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The dielectric response of a one-dimensional electron gas occurring in the narrow inversion layers in
metal-oxide-semiconductor field-effect transistor (or quantum-well) structures is investigated theoretically.
A nonsingular screening function appropriate for dc transport calculations is derived. The plasma frequency
in such a system is obtained as an explicit function of wave number. Plasmon dispersion for a lateral two-
dimensional superlattice made from such one-dimensional quantum wires is also calculated.

Low-dimensional electronic systems occurring at semicon-
ductor surfaces or interfaces have attracted considerable
theoretical and experimental attention over the last fifteen
years. Two-dimensional (2D) electron systems occurring in
metal-oxide-semiconductor (MOS) structures [e.g., the in-
version or accumulation layers in Si-SiO, MOS field-effect
transistors (MOSFET’s)] or in semiconductor heterostruc-
tures (e.g., GaAs-Al,Ga;_,As heterojunction) have been
studied extensively.! Very recently, a one-dimensional (1D)
electron system has been produced? in silicon MOSFET’s by
a number of experimental groups®-¢ using a variety of tech-
niques. Preliminary transport measurements in these 1D
systems have been reported in several recent publications?-6
and extensive activity in this potentially technologically im-
portant field is expected in the near future. In addition, fol-
lowing a suggestion by Sakaki,’ Petroff, Gossard, Logan,
and Wiegman® have recently produced and studied a 1D
electron gas in a GaAs heterostructure. These 1D quantum
wires in GaAs heterostructures have been claimed’? as an
exciting new technological possibility, since  the impurity
content and distribution around these wires can be selective-
ly controlled, producing enhanced mobility which may even
exceed the very high mobility values achieved in
modulation-doped 2D GaAs-A1,Ga;_xAs heterojunction
electron transistors. A number of theoretical papers!®-13
have also appeared in the literature dealing with various as-
pects of electronic transport in these 1D systems.

In this Rapid Communication we consider theoretically
several aspects of these 1D quantum wires. Our calculated
results should be significant in the understanding of various
electronic properties of these systems as experimental infor-
mation becomes available. In particular, we calculate the
screening properties and the elementary collective-excitation

spectrum (plasmons) in 1D electron systems. Our emphasis
is on pointing out how the quasi-1D nature of real systems
suppresses various divergences inherent (and well known)
in the purely 1D theory. Ours is necessarily a model calcula-
tion, since information about the electronic (as well as
geometric) structure of these systems is unavailable at this
time. For example, no self-consistent electronic-structure
calculation for these 1D systems along -the lines of the cor-
responding 2D calculations for Si inversion layers,!* or for
GaAs heterostructures’® has been reported yet. In the ab-
sence of any such realistic calculation, we make the best
possible model approximation for the one-electron wave
functions () in these systems by writing

v (oy,2) = 5——:‘¢,,(y)§,(z) , )

where ¢,(y) and &,(z) are bound wave functions indicating
quantization in the y and z directions whereas k is the good
1D wave vector along the length of the quantum wire which
is taken to be the x direction with L as the macroscopic
length of the wire. For ¢ and ¢ we choose, respectively, the
particle-in-a-box—type confinement® and the Stern-Howard
variational wave function.! The ground-state 1D wave func-
tion is thus given by

Yook (x,,2) = L~ 12e®[(2/a)?sin(mry/a)]
x [(53/2)V2ze~¥12] ,

where the width of the 1D wire along the y axis is a and its
average width along the z axis is 3/b =2z with b as a varia:
tional parame%,ter.l Typical values of a and zy are 50-1000 A
and 20-200 A, respectively.

Using the wave function of Eq. (1), one can obtain the
matrix element of the Coulomb interaction in the system, as

|
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where =n3=n4=0and i=j=1=m=0) of the system as a func-
J > v ) tion of ga and for a fixed 2D electron density of N;= 1012
R=v(y=y)+(z=2)?, B)  ¢m=2 (which for a=100 A gives an average 1D electron

and Ky(x) is the modified Bessel function of the second
kind. For the sake of simplicity we have chosen a
constant-average-background lattice dielectric constant « for
the system. In Fig. 1(a) we show the calculated Coulomb
matrix element V(g) for the ground state (n;=n,

32

density of n,=10° cm~!). We have also shown by the
dashed curve the corresponding logarithmically divergent
result for the purely 1D approximation which gives

V(g) = 2Teng(qa) = 2¢e2|In(gxo) |/«
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FIG. 1. (a) The calculated Coulomb-interaction matrix element in a quantum wire for the subband-quantized situation [Eq. (2)]1 (solid
curve) and for the 1D model, modified-Bessel-function approximation (dashed curve). (b) The static polarizability of 1D electron gas in the
presence of finite temperature and collisional broadening. The top curve is the (singular) result for the pure (I'=0) system at zero tempera-
ture. The values of the broadening for the other four curves are (from top to bottom) I'/ Er=0.05, 0.1, 0.2, and 0.4. The temperature is

T =0.1Ey/ kg for these four curves. Il is the magnitude of IT (g =0,0) with T=T=0.

for small ga, where xg is a characteristic cutoff length in
the problem. In the long-wavelength
q (ga << 1) it is easy to show that Eq. (2) gives a similar
asymptotic behavior

V(g— 0)=2e%In(gro)l/x ,

where rg is the average value of R which can be taken out
as a constant in this limit. We want to emphasize that in a
purely 1D theory, ¥ (q) is logarithmically singular for all g,
whereas our calculated V' (q) as shown in Fig. 1(a) is well
behaved for all ¢ except for the usual long-range divergence
of the Coulomb interaction for g — 0.

Screening is determined by the static dielectric function
€(q,0) of the system, which, within the random-phase ap-
proximation (RPA), is given by

€(q,0)=1—V(pIi(q,0) ,
where I1(g,0) is the static polarizability function of the 1D

fj: dpll - [%l Im¥

where 8= (kzT)~!, I'=1/27 is the collisional broadening
associated with a lifetime 7, and E,= p*2m —u, with u as
the self-consistent chemical potential to be obtained from
the total number of particles n, = [ dE D (E) f(E), where D
and f are the 1D electronic density of states and the Fermi
distribution function, respectively. In Eq. (4), ¥ is the di-
gamma function and g, is the valley-degeneracy factor!
[g,=2 for the Si(100) system and g,=1 for GaAs systems].

I(q,0)=—

2g,m
o

1
2

limit of small

+ 8L, 8
2w

electron gas. It is well known!® that the polarizability func-
tion of a noninteracting 1D electron gas is logarithmically
divergent at g =2kp, where kr is the 1D Fermi wave vector.
This is a simple consequence of the perfect nesting of the
Fermi surface in 1D, and is related to the well known
Peierls instability. In a real system this 2kr singularity will
be softened by thermal and other broadening mechanisms.
Since we are primarily interested in low-temperature trans-
port properties, temperature effects!” on the polarizability
are not very important for our purpose. We have calculated
the 1D polarizability function by including both the thermal
and collisional broadening effects. Collisional broadening
arising from impurity scattering is expected to have a sig-
nificant effect on the polarizability function, particularly
around the g =2kr singular point. We have included im-
purity scattering effects in the finite-temperature polarizabil-
ity function by considering the ladder-bubble diagrams.
Keeping only the leading-order diagram in the series, we get

, 4)

]/(2p+q)

I

In Fig. 1(b) we show the calculated IT(g,0) as a function of
q for several values of ' and 7. It is clear that the inclusion
of impurity scattering in the calculation of screening is of
fundamental importance at low temperatures in a 1D system
(unlike in a 2D system!® where impurity-scattering effects
on the polarizability give rise to higher-order effects). One
can easily calculate the low-temperature transport properties
of 1D quantum wires using the V(g) and the II(g) ob-
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tained in this paper, provided the location and the strength
of the charged impurities around the wire are known. We
defer the transport calculation to a future publication, since
sufficient experimental information on nonlocalized (or
‘““metallic’’) transport properties is not yet available.

In the second part of this Communication we obtain the
collective-excitation spectrum of 1D quantum wires within
the RPA. Plasma modes are given by

e(gw)=1—V(g)(qw)=0,

where I, is the noninteracting!® dynamical polarizability. In
the long-wavelength (¢ — 0) limit we can easily show that
the plasmon frequency is given by

w, = wo(ga)|In(ga) |2+ 0 (¢?) , O
where
wo= (2n,e¥k ma?)"/?

At higher ¢ values, one has a somewhat better approxima-
tion given by w,=wo(ga)/Ko(ga). We have, however,
solved the exact plasma relation €(g, ) =0 by using the nu-
merical values for ¥ (g) as given by Eq. (2) and (g, ),
and the results are shown in Fig. 2(a), where w,/w, is plot-
ted against ga for the exact numerical treatment as well as
for the two long-wavelength approximations. It is clear that
the long-wavelength approximation is reasonable only for
ga =0.1. Note that the softening in the plasma frequency
for high ga is a spurious effect of the long-wavelength ap-
proximation. One very important feature of the 1D plasma
dispersion is its strong dependence on the wire dimension a.
This is very different from? 2D plasmons where informa-
tion about the subband quantization shows up only in the
higher-order dispersion corrections. This  indicates that
plasmon spectroscopy (even in the ¢ — 0 limit) can be used as a
characterization tool to obtain quantitative information about the
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1D quantization in these wires.

Since the plasma frequency vanishes in the long-
wavelength limit, it is important to include broadening ef-
fects in the plasmon dispersion. We expect the plasmon
mode to become overdamped at some critical wave number
q., below which the mode ceases to exist. To include
broadening effects, we calculate the polarizability in the dif-
fusion approximation, which can be written as

Mp(qw)= I+—i Iy q,m+~L
wT T
, . -1
x |1+ —’—]Ho g0++ /Ho(q,())] , 6)
wT T

where 7= (2I')~! is the relaxation time. In Fig. 2(b) we
show the plasmon dispersion calculated on the basis of this
diffusion propagator. As is expected, the plasmon vanishes
at g.a =0.021 for I'/wp=0.04. For small values of ga, the
plasmon dispersion is substantially different from the results
with ' =0. The broadening effect on the plasma dispersion
is quantitatively much more important in 1D systems than it
is for the corresponding?! 2D results.

Finally, we have considered the plasmon dispersion in a
1D superlattice formed from a large number of quantum
wires placed parallel to each other in a 2D plane. It is easy
to show that the plasmon dispersion in such a superlattice is
given by the relation

ik, (1-1")d
1-T, 3, V,_@e” =
ll

0,
which in the long-wavelength limit gives
- 1/2
o= (woqa) | Ko(qa) +2 3, Ko(igd) cos(kid)| , ()
=1

where d is the superlattice period (i.e., d is the separation
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FIG. 2. (a) Calculated plasmon dispersion in a quantum wire as a function of ga where a is the wire width. The solid curve is the actual
numerical result, whereas the dashed and the dashed-dotted curves are the long-wavelength Bessel-function approximation and the loga-
rithmic approximations, respectively. (b) The effect of finite broadening on the plasmon dispersion with the solid and the dashed curves giv-
ing results without and with broadening, respectively. (c) The plasmon dispersion in a quantum-wire superlattice for three values of kyd,
where d is the superlattice period. Results at the plasmon band edges (ky=0 and m/d) correspond, respectively, to purely 2D and 1D

plasmons.
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between the wires and « is the width of each wire) along the
y direction, while k, is the wave vector associated with the
superlattice. We make the usual approximation d > a even
though it is not critical for our model.

We have solved the plasma dispersion relation for a su-
perlattice both in the long-wavelength limit, and for arbi-
trary ga using numerical techniques. Our results are shown
in Fig. 2(c). Similar to the situation?? in 2D superlattices,
the plasmons form a superlattice band with k, as the band
wave vector, which varies in the regime 0=k, < |7/dl.
For k,=0, one is looking at long wavelengths in the y direc-
tion, and hence the superlattice plasmon looks like a 2D
plasmon with ¢"? dispersion near ¢ =0. For ky=m/d, we
are at the zone edge, and the plasmon is 1D in nature.
These features are easily seen in Fig. 2(c), where the
plasmon for some arbitrary k,, namely, K,d=1, is also
shown. The plasma band is contained in the region between
the two extreme curves at k,=0 and k,=/d.

In summary, we have considered the screening properties
and the elementary excitation spectrum of 1D quantum
semiconductor microstructures. We have shown that diver-
gences inherent in strictly 1D theories are suppressed by
physical effects like wave-function or impurity-scattering ef-
fects. Our results clearly demonstrate that a simple-minded
1D approximation has little quantitative validity in real
structures. We have neglected a number of important ef-
_ fects, the most important ones being localization?* and
electron-electron interaction?* effects (beyond RPA). Both
of these effects are of fundamental importance in 1D sys-
tems, and their neglect may not be justifiable. Since ours is
the first realistic model calculation for these quantum struc-
tures, we believe that any effort to incorporate localization
or interaction effects should include the basic features con-
sidered in this paper. Also, deviations from strict one-
dimensionality in the real structures may render invalid
some of the general theorems about 1D localization and in-
teraction. On the other hand, if the one-electron wave
functions are truly localized in these systems, our work on
the screening properties becomes applicable only if the typi-
cal localization length (or Thouless length at finite tempera-

~ since

ture) is larger than the sample width. However, we believe
that our calculated plasmon spectrum still remains valid,?
localization affects only the very-low-frequency
behavior of the dielectric response. Thus our work on
plasmons (in both the 1D quantum wire and the superlat-
tice) should be of approximate general validity, whereas our
work on screening is applicable only if the one-electron
states in the system can be taken to be noninteracting and
““delocalized.”

Before concluding, we should point out that a rather ex-
tensive literature exists!® on the properties of a one-
dimensional electron gas with most of the work carried out
in the context of linear-chain organic conductors like
tetrathiafulvalene-tetracyanoquinodinethane. New features
of our work as presented in this paper are the use of realis-
tic wave functions [Egs. (1)-(3) and Fig. 1(a)] appropriate
for 1D confinement in actual semiconductor structures.
Our plasmon dispersion [Fig. 2(a)] relation is thus the first
calculated plasmon spectrum for 1D semiconductor quan-
tum wires. For earlier work on 1D plasmons one should
consult Refs. 19 and 26. To the best of our knowledge, our
calculated plasmon spectrum in the presence of level-
broadening effects [Fig.2(b)] and the plasmon spectrum in
the 1D superlattice [Fig. 2(c)] are completely new. Finally,
our calculated nonsingular screening function [Eq. (4) and
Fig. (1)] is, as far as we know, the first such explicit result,
even though a one-dimensional dielectric response has ear-
lier been treated'®? in the literature including the work of
Patton and Sham,?® who implicitly considered the inclusion

~ of scattering effects in the one-dimensional polarizability.
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