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Computer renormalization-group calculation for the fractiona11y quantized Ha11 effect
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Results of a computer renormalization-group calculation for electrons in a magnetic field are
presented for clusters with up to 16 electrons for the —,-filled case for the first time. The structure

factor is computed. We found a "Bragg-like" peak at a finite wave vector. The height of this peak
increases as the system size is increased. This behavior is different from that of the Laughlin fluid
but is much closer to that of a quasisolid.

Wigner first pointed out that electrons may form a
crystal if the density n of electrons is low enough. A
magnetic field will quench out the kinetic energy and
hence make the Wigner solid experimentally more accessi-
ble. Recent experiments' discovered two new phenomena,
the integral-quantized and the fractionally quantized Hall
effects (FQHE). In the FQHE, the system is particularly
stable when the Landau levels are filled to a specific ratio
v, where v is a rational number with an odd integer as
denominator.

To explain this, Laughlin proposed that the electrons
form a fluid. He wrote a trial wave function which pro-
vided a good estimate of both the ground-state energy as
well as the magnitude of the gap. The small-distance
behavior of this wave function agrees with recent work
based on the direct diagonalization of the Hamiltonian of
small clusters. Recently Chui, Ma, and Hakim (CMH)
proposed a trial quasisolid wave function which has a
lower energy than that of Laughlin. The probability den-
sity of this wave function looks like the partition function
of a two-dimensional (2D) solid at a finite temperature. It
only possesses "algebraic" long-range translational order.
The phonons of this wave function exhibit a gap of the
same magnitude (0.076) as that of Laughlin. Because the
ground state does not have true translational long-range
order, Goldstone's theorem is not violated. Whereas the
small-distance behavior of these two wave functions is
very similar, the large-distance behavior is not. Limited
by the large number of basis states, the cluster calcula-
tions have been carried out on relatively small samples
(less than six and eight particles for periodic and spherical
boundary conditions, respectively) and they cannot distin-
guish between the above two possibilities unambiguously.

In this Rapid Communication we report a computer
renormaliz ation-group (CRG) calculation for clusters
with up to 16 electrons in a square with periodic boundary
conditions for the —,-filled case for the first time. We find
that the static structure factor S(q) possesses a peak; the
magnitude of this peak increases as the size of the sample
is increased. In Fig. 1 we plot S(q„,qs =0) as a function
of q„ for samples with 4 and 16 particles. The magnitude
of the peak changes from around 1.17 for 4 particles to
1.9 for 16 particles. Furthermore, the peak sharpens con-
siderably. For the Laughlin fluid, the pair correlation
function g(r) rises from 0 to 1 at the first neighbor and
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FIG. 1. The structure factor S{q) for q~=0 as a function of
q„ for 16 ( ) and 4 (6) particles. The unit of q„ is V'n/6/1.
Straight lines are drawn through the points to guide the eye.
S(q) for the Laughlin fluid is also shown (0). Here S(q) is de-

fined to be (p~p ~), where ps= g e J/V'N.

exhibits very little oscillation afterwards. If this picture is
correct, S(q) should not exhibit a peak ( Fig. 1). Our cal-
culation is not exact but the approximations are controlled
and very good. This comes about because there is a hid-
den small parameter in the problem which we exploited.

A hint of the structure in S(q) had been previously
seen in the 2D pair correlation function calculated by
Yoshioka for the six-particle sample. He found that g (r)
exhibited an oscillation after the first neighbor. However,
it is difficult to rule that oscillation out as a size effect for
that case.

The CRG technique was first applied by Wilson to the
Kondo problem. Its applications to one-dimensional
problems have been discussed by several authors. The
only detailed calculations with this technique in 1D have
been carried out by us. This technique was first applied
to the 1D Hubbard model. Recently we have applied it to
1D spin chains in a magnetic field. For the present prob-
lem, in the Landau gauge the basis set can be written as
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product wave functions of Landau orbitals in the lowest
Landau level. These orbitals are given by

PJ(r) =exp[ix~y/I —(x —xj ) /2I ]/(~'~ /L)'

xj=(L/X, )j,
where L is the width in the y direction and N, is the total
number of possible states. The Hamiltonian in second-
quantized form can be written, except for trivial con-
stants, as

(2)

The 3's are integrals of the Coulomb potential and the
Landau orbitals p~. Since the label j is "one dimension-
al," the present problem also,becomes a 1D problem ex-
cept that we now have much longer range interactions.

In the CRG technique, one focuses on the low-lying
eigenstates of larger systems by building it from those of
smaller clusters iteratively. The Hamiltonian H2„of a
system with 2n particles is broken down as that of clus-
ters on the left and right and an interaction between these
clusters, viz. , Hz„——H„~+H„„+HI. In any given step, the
eigenfunctions of H2„are those of H„perturbed by Ht.
The eigenfunctions of H„have n '~ of their weight at
the ends of the chain, and so if we renormalize H2„ in
terms of the eigenfunctions of H„( H„„and H„~ ), the
off-diagonal matrix elements will be of the order of 1/n
Since the number of eigenstates of H„goes as 8", only a
limited number may be retained at each iteration after
84. High-lying states of the smaller clusters are sys-
tematically discarded, because they are not as strongly
coupled to the low-lying states, thereby making the calcu-
lation possible. To obtain reliable results, a large number
of states needs to be kept. To retain this large number of
states requires careful programming for memory manage-
ment and efficiency. There have been other calculations
that retain a much smaller number (about ten) of states
per iteration. These are much easier to program but it is
much more difficult to predict the reliability of the results
of these calculations.

A dimensionless measure of the coupling between the
states discarded and the low-lying states is the ratio of the
off-diagonal matrix elements between the clusters to the
separation between the energy levels. In the Kondo prob-
lem and the Hubbard model in the non-half-filled-band.
case, the separation between the energy levels also goes
down as the system size is increased. This is not so in the
present problem because of the existence of the energy
gap. In this sense the present problem is easier. ' The
complication in the present problem comes from the large
number of intercluster interactions that need to be calcu-
lated. To simplify matters on the first try, we have ap-
proximated the Hamiltonian by truncating the long-
distance interaction. In our calculation for 16 particles
only 106 kinds of intercluster coupling are kept. We shall
come back to this point later.

We now discuss the details of our calculation. The
eigenstates of the system are characterized by two quan-
tum numbers, the total y momentum j and the total
charge n By trial and e. rror, we have found that adequate

maximum fluctuations for j and n to be 14 and 4, respec-
tively. At each stage of the iteration, a maximum of 51
combinations of j, n can be kept. For each such j, n mani-
fold, a maximum of 300 basis states can be kept. Our cal-
culation is performed for periodic boundary conditions.
It is basically done for a strip, whose width in the y direc-
tion is decided at the beginning. This fixes the allowed
values of xJ [ Eq. (1) ] and the form of the Hamiltonian in
the Landau gauge. The ends of this strip are allowed to
interact at the final stage of the iteration. We have per-
formed two checks to ensure that our program is correct.
For the 12-site four-electron problem, no states are dis-
carded and our calculation is "exact." First we have veri-
fied the threefold degeneracy of the ground state. Second,
we have compared our result with that from the straight-
forward diagonalization of the Hamiltonian; identical re-
sults are found. Our calculation takes 20 minutes of cen-
tral processing unit time on an IBM 30810 computer at
the University of Delaware. In our calculation, we found
that for a cluster with 2" electrons, a lot of the intercluster
coupling matrix elements are zero. Of those matrix ele-
ments that are larger than 0.001/2", in absolute magni-
tude, their average magnitude is 0.007/2 . The energy
difference between the ground state and the lowest state
that we discarded is larger than 1.4/2". The dimensionless
coupling parameter between states that we discarded and
the ground state is thus of the order of 0.005, a small num-
ber indeed. Hence our approximation of discarding the
high-lying states is good.

Our second approximation consists of truncating part
of the Hamiltonian. We rewrite Eq. (1) in a different
form to bring out the similarity to the Hubbard model as

H = g V(m)nj. n~+
m, j
+ g g tt™QC;tC;C;+ C;+~+I+c.c.

1=1m =1 l

(3)

The t's are the hopping integrals. We found that tz(m) is
of the order of t&(m)/3 because of the smaller overlap of
the Landau orbitals in the former case. In our calculation
we have only kept t~(m) and tz(1). The n; is the number
operator at site i We have sh.ifted the values of V(m) so
that they approach zero at large m. We have discarded
the large-distance V(m) and t&(m) when their magnitude
is less than 0.1 of that at the maximum. The V(m) and
the t~(m) that we retained are shown in Fig. 2. Note that
V(m) attains a maximum and then comes down as one
approaches the origin. This comes from the exchange.
More precisely,

V(m) =2[~ (j23 =0 j~3 =m) —~ (jz3 =rn j 13 0)],
where j,b =j,—jb,' the first (second) term is the direct (ex-
change) contribution. At small distances m, these two
terms are comparable in magnitude; the net value of V is
reduced. As m increases, the exchange contribution dies
off exponentially fast and only the first term remains. It
is this behavior of V that accounts for the "accidental de-
generacies" of the ground state for the —,'-filled case in
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FIG. 2. The Hamiltonian parameters V(l), t(I) that we have
retained as a function of l for 16 ( and D.), and 4 (X and 0)
particles.

the four-electron calculation. At a density of —,, a uni-

form electron spacing would have placed the electrons at a
separation 1=2 where V(l) is maximum, an unstable
point. The particles can move either left or right to lower
its energy and a lot of low-lying states of comparable en-

ergies developed. These energies then spread into a band
when the hopping integral t is taken into consideration.

We do not, however, have a proof that it causes the degen-
eracy for the half-fiHed case in general.

An idea of the approximation of truncating V(l), t(1)
at large l can be obtained by looking at the magnitude of
the gap 6 and the ground state energy Eo that we found.
We found that 4=0.046,0.04, Eo ———0.41, —0.395 for
the 4, 16 particle samples. Calculations with the full
Hamiltonian for periodic boundary conditions for elec-
trons in a square performed by. Su for four, five, and six
particles gave 6=0.06, Eo ———0.4. We found that the
ground-state properties are not a sensitive function of this
truncation whereas the magnitude of the gap is, which
may be because b, is the difference of two large numbers.
For example, if tz(l) and t, (l) with l greater than 12 are
set equal to 0, S(q) and Eo change by less than 10%
whereas 6 changes from 0.04 to 0.1. We have also experi-
mented with changing the range of V(l) and have come to
the same conclusion. Similar results on the range of the
potential have been noted previously by Haldane.

To summarize, a controlled approximation for the
FQHE was exploited to calculate the physical properties
of clusters with up to 16 electrons. The gap energy agrees
with previous calculations; the static structure factor
develops a peak as the system size is increased. These re-
sults are more similar to those of the quasisolid proposed
by CMH.
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