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It is shown that for weak superconductivity in a uniform field (the Eilenberger Green's function

~ f ~
&& 1) microscopic Eilenberger equations reduce to the linear equation II'F=k F, where II is

the gauge-invariant gradient and F is the average of the function f over the Fermi surface. This
equation holds in uniform fields for any impurity concentration and applies to H, 2 and H, 3 prob-
lems, to fluctuations of superconductivity at T & T,(H), as well as to various situations in proximity
systems such as the superconductivity induced deep in the normal metal, the critical temperature,
and the upper critical field of these systems. The parameter k is to be determined self-consistently
for each problem. The field and temperature dependence of k (H, T) is obtained for a "moderately
dirty" case. At a certain curve which starts at the zero-field T, and is situated in the normal part of
(H, T) phase diagram, k is zero.

I. INTRODUCTION

The quasiclassical Eilenberger's equations of supercon-
ductivity, suitable for a great many inhomogeneous prob-
lems, read

rv IIf =g (F+2rb. ) (6+2cor)f, —
r

Tc
ln

2mT T

I =vr, F=F+2rb„P=1+2(or,

(2)
CO )0

Here f (r, to, v) and g (r, co,v) are the Gor'kov Green's
functions integrated over the energy; co =m T (2n + 1 ) is
the Matsubara frequency with n =0, 1,2, . . . . We adopt
hereafter the system of units where A, c, and kz are unity;
for the reader's convenience some resulting expressions
are given in common units.

Further, v is the Fermi velocity, ~=l/U is the scatter-
ing time for nonmagnetic impurities, ' and l is the mean
free path; only the s scattering is taken into account. The
gauge-invariant gradient II=V —2eiA and A is the vec-
tor potential; one can also write II=V'+2rri A/Po with
Po ——rr/

~

e
~

the flux quantum.
The function g =[1 f (v)f" ( —v)j'—~; F(r, to) and

G(r, co) are the averages (f(r, to, v)) and (g(r, to, v)) over
all v directions on the Fermi sphere. The pair potential
h(r) depends upon position r' exclusively as with a BCS
superconductor with weak coupling. The equation for the
current density along with Maxwell's equations, complete
the Eilenberger system; we shall not use them in this pa-
per.

In the normal phase f=0 and g =1. If the supercon-
ductivity is weak [e.g., for fluctuations of the supercon-
ducting (S) phase at T ~ T„orwhen the S phase starts to
nucleate, or deep in the normal part of a proximity sys-
tem], the function f is small (

~ f ~

&&1). Still, the func-
tion g =1 in the approximation linear in f. Equation (1)
then can be linearized. Introducing for convenience

we have instead of Eq. (1):

1 Ilf =F Pf . —

H I" =k I, (5)

where "the coherence length of the normal metal"
k '(T, l) is obtained from the self-consistency equation
(2):

1 T.
ln

27TT T
2r tanh '(lk/P)

kl —tanh '( kl /P)

All sums over co are extended hereafter to co~0. Al-
though Eq. (5) is of the second order, it is more con-
venient than the first order Eq. (4) because F is v indepen-
dent.

In the dirty limit Eq. (5), with k (T) properly chosen,
holds deep in the X metal in the presence of a magnetic
field too (see, e.g., Ref. 2). This has been shown using the
dirty-limit version of Eilenberger s theory, which is due to
Usadel. However, -the conditions under which the Usadel
equations are valid, are quite restrictive: Only the terms
of order ( ik)'~ are retained; the terms of the order ik are
already neglected. In fact, these conditions are met only
in extremely dirty materials such as amorphous metals.

We show in this paper that Eq. (5) can be used to
describe weak superconductivity (understood as indicated
above) in a uniform magnetic field for any mean free path
l. We also obtain k (H, T, /) for moderately dirty materi-
als.

II. WEAK SUPERCONDUCTIVITY
IN UNIFORM FIELD

Equations (4) and (2), in fact, form a closed system for
this case. We rewrite Eq. (4) in the form

It has been shown that in the absence of a magnetic
field deep in the normal part of a proximity system (X),
the superconductivity can be described by the equation
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f=((3+1 II) 'F= f dpe ~'~+' 'F

and take the average ( ) to obtain an equation for F:'
F= f dpe «(-e &'"—F) .

0
(8)

We now consider solutions of Eq. (5) along with
II b, =k 6 and II F=k F as the ansatz for Eq. (8). The
whole problem would have been resolved if, with the help
of this ansatz, we were able to show that F(r, cu) is pro-
portional to b, (r): F(r,co)=b, (r)P(co) with some P depen-
dent on co exclusively. Then the position dependent A(r)
would have canceled out of the self-consistency equation
(2), leaving an equation for the parameter k(H, T). Our
formal procedure, in fact, is the same as that of the
H, z(T) problem.

To proceed, let us introduce Cartesian coordinates so
that 8=Hz. The averaging in Eq. (8) turns out to be
simpler when working with operators H +—= H +i H„,
rather than with H~ ~. One can easily verify that the com-
mutator

[II+,II ]=4rrH/QO=2q

i.e., it is a number. In terms of II—,Eq. (5) reads

II+II F=(k +q )F . (10)

X(sin ~+ Jg)(11+) (II ) F

Here

(sin + J8) =(2m +2j)!!/(2m +2j+1)!!.
Now substitute Eq. (11) in Eq. (8) and integrate over p to
obtain

co
( q2)JF=

p . 0 j!(2m+2j+1)
X(II+) (II-) F .

(m +j)!
m!

2 2m +2j
l

(12)

By repetitive use of the commutator (9) and Eq. (10),
one can show that

Now, 1 II=(l II++l+II )/2 with l —+=l +i' Then.
the exponential operator in Eq. (8) can be transformed:

exp( —pl II)= exp( ——,pl II+ )exp( ——,pl+ II )

Xexp( ——,'p l+l q ),
where the known property of exponential operators and
the commutator (9) have been used.

We replace now all the exponentials with their power
series and use the spherical angles 8,$ at the Fermi sphere
with the polar axis z. Then l —= l sin0 exp(+i P). Taking
the average

( ) = f d9sin8 f dP/4'. . .

in Fq. (8), we first integrate over p to exclude all products
(l+)'(l )J with i&j After .simple algebra we obtain

(exp( —pl II)F)= g ( —,pl) + 1( —q')'
0 (m!) j!

(II+) (II ) F=F+ [k +(2i —1)q ]
i=1

for m & 0. We have now instead of Eq. (12):

F=—S (k,H, co, l),F

(13)

( —q')'
o j!(2m +2j+1)

(14)
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m! P

&& Q [k +(2i —1)q ] .

The sum S is r independent, if the field is uniform. Re-
calling the definition of F, one obtains the proportionality
of F and 6 we are looking for:

F(r, co) =A(r) Z~S
—S

(15)

This is to be substituted in the self-consistency equation
(2). The latter yields, after b, (r) is canceled out, an equa-
tion for k (H, T). Thus, our ansatz (5) indeed solves Eqs.
(8) and (2), provided the k is found from

1 &c 1 2r
ln2' T T co P/S —1

(16)

This equation is rather cumbersome to deal with, in gen-
eral.

III. UPPER CRITICAL FIELD

lq,
S(H, 2)= g j!

o 2j+1 (17)

This series has been discussed in Ref. 7. Here
lq, /P & lq, —l/g (with g being the coherence length) so
that the series converges rapidly for dirty materials.
Keeping only j =0, 1,2 terms, we have

l q, 2l q,
~ + (18)

3l3 5
S=1—

(lq, /P) &(lq, ) =(l/g) «1 . (19)

The dirty limit corresponds to the first two terms in Eq.
(18); expression (18), therefore, describes a "moderately
dirty" metal. The restriction (19) defines, in fact, the
term "moderately dirty. " With the rare exception of ex-
tremely clean metals, most superconductors in practice
may be classified as moderately dirty.

It is instructive for our purposes to consider this known
. problem in the context of the method proposed. Also, we
obtain here H, 2 in moderately dirty materials which
might be useful.

The upper critical field is known to correspond to the
lowest eigenvalue of Eq. (5), for which a finite solution ex-
ists on the whole xy plane. ' It is easy to see that at the
lowest "Landau-level" k = 2~H/Po ——q . Denot——ing
q, =2~H, 2/go, we obtain at once from Eq. (14):

2J
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To obtain an equation for H, 2(T) =Ppq, /2' we invert
the series (18) and substitute the result in Eq. (16):

x /3+ . , and Eq. (23) reduces readily to

1 Tc
ln

2~T T
1 1

co+Dq, /2P 13—D/ q, /30P

1 Tc
ln2' T T

1

+Dkso/2

Here D = l /3~ is the diffusion coefficient.

IV. ZERO FIELD

In the absence of the field we set q =0 in Eq. (14).
Then only the j =0 term remains, and we have

t'

(ki/p)'- p „,koi

2m +1 kol P

ko ——
i
k (0, T) i, (21)

along with the convergence condition ( kol/P), „&1 or

1 1 v
ko & —+, g'z- ——

I g&
' 2~T

Tcs
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2&T T
2r tan (Ikso/P)

tkso tan '(tkso/P) —]-(23)

and for Fs: V Fs= ksoFs. —
In the dirty limit lkso/P=x « 1, tan 'x =x—

(gz. A'U/2~k&——T in common units. ) For T ~ T„wesub-
stitute Eq. (21) in Eq. {16)to obtain Eq. (6) for the coher-
ence length kp

' of the normal metal.
At first sight, there is no point in considering Eqs. (16)

and (21) for T & T, : Our assumption about
~ f ~

&& 1 and
g =1 does not hold in the S phase, so Eilenberger's Eq.
(1) could not be linearized and Eq. (5) could not be valid.
This, however, is not always the case in proximity sys-
tems.

Consider an S —X bilayer or multilayer. The critical
temperature T, ~, of the proximity system differs from
both T,s and Tcx Near Tc, pr l

F
I
«1 and G =1 in

both S and N parts of the system. The derivatives
H-kq& are not small, because T, ~„in general, is not
close to either T,& or T,z. Then our linearization pro-
cedure is applicable. (Near T,s, e.g., one should have kept
not only the terms linear in Fz, because H Fz-
Fslgs &&Fs.) Nucleation of superconductivity is
described by Eq. (5): V Fs& ks~Fs&, wher——e the ksz
are found from Eqs. {16) and (21) with T, replaced by
T,q ~, respectively.

The function kz(O, T) has been discussed in detail in
Ref. 2 for any mean free path. We only note here that for
any real k [within restriction (22)] all terms in the sum (6)
are negative. Therefore, Eq. (6) cannot have real solu-
tions k& for T & T,~. It does have imaginary solutions.
Replacing ks(O, T) with iksp, we obtain for kso

This coincides with the equation for q, =2vrH, 2/Po in the
dirty limit [see, e.g. , Refs. 7 or 2, or take the limit 1~0 in
our Eq. (20)]. Thus, in this case ksp coincides with the
coherence length of a dirty superconductor, defined as
[Po/2mH, z(T)]'~ . We shall see that this is a particular
case of the general result: In the dirty limit k is H in-
dependent.

However, in general ksp =——ks(0, T) defined in Eq. (23)
differs substantially from gs 2vrH,——2/Pp unless we are
in the dirty limit or in the Ginzburg-Landau (GL)
domain. As T~O in the clean limit, kqo ——2.726o/Av in
common units (see Appendix A), while (27rH, z/
Pp)' =3.70bo/Au (see, e.g. , Ref. 7). Therefore, in this
limit ksogs

~
r p=0. 73. For the "moderately dirty" situ-

ation, the result (which can be obtained with the help of
the next section) reads kspgs z. p= 1 —0.9l/gs(0), with
gs(0) =(AD/bp)'~ being the coherence length at T =0 in
the dirty limit. Thus, in general, the coherence length
g's(T) related to H, 2 cannot be used in finding the critical
temperature of a proximity system in zero field. For any
ls, except the dirty limit, one should use ksp(T) of Eq.
(23).

V. PARAMETER k (H, T) FOR MODERATELY
DIRTY MATERIAL

We consider now the sum (14) and keep in it only the
terms with m +j =0, 1,2:

I k I 4S=1+ + (k +q ).
3P 5

(25)

The truncation is justified if the last terms retained are
small:

(lk/P) «1 and (iq/P)" «1 . (26)

Replacing here p with p;„=1+3/gr, we obtain the re-
strictions

k 1 1

5 i gz.

q4 1 1« Ig
5 i+~

4

« 1 . (27)

~4

3P 5
(28)

Substitute this in Eq. (16) to obtain for k (H, T)

If the last term in Eq. (25) is, e.g. , on the order 10, the
accuracy of this equation is, in fact, higher: the neglected
terms are of the order (ik/p) —10 . It is also worth
noting, that the definition of the term "moderately dirty"
includes a restriction imposed upon the magnetic field. '

With the same accuracy,
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4 k4+ 4

los' (29)

This can be solved numerically for k (H, T).
To make progress analytically, we observe that the solu-

tion k of Eq. (29) isafunctionof q (k couldnotde-
pend upon odd powers of H). Further, in zero field
k (O, T) satisfies Eq. (29) where one sets q =0. Having in
mind conditions (26), we look for a solution k (q, T) of
the form

H
k (HT)=k (OT) 1—

Ho(T)
(34)

In the domain T&T„the field Ho(T) is useful in
representing the H dependence of k . Take y from Eq.
(32) and substitute it in Eq. (30) to obtain

k (H, T) =k (0, T) y(l, T)l—q" (30)
VI. NORMAL METAL WITH T, =0

with a dimensionless y. Substitute this in Eq. (29) and
compare with the equation for k (O, T) to obtain y within
the requirements (26):

3+P (co —Dko/2P)
y(/, T)= (31)

5 gP '(cu Dko/2—/3)

An interesting feature of the results (30) and (31) is that
k (H, T) vanishes at the field

/Ok(O, T)
Hp(T)= y2~l

The whole curve Ho(T) is situated in the region T& T„
where k(O, T) is real. This curve is sketched in Fig. l.

The very existence of a curve at the (H,T) phase dia-
gram along which k =0 should not be a surprise.
Indeed, k is positive on the T axis to the right of T„
vanishes at T„and is negative (and equal to —2~H/$0)
along the H, 2(T) curve. Being a continuous function of
Hand T, k (H, T) must turn zero at a curve which starts
at T'

If T & T„parameter k can also be given in terms of
H, 2 (Appendix B):

(P—S) z- ——0. (35)

In the field absence, we take S from Eq. (21) to obtain
the known result for kp.'

kol=tanh '(kol/Po), Po ——I+2~Tr. (36)

For the moderately dirty situation defined by the ine-
qualities (26) and (27), we use S of Eq. (25). Also, we in-
troduce the T-dependent impurity parameter

The case T, =0 is of interest due to the fact that Cu is
often used as the X part in proximity systems. The net
electron-electron interaction in Cu is still unknown; it is
either a weak attractive one with a very low T„"or even
repulsive. ' Nevertheless the case T, =0 is representative
and simple formally, because in the absence of an interac-
tion b, =O, and, in our notations F=F. Then either of
Eqs. (14) or (15) yield/3=S, which gives k (H, T;co).

The co dependence of k is a specific feature of the case
T, =O. It means that F(co)'s deep in the normal metal at-
tenuate with characteristic lengths depending upon co.
One can show (see, e.g. , Ref. 2) that the deepest penetra-
tion corresponds to co;„=~T.We have, therefore,

H
k (H, T)=k (O, T) 1—

H, 2(T)

Hcz

2+H
4&,2(T)

(33) gg ——1/2aT~, (37)

~4
+ (k+q)„

3Po, 5

or A/2vrk&Tr in common units. [Note, that the common
definition A, =1/2~T, ~ would have been useless in the
case T, =0. With the definition (37), the same Cu sample
being "clean" at some T, becomes "dirty" at low enough
temperatures. ] Equation (35) now reduces to

/

/
I

/

which yields
2

(H, T)= 3 p2 3 2'/
/2Ar 5 popo

(38)

In particular, k =0 if
2 ' '1/2

Hp —— 1+
2m.l ~z- ~y.

(39)

I

FICx. 1. (II', T) phase diagram of a.superconductor. Parame-
ter k (H, T) vanishes at the dashed line.

At low temperatures (A, z-»1), Ho —T', while at "high"
T's, for which A, y' « 1 Hp T
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VII. THIRD CRITICAL FIELD

The problem of H, 3 has been solved in the dirty limit
by Saint-James and De Gennes, who consider'ed the linear-
ized GL equation II g= —g g for the order parameter
t/i, subject to boundary condition Bg/Bn=O for the nor-
mal derivative at the free surface of a superconductor. '

It has been shown that H, 3 1.6——95$p/2vrg . In the gen-
eral case, the H, 3 problem is quite difficult (see Ref. 15
for the case T =0 and Ref. 16 for T & T, in the clean
limit).

Given the parameter k (H, T, l), the problem can be
easily approached for any l and T. Notice that Eq. (5) is
exactly analogous to the linearized GL equation. Then,
impose the condition BF/Bn=O at the free boundary and
replace g with —k in the result of Saint James and De
Gennes:

H = —1.695(bpk (H, T, l) /2~ (40)

One obtains H, 3(T,l) solving this with respect to H.
In the dirty limit, k is H independent and we have T-

independent ratio H, 3/H, 2 1.695.——The first correction
to the dirty limit is obtained with the help of Eq. (30) for
moderately dirty metals:

H„/H„=l.695[1+l. 124l'/g'( T, l )],
where g =2vrH, 2/Pp.

(41)

VIII. PROXIMITY SYSTEMS

In Sec. IV we have discussed the problem of the critical
temperature T, p„ofa proximity system. In fact, the
equation explored by Werthamer' ' in solving the T,

„„

problem for the dirty limit, is just the same as Eq. (5). Al-
though Werthamer's function [call it F~(x) jj differs from
our F(x,cp), these two are closely related: F~(x )

=2m. TN(0) Q„F(x,cp). It is easy to see that both ap-
proaches yield the same T, p of the dirty proximity sys-
tem, if De Gennes' boundary conditions' of continuity
for F~(x)/N(0) and DF~(x) at the interface are re-
placed in our case by the continuity of F(x,cp) and
DN (0)F'(x, co ).'

The new result of Secs. II and IV is that the same Eq.
(5) can be used to find T,„,for any impurity concentra-
tion in S and X. Also, we derived equations for the pa-
rameters ks(T, l) and k~(T, l) that should be used in this
problem. In particular, we have shown that E&o in zero
field differs substantially from gs

' ——(27TH plop)', as
long as the dirty-limit conditions are not satisfied; the GL
domain (T, z, & T,s) is another exception to this rule.

It is difficult, however, to compare the theory proposed
with experimental data on T, p, . One of the difficulties
lies in the incomplete theory: The boundary conditions
for F's at the S-X interface are still to be formulated.
Recently Zaitsev obtained the boundary conditions
which are to be imposed upon the Eilenberger's functions
f in terms of the transmission and reflection coefficients
of the interface. The latter are not usually known; they
are certainly very sensitive to each particular sample
preparation procedure.

The relevant equations for the problem of 0,2 of prox-

imity systems are, in fact, the same Eq. (5) written for S
and X. The new result obtained here is the H dependence
of both ks and k&, which is quite strong except in the GL
domain or in the dirty limit. As in the T, p, problem, the
difficulty associated with the boundary conditions impairs
the chance for the direct comparison between the theory
and the data. One might try to extract the correct form
of the boundary conditions from the measured T p at
zero field, and then apply it in the H, z(T) calculation.
Effort is in progress along these lines.

Some caution should be exercised, however, in applying
results obtained for a homogeneous case to proximity sys-
tems. The point is that in the derivation of S(k,H)
needed to evaluate k (H, T), we assumed that F is z in-
dependent (z being the coordinate along the field direc-
tion). This is still the case if H is parallel to the N-S in-
terface. However, for an arbitrary orientation of H with
respect to the interface, one has to take the z dependence
of F explicitly into account. As a result, the parameter k
might depend not only upon the field value, but, in gen-
eral, upon the relative orientation of the field and the in-
terface as well. As an example, we have considered the
H, z problem for a proximity SX multilayer with H nor-
mal to the layers. It turned out that the. H direction
enters the series S(k,H) only in terms of the order k l
In other words, all formulas of Sec. V for moderately dir-
ty metals can be used regardless of the field orientation.

In conclusion, we indicate yet another possible applica-
tion of the k (H, T, l) obtained in this work. This is the
fluctuating superconductivity in the S part of a proximity
system in the temperature domain T, ~„(H)& T & T,s(H),
when the whole system is, in fact, normal. The problem
should not be much different from that already solved in
the GL domain, ' because Eq. (5) is formally identical to
the linearized GL equation for the order parameter.
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APPENDIX A

1

(~2+ g2 )
1/2

r

2 i Uk
tan

Uk 2' (Al)

where b,p(T) is the BCS gap:

1

(~2+ g&)1/2

Tc--ln ' = 'Y
2' T T ™

Q7

At T=O, the sum over co in Eq. (Al) can be replaced by
the integral (2nT) ' f dcp from zero to the Debye fre-

quency mD. Integration yields

In the clean limit i~ co,P=2cp~, and lk/P= Uk/2co. —

Equation (23) assumes the form
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2
267D 26)D ( kU 4coa

ln =- tan ' — — +—ln 1+
& z

Qo kU 2ct7D 2
r

I

Assuming ku «2coD, we obtain k =2.725,o /U, so that the
assumption checks: kv/2coD —ho /~D && 1.

in common units); In the dirty limit rl=~ /8; in the

clean case rl=A, g„(2n+1) =1.0045K, .

We notice that the curve Ho(T) in the dirty limit
reduces to the almost straight vertical line due to the large
prefactor Pp/2ml'. This means that the H dependence of
k vanishes as l~O.

In the clean case we rearrange Eq. (B2):

APPENDIX 8 ~0,cleaIl 1 ~ 578
4o

2m.gT
(B4)

Formula (32) gives Hp(T) in terms of the known

k(0, T) and y(l, T). One can also evaluate Hp(T) directly

from the self-consistency equation (29) by setting there
k=0:

1 T
ln

2&T Tc

qo =2~H/0o .

4 4 4 4 —1

I 9'o 10m~ I qo

cpP fJ g
(B1)

The second term in the parenthesis can be neglected in the

domain (26) where our theory is valid. For the same

reason, all terms under the sum (Bl) are small. Therefore,

ln(T/T, ) is small too, and Eq. (Bl) holds, in fact, if
T T, «T,—. Replacing T on the right side of Eq. (Bl)
with T„weobtain after simple algebra:

qc =kp 7'l q qq =277Hqp /pp, kp —=k(0, T) (B5)

with gT v/2m——T, (fiv. /2vrK~T, in conventional units).

The applicabihty domain for this result is quite narrow.
The second of conditions (27) reads here:
Hp «(bp /2rrfT which, in turn, translates in a quite nar-

C

row temperature domain. [In fact, the truncated series
(25) with k =0 can be used in the clean case, only if the
field is small. ]

Equation (30) gives k (H, T ) in terms of k (0,T ) and

y. It might be useful to have k (H, T) in terms of other
quantities. Assume, e.g. , that H, q( T) is known for
T & T, . Then we have from Eq. (30):

' 1/2

(T T )t/2 (B2)

(at H, z, k = q, ) Th—is gi.ves y(T) in terms of H & and
ko. We obtain now Eq. (33) or in terms of y and H, z.

rl =A, ' g (2n+1) —'(2n+1+A, )
n=0

(B3) k (H, T)=—2rrH, ~( T)
+y(T) [H„(T)—H'] .

with the impurity parameter k=(2mT, r) ' (A'/2+k Ts, r
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