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Estimates of the indirect band gap for coherently strained alloys of Ge,Si;_, on Si(001) are given for x
in the range 0=<x=<<0.75. The present results were obtained by combining x-ray diffraction data with
‘relevant deformation-potential constants and using the phenomenological strain Hamiltonian of Kleiner and
Roth. Uniaxial splittings of the sixfold-degenerate valence-band edge were calculated using the 6 X 6 Hamil-

tonian of Hasegawa.

It is found that the coherency strain generated by lattice mismatch dramatically

reduces the indirect gap of the alloy (which approaches the L5 gap of unstrained Ge at x = 0.6).

I. INTRODUCTION

A quantitative determination of the growth parameters
pertinent to the pseudomorphic growth of Ge,Si;_,/Si
strained layers! has resulted in the recent observation of the
modulation-doping effect,? the integration of a Ge p-i-n
photodetector on a Si substrate,> and the fabrication of a
modulation doped Ge,Si;_,/Si field-effect transistor.* The
applicability of the present system for fabrication of other
novel optoelectronic devices (e.g., ‘‘quasi-direct-gap’’ photo-
detectors and staircase-avalanche photodetectors®) rests
heavily upon a knowledge of the indirect band gap of the
coherently strained alloy and the relative alignment of the
alloy-Si band edges. The present study addresses the form-
er issue. )

Resonant Raman scattering® has demonstrated that
heteroepitaxy of commensurate Ge,Si;—, on Si results in
strained layers for which the entire lattice mismatch is ac-
commodated as a homogeneous tetragonal strain in the alloy
layers only. This fact allows for the calculation of the in-
plane lattice distortions solely in terms of the bulk-alloy lat-
tice parameters.” Further, Rutherford backscattering® tech-
niques have demonstrated that the magnitude of the tetra-
gonal distortion (er) in the alloy is described well by elasti-
city theory, which allows one to determine er in terms of
the lattice mismatch f. It is therefore straightforward to
determine the compositional dependence of the components
of the strain tensor.

These alloy-dependent components of the strain tensor
along with the relevant deformation potentials allow a com-
plete description of the motion-of-alloy band edges in terms
of the strain Hamiltonian as first introduced by Kleiner and
Roth.? The shifts of the indirect-conduction-band edges are
described within the formalism of Herring and Vogt.!%- The
indirect band gap of the strained alloy will therefore consist
of four contributions: (i) band gap of the unstrained al-
loy,”! (ii) uniform shifts of the band gap due to dilation
(i.e., hydrostatic terms), (iii) uniaxial splittings of the
indirect- (A;) conduction-band edges, and (iv) uniaxial
splittings of the degenerate valence edge at k=0. The com-
positional dependence of the strain tensor will first be con-
sidered.

II. STRAIN TENSOR FOR THE ALLOY

Commensurate growth of Ge,Sij—, strained layers on
Si(001) results in a biaxial in-plane compression of the al-
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loy and an extension normal to the plane of the Ge,Si;_,/Si
interface. This tetragonal distortion of the alloy results in a
very simple form for the strain tensor e;. If one defines
zI11[001] (i.e., along the growth direction) then e; has only
diagonal components. The assumption of a rigid Si lattice
leads to

ag— b(x)

50 <0, (1a)

O =€y =

where ao and b(x) are the Si and alloy lattice constants,’
respectively. The extension e,, of the alloy along the growth
direction is obtained from the expression )

1+v
1—v

S (1v)
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where the lattice mismatch fis defined as

b(x)—a()]

Qp

fE[ (10)

and Poisson’s ratio v varies between 0.273 for Ge and 0.280
for Si. Equations -(1a)-(1c) define the compositional
dependence of the alloy strain tensor.

III. UNIAXIAL SPLITTINGS OF THE
VALENCE-BAND EDGE

The valence-band edge of Ge and Si is threefold degen-
erate in the absence of spin and transforms as I's of the cu-
bic group 0,.!2 The inclusion of spin produces six states
which are split by the spin-orbit interaction into a fourfold
(J=3) state having symmetry I' and a twofold (J= +)
set of states having ' symmetry. At present we are in-
terested in the splittings of these states (at k=0) produced
by lattice-mismatch-induced coherency strains. As previ-
ously stated, alloys grown on Si{001) substrates experience
a tetragonal distortion, wherein the nonzero elements of the
strain tensor satisfy ex=e¢, <0, e,>0, ¢,=0, i=) For
small values of the strain, the strain Hamiltonian can be
written in (4x4) matrix form with basis operators of the
angular momentum J (J=%) to represent the interactions
“within”’ the J= % multiplet; the resulting expressions for a

strain Hamiltonian are given by Hensel and Feher.!> The
4x 4 Hamiltonians, though convenient, do not suffice for
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the present purpose since the large strains encountered in
the Ge,Si;_,/Si system induce non-negligible off-diagonal
terms which couple the J =3 and + bands. The 6 6 strain
Hamiltonian required for an accurate description of the
valence-band splittings under high stress has been given by
Hasegawa.!* It should be noted that for [001] distortions
the strain operators couple only those states of J = % and %
which have the same magnetic quantum number *+ M; (.e.,
+ M; remains a good quantum number). This means that
the eigenstates at k=0 can be uniquely represented by
(J,M;) descriptors. The resulting strain Hamiltonian can be
readily diagonalized and yields three eigenvalues at k=0
(each doubly degenerate) whose alloy dependences are
given by

E,(3£3)=e(x , (2a)

Ey(3 2 3)=—F[e(x) + A1+ $V92(x) + A2—2e (XA
Qv)

E (35 5)=—F[e(x)+Al— 3/9€2(x) + A2—2e(x) A
Q2c)

The strain energy e(x) is a function of alloy composition
and is given by

e(x)=%D,(Ner(x)=3D,(x) e (x) —ex (0] , (3)

where D, is the valence-band deformation potential associ-
ated with [001] distortions, A denotes the spin-orbit split-
ting, and x denotes the Ge content of the alloy. We have
used the following values for the deformation potential D,:

(2.04 £0.2) eV for Si (Ref. 13),

= €y
(3.81 £0.25) eV for Ge (Ref. 15),

u

0I5 - .

Ey(3/2,£3/2)

Q.10

0.05

ELECTRON ENERGY (eV)

1 | |
[¢) 0.2 0.4 0.6 0.8

x(Ge)

FIG. 1. Uniaxial splittings of the upper (J =%) valence-band
edge of bulk Ge,Si;_, alloys on Si(001) substrates. The states are
labeled by (J,M;) representation.
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FIG. 2. Uniaxial splitting of spin-orbit split off (J= %) valence-
band edge for bulk Ge,Si;_, alloys grown on Si{001) substrates.

and a linear interpolation for the alloy dependence of D,.
In like manner we allow the spin-orbit splitting A (x) to vary
linearly between 0.044 eV for Si to 0.29 eV for Ge. These
results have been plotted in Figs. 1 and 2. Note
that the lowest-lying valence-band edge is the doublet
E,(3; +3), which moves up in electron energy as x in-

creases.

IV. UNIAXIAL SPLITTINGS OF THE A,
CONDUCTION-BAND EDGES

Since we restrict x to the range 0<=x=<s0.75, the alloy
conduction band is Si-like,!! i.e., minimum at A;, along
[001] directions. For conduction-band minima off the
center of the Brillouin zone, the shapes of the constant-
energy surfaces are unchanged to first order in strain,
whereas the extremum energy of a particular valley will
depend on both the magnitude of the strains and their
directions with respect to the k vector of the valley of in-
terest.

Herring and Vogt!® have shown that the energy shift
AES? of valley *“i,” for an arbitrary deformation can be
described by

AED =[5,T+E,laa)]e %)
in terms of the deformation potentials 54 and 2, (d
denotes dilation and u implies uniaxial). Here T is the unit
tensor, a; is a unit vector parallel to the k vector of valley i,
and 4,a; denotes a dyadic product. The shift of the mean
energy of the band extrema was found to equal

AE® = (E,+ $E,)TE . )

The uniaxial splitting of the ith valley is then given by the
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FIG. 3. A; conduction-band splitting (uniaxial components only)
for bulk Ge,Si;_, alloys grown on Si(001) substrates.

difference in Eqs. (5) and (6), namely,

2=, e for k11 {[001],[00T1} ,

AE® = B '0h)
le w 41010],[010]
TEuer for k117007’ [100]

AEL.( D

It will be noted that since both =,,er(x) >0 the lowest
conduction-band minima is fourfold degenerate in the
strained bulk alloy. We have used =,=Z2®(Si)
=9.2 eV.1® No alloy dependence of =, has been assumed.
The alloy dependence of the band-edge shifts in Eq. (7) are
plotted in Fig. 3.

V. HYDROSTATIC CONTRIBUTION TO THE
ALLOY BAND GAP

Equations (2) and (7) give the uniaxial splittings of the
valence- and conduction-band edges as a function of alloy
composition. In order to compute the various band gaps
(i.e., conduction- to valence-band energy separations) one
also needs to determine the change in alloy band gap due to
dilations (i.e., AV/V=0, V= volume of the crystal).
These contributions will be referred to as hydrostatic terms.
From Eq. (6) it is readily seen that the deformation poten-
tial appropriate for describing the hydrostatic term is
(Ba+ 3’-5“— a), where a denotes the deformation potential
which describes uniform shifts of the valence-band edge.!’
Hence,

-

AEpgo=(E4+ $E,— a)T:® €))

We have used

. +3.8¢eV for Si (Ref. 18),
Eqt3Es—a)= )
—2.9 eV for Ge (Ref. 18) .

coherently strained bulk Ge,Si,_, alloys, for growth on Si(001)
substrates.

Note that the sign of (5,+ +E,— a) is opposite and nega-
tive for Ge. Since AV/V <0, for Ge,Sij_, alloys on
Si(001), it is seen that when these alloys have Si-like band
structures the hydrostatic terms are expected to produce a
uniform decrease of the indirect band edge, whereas this
trend is reversed for Ge-like band edges. (AV/V) de-
creases monotonically with increasing Ge content and is ap-
proximately —3.7% at x=0.75. Equation (8) is plotted in
Fig. 4, where we have assumed a linear interpolation for
(E4+ FE,— a) between the values for Si and Ge. This as-
sumption is expected to give an upper bound on the alloy
band gap in that (E,+ §E,— a) is likely to remain Si-like
and to vary with composition in a manner similar to the
fundamental band gap of the unstrained alloy,’ showing an
abrupt change in sign and magnitude for x > 0.85. Clearly,
an experimental determination of the compositional depen-
dence of the band gap of these strained alloys will be neces-
sary in order to properly evaluate these deformation poten-
tials.

VI. RESULTS AND DISCUSSION

The results of Egs. (2), (7), and (8) have been combined
with the unstrained bulk-alloy band-gap data of Braunstein,
Moore, and Herman!! to yield the indirect gap for coherent-
ly strained Ge,Sij—, alloys grown on Si{001) substrates.
These data are plotted in Fig. 5. It will be noted that
coherency strain dramatically reduces the alloy band gap to
such an extent that for x =0.6 the strained-alloy band gap
becomes equal to the indirect band gap of unstrained
Ge(E;~0.66 eV). The width of the strained-alloy band
gap reflects an uncertainty in our knowledge of the various
deformation potentials involved; note, however, that this
uncertainty does not exceed ~ 75 meV for x < 0.75.

Low-temperature (7 < 10 K) sheet charge-density mea-
surements have been used to estimate the band gap of the
strained alloy for x=0.2. Assuming the majority of the
band offset to be in the valence band,? it is estimated that
0.88 eV< E,,<092 eV, in good agreement with the
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FIG. 5. Indirect band gap of coherently strained bulk Ge,Sij_
alloys for growth on Si{001) substrates.

present results. These results are extremely exciting insofar
as potential applications of these strained-alloy layers to
long-wavelength optical devices are concerned. They imply
that more dilute alloys may be used to access the 1.55-um
wavelength range, thereby reducing the tendency of island-
ing during growth and improving the stability of these alloys
at temperatures required for device processing. Further, the
large band-edge offsets deduced from the present results,
coupled with the suspected gross asymmetry of the band-
edge offsets predicted by transport measurements,? make
these alloys potential candidates for such novel photodetec-
tors as the staircase and superlattice photodiodes discussed
by Capasso.®
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