2

(88)

where

@(x,y) =pa;tan
X X

(89)

(810)

The temperature-like variable t is the frustration-
corrected mass and is given by

—t =r„+K„v2n(n+2)
4

(811)

The magnitude q will be constant over most of space ex-
cept near the defect cores. The length scale over which q
will decrease from its constant value to 0 at the defect
core is g. After inserting the ansatz (88) into the free-
energy density and performing standard manipulations,
the defects are found to have an interaction energy I'D
given by

is a local minimum of the free energy (86). This particu-
lar choice of N represents disclination lines with "charge"
a; running in the z direction. The charge of a —72 dis-
clination line is —, . Note that in this representation we
can obtain configurations for both dislocations and dis-
clinations. Disclinations and dislocations have a charge
with opposite sign in the second SU(2) group. ' With
these expressions we can evaluate the energy of the defect
interactions and cores. We define the correlation length g
by

APPENDIX C: ICOSAHEDRAL
SPHERICAL HARMONICS

Table IV shows the character table for the sixty-element
icosahedral point group F. This character table can be
used to determine the allowed values of I in an expansion
of a particle density p(u) defined on S in spherical har-
monics,

p(u)= g g Qi Y~ (u) .
I =0m = —j

(Cl)

Although these results are familiar to many investigators,
we present the derivation here for completeness.

The set of spherical harmonics for a given I form a
(2 l + 1)-dimensional irreducible representation of the
group of proper rotations, SO(3). These basis functions,
in general, lead to a reducible representation of the
icosahedral point group. The number of times, az, a par-
ticular icosahedral irreducible representation, R, will

occur is given by

a~ (l) = +) g Xg (g)Xi(g) .
g

(gG Y)

(C2)

TABLE IV. Character table for the icosahedral point group.

There is, however, no term in the defect-free energy
which couples the defect density to the source of frustra-
tion. This is a consequence of the fact that we have
chosen to examine parallel defect lines. This is in contrast
to what happens in the case of a superconductor in a mag-
netic field. In this case there is a term which directly cou-
ples the magnetic field to the vortex density even when all
the vortex cores run in the same direction. The incom-
mensurate curvature in the present theory prefers instead
a bundle of disclination lines running in all directions to
relieve the frustration locally.

r —r.
FD ~g a;alln (812)

cc (813)

With each defect core there is a loss in condensation ener-

gy of the amount (this is the E, )

Fi
F
G
H

1
' 3

3
4
5

12@5 12%g

—1

0

20%3 15@,

I
—1
—1

0
1
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sin[(l+ —,
' )8)

Xt(n, 8)=
sin( —,

' 8)
(C3)

The rotation angles for the various classes of Y are 8=0
(Ko), 8=2m/5 (K&), 8=4+/5 (Ã5), 8=2+/3 (Ã3), and
8=m /2 ( K2).

Here, Xit(g) are the characters of the group element g in
the representation R (see Table IV), and Xt(g) are the cor-
responding characters in the reducible representation gen-
erated by I Yt (8,$), m= —l, . . . , lI. If we represent a
group element g H Y by an axis n and an angle of rotation
8, g:(n—, 8), we have

The general formula for a particular Fourier coefficient
in the expansion (C 1) is

gt~ = dQ- Yt* (u)p(u),m 4 ~ m (C4)

where the integration is over solid angles on S . Suppose
p(u) represents some distribution of points on S with an
icosahedral symmetry. Expanding Y~~(u) in the basis
functions appropriate to the irreducible representations of
Y, it is straightforward to show that Qt~ can only be
nonzero if the unit representation A occurs at least once
in this expansion. Using Eqs. (C2) and (C3), we have

sin[(l+ —,
' )(2'/5)] sin[(l + —,

' )(4m./5)] sin[(I + —,
' )(2~/3)] sin[(1+ —,

'
)(m./2)]

sin(2m/5) sin(4m/5) sin(2m. /3) sin(vr/2)

(C5)

Evaluating this formula for different I, we find that az(l)
is only nonzero for I =0, 6, 10, 12, 15, 16, 18, 20, 22, 24,
26, 28, 30, and for all I& 30. As discussed in Ref. 17, the

lowed values of n in an expansion of a density with the
symmetry of I3,3,5I in hyperspherica/ harmonics are ex-.
actly twice these I values.
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