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Patterns of relaxation in disordered materials
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We analyze several nonexponential decay laws of current interest and point out their interrelations. Ow-

ing to bounds on measurement times and, hence, on the monitored relaxation, several descriptions of the

decay are possible in which the maximum and minimum relaxation rates play a major role.

I. INTRODUCTION

In disordered systems many processes of interest, such as
electron and hole transport and recombination, energy
transfer, and hole burning, display long-time tails. ' 5 Thus
the corresponding decay forms deviate strongly from the ex-
ponential behavior characteristic for a well-defined relaxa-
tion rate. In a recent publication5 a logarithmic time depen-
dence was found to describe well the recovery dynamics of
photochemically hole-burnt systems. This decay law is quite
slow, and is, vide infra, intermediate between the more
familiar nonexponential decays, such as the stretched ex-
ponential of Kohlrausch, and Williams and Watts or the
algebraic decay forms typical for charge-recombination in
semiconductors. 8 9 It was also pointed out by Queisser that
a logarithmic decay may be very well used to analyze data
pertaining to the relaxation of photoconductance near
semiconductor interfaces, data which were formerly fitted
using a Williams-Watts form. '0 It thus becomes important
to consider the interrelations between the distinct analytical
expressions. In this work we compare the various decay
forms, and show that for slow decays the distinctions are
not clear. cut. A major role in determining the relaxation
behavior is played by the maximum and minimum decay
rates of the system considered: These rates enter very na-
turally in the analysis which uses the logarithmic expression.

II. DECAY LA%'S AND RATE DISPERSION

We start from usual forms of model decay laws, as they
appear in the study of relaxation in disordered systems.
Listing them in the order of increasingly slower decay, one
has the following: (a) the Kohlrausch6 or Williams and
Watts stretched exponential

@(t)=exp[ —(t/r) ], (0 & u & 1, t & r)
(b) the exponential-logarithmic form of Inokuti and Hiraya-
ma, and Scher, Lax, Montrol, and Blumen, " '

pointed out that it is obeyed for wide classes of materials.
Equation (1) is readily derivable by assuming a distribution
of parallel rates. 4'4 Such a situation holds in the case of
random distributions of active centers and microscopic
distance-dependent interactions R (r). From these the con-
figurationally dependent relaxation rates R~ follow, with

R»=

Qadi»(r)R

(r)

where the sum runs over available sites and g» (r) is an in-
dex function, which equals one when the site is occupied by
an active center and equals zero, otherwise. For short-
ranged interactions, obviously, the major weight in Eq. (4)
is carried by the nearest-neighbor center, say, at rNN, and
thus R» = R (rN~). One may, however, perform all aver-
ages exactly, '4'5 then for R(r) —r ' Eq. (1) follows, '6

whereas for R(r) —exp( —ar) one is lead to Eq. (2)."'2'
Furthermore, concerning form (c), Scher and Lax" have
demonstrated that over a quite large range of times Eq. (2),
with P = 3, may be approximated by decays of algebraic
form, Eq. (3). This holds then, a fortiori, for P & 3, since
for P= 1 the two forms (2) and (3) become absolutely
equivalent, with 8 = y.

A point which has to be stressed, is that Eqs. (1)—(3) are
not suitable at very short times. This fact is transparent
from their derivation, ' and is evident by inspection of Eqs.
(2) and (3). Whereas Eq. (1) is still well behaved at t =0,
Eq. (2) is not defined for t & r and Eq. (3) diverges for
t 0+. Here we encounter already the requirement of a
cutoff at short times (here incorporated in the equation as
7 ), i.e., the existence of a maximum relaxation rate R

An example in which a minimum relaxation rate R;„,also
plays a dominant role is the logarithmic relaxation pattern:

y(r) = 1 —D in(t/T)

In Ref. 5 this decay law was derived using general argu-
ments concerning the distribution P(R) of rate parameters
R per unit energy interval, as widely used in the physics of
amorphous solids 7'

p(t) =exp[ —131n~(r/r) j, (p~ 1, t & r) (2) P(R ) —R '(1 —R/R ) (6)

and (c) the algebraic decays 9 "'3

4(r) —(t/r) ~; (y & 0, r») (3)

Form (a) has been extensively discussed by Ngai, ' who

where R,„ is weakly energy dependent. The experimental
basis for the distribution of Eq. (6) are results for the
specific heats of glassy materials. ' The singularity at R
in the above distribution obtains for symmetric potentials;
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in other cases it may be absent. For R « R,„ it can be
safely neglected anyway, and thus, one has

P (R ) dR —dR/R (7)

Equation (7) simply states that R (X) —exp( —X), where
the parameter P is homogeneously distributed. Such a distri-
bution leads to Eq. (2), as stated above for A. = ar. (Anoth-
er, mathematically similar example is the model considered
by Queisser. ) Hence, with p = 1, one gets from Eq. (2)

P(t) =exp[ —8 ln(t/7)1= 1 —8 ln(t/T) (8)

D = [ln(R,„/R,„)]-t (9)

The importance of Eq. (9) resides in the fact that the
parameter D of Eq. (5), or the parameter 8 in Eq. (2) may
now be envisaged as arising from natural limits on the dis-
tribution of rates P(R). Furthermore, Eq. (8) may be
rewritten as

where the expansion holds for times such as ln( t/~)« B '. Notice, however, that because of the logarithmic
form of this condition, the range of times t for which the
approximation holds is very large for small 8 values.

Therefore Eqs. (2) and (5) can be related by setting p =1
and 8=D in Eq. (2). The relation, however, cannot hold
for exceedingly long times, since for t & t,„=—e ' 7 Eq.
(5) becomes negative. This time-domain restriction is met
by the physical requirement of a minimum relaxation rate
R;„. Setting R;„=t,'„and R,„=~ ' one can now ex-
press D as given in Ref. 5:

or y) values this range is huge: for D = 0.02 one has

x/r~, „=rm, „/r = e = 5 x 10 '

Furthermore, for such small values even Eq. (1) may be
used as an approximation to Eq. (5) (or vice versa), a fact
already noticed by Queisser. to For small n

(t/r) =exp[min(r/r)] =1+nin(r/r)
which inserted into Eq. (1) and allowing for the cutoff at r
turns it with n= 8 into Eq. (2). Since in the experiment of
Ref. 10 one has a=0.035, all forms Eqs. (1)-(5) can well
describe the experimental findings over some 12 orders of
magnitude in the time domain.

III. CONCLUSIONS

In this work we have sho~n that depending on the exper-
imental conditions and on the distribution of relaxation
rates, mathematically distinct decay forms may describe well
the same set of data. This finding is due to the fact that for
slow decays deviations inherent in the analytical forms ap-
pear well outside the time (or, equivalently, rate) regime
which is monitored experimentally. Significant deviations
show up only when the dynamical range of the decay (and
not only the time range) is large. From a heuristic point of
view, analyses of the data in terms of logarithmic lawss, i0, 20

are very informative since they can provide information on
natural bounds of the system.

@(r)= (r/r) s= 1 —B-l (n/rr) (10)
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which, by setting y = 8 in Eq. (3), allows us to express also
y via y = 8 = D in terms of the quotient R,JR „as in Eq.
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These results show that Eqs. (2), (3), and (5) are
equivalent mathematical expressions in the time range
r;„« t « t,„. Notice, however, that for small D (or 8,
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