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Two-component density-functional theory: Application to positron states
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A quantitative approach to calculating properties of inhomogeneous two-component Coulomb-Fermi sys-
tems is presented. As an application, the ground-state electronic structure of a jellium vacancy containing a
trapped positron is calculated self-consistently. %hile the resulting density profiles and energetics are quite
different from those obtained neglecting cross correlations, the conventional estimates for the annihilation
rates are shown to remain valid, due to canceling effects of the increase in the mean electron density and

the decrease in short-range screening.

Two-component Coulomb systems possess several intrigu-
ing properties derived from the interplay between attractive
and repulsive long-range forces. In particular, the short-
length-scale structure shows pronounced deviations (screen-
ing effects) from independent particle behavior. While the
ground-state properties of homogeneous two-component
fluids are being uncovered by detailed many-particle calcula-
tions, the theory of inhomogeneous systems is still in its in-
fancy. Density-functional theory' (DFT) has proved ex-
tremely useful for the one-component inhomogeneous elec-
tron gas. In this Rapid Communication we report on the
first full-scale density-functional calculation for an inhomo-
geneous, two-component Coulomb-Fermi system, incor-
porating all the exchange and correlation terms (including
the all-important cross correlations) within the local-density
approximation (LDA).

The most obvious condensed-matter realizations of a
two-component Coulomb system are the electron-hole plas-
ma in semiconductors2~ and the electron-positron systems
in metals. 5 awhile the theory developed is quite general, we
focus here on the latter example. The conventional way to
treat positron states in solids is to first construct an unper-
turbed electronic ground state for the system and then to
calculate the positron distribution by assuming the electron
density to remain. rigid, and by accounting for the electron-
positron correlation in terms of a correlation (screening) po-
tential6 dependent on the electron density. Similarly, the
experimentally observable electron-positron contact density
(annihilation rate) is usually obtained from a local expres-
sion involving the unperturbed electron' density profile and
a density-dependent enhancement factor for a single posi-
tron in electron gas. %hile this approach is a good one
(apart from rather subtle momentum-dependent effects')
for delocalized positron states, it is much more questionable
for localized (trapped) states. If a positron is trapped (typi-
cally at a lattice defect) it will have a severe effect on the
electron states in its vicinity; the requirement of complete
screening means that one additional electron will be pulled
to the trap region and the assumption of a rigid electron
density n (r) cannot hold. On the other hand, the posi-
tron density n+(r) at the trap region is finite and can actu-
ally exceed the electron density. A situation involving a
two-component plasma arises, and the picture of a single
positron being screened in a locally homogeneous electron
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Here the functional derivatives BE„,/Sn~(i = +, —) are the
one-component exchange-correlation potentials for positrons
and electrons, respectively, and

SE„,„[n n+]/Sn;(r), i = +, —

is due to the cross-correlation. The ground-state densities
and the total energy are obtained through the self-consistent
solution of Eqs. (1)-(4).

In LDA,

E„,[n;] =
J drn;(r)e„, (n;(r))

where e„,(n) is the exchange-correlation energy per particle
in one-component gas. Similarly, one can write

E„„„[n+,n ] =„dr n+(r)e, (n+(r), n (r)), (6)

where e,(n+, n ) is the (electron-positron) correlation en-

gas may break down. In what follows we stress the useful-
ness of the positron density as the basic variable.

The formal derivation of the density-functional equations
for the two-component case is a generalization from the
familiar one-component case. Separating out the mean-field
electrostatic Hartree terms, one can define exchange-
correlation functionals accounting for the remaining
electron-electron, electron-positron, and positron-positron
interactions. If we assume that both the electrons and the
positrons move in an external potential due to a (positive)
background charge distribution nb(r), the DFT equations
read (in atomic units)

BE[n ] SE...„[n~,n ]
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ergy per positron in a two-component gas with densities
n+, n

The function e, (n+, n ) has been (approximately) known
so far in the two limiting cases: n+ 0 (single positron in
electron gas6'o) and n+ = n (fully compensated plas-
ma"o). Recently, extensive variational many-body calcula-
tions' " have provided accurate values for e, throughout
the ( n+, n ) plane. We have used these data to construct
the cross-correlation functional and its derivatives, '2 which
are of central importance for a successful application.

The physical implications of the two-component formula-
tion are as follows: A localized positron will attract a
screening electron into the trap region, whereby the average
electron density there will be enhanced and the Friedel sum
rule accordingly modified. The nonzero positron density,
on the other hand, will lead to a locally weaker contact den-
sity increase and diminished local annihilation rate as com-
pared with the dilute approximation; i.e., the proper local-
density formula for the annihilation rate is

A, =wrac ~ dr n+(r)n (r)gl2(0;n+(r), n (r)) . (7)

Above, ro is the classical electron radius, c the speed of
light, and g~2(0;n~, n ) is the contact enhancement (the
electron density increase at a positron or the value of the
pair distribution function at the origin) in a homogeneous
mixture of n+ and n . For a delocalized positron, Eqs.
(1)-(4) reduce to the conventional approach with no net ef-
fect of the positron on the electron states. 5

Figure 1 shows the contact enhancement for concentra-
tion ratios x = n+jn =0, 0.5, and 1 for various values of
the electron density parameter r, . The variational many-
body theory' " employed here puts emphasis on the proper
treatment of the short-range correlations, and hence we ex-
pect the results to be quite accurate. Also shown in Fig. 1 is
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the typical behavior of g]2 as a function of x.
We have applied the full scheme to the case of positron

trapping at a vacancy in a metal. We treat a well-studied
model, a spherical monovacancy in jellium, i.e.,

nb(r) = ~err,' 8(r Rw—s)

(we take r, =2.07 for Al) and Rws is the Wigner-Seitz ra-
dius. Furthermore, to obtain a realistic trapping potential
for positrons, we mimic the repulsion of the positron from
the true host ion cores" by an added square-well potential
for a positron, with a depth of E[)=4.8 eV and a radius
equal to Aws.

Figure 2 first shows the self-consistent electron density
for a jellium vacancy without a positron present. Using that
as an input, the conventional calculation yields a trapped
positron density as shown in Fig. 3 and a single-particle
binding energy to the vacancy E&=1.85 eV. Using the
conventional dilute-limit local-density formula [i.e.,
gI2(0;n+, n ) gI2(0;O, n ) in Eq. (7)] the lifetime in the
trap is calculated to be (X„) ' =256 psec. The same model
gives the lifetime (A.q) =170 psec for a delocalized posi-
tron in bulk metal. The positron trapping potential is also
shown in Fig. 3.

The calculated lifetime values are actually in good agree-
ment with experiment, ' particularly if one adds the small
correction due to annihilation with the tightly bound ion
core electrons. However, it is clear that the description of
the mean electron density at the trap cannot be satisfactory.
Figure 2 also shows the results from the self consistent t-wo-

component calculation. One immediately observes the in-
crease of n (r) inside the vacancy, amounting to the extra
screening electron associated with the positron. The posi-
tron distribution and effective positron potential [see Eq.
(1)] are also shown in Fig. 3. The positron distribution is
slightly more spread out than in the non-self-consistent
case, which reflects the slower asymptotic decay of the trap-
ping potential. While the long tail is partly due to the local-
density approximations employed, i.e., self-interaction ef-
fects, it also more faithfully reflects the nature of positron-
dependent electron-positron correlations.

It is very interesting now to compare the lifetimes of the
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FIG. 1. The contact density enhancement gI2(0) in a homogene-
ous two-component Coulomb-Fermi gas for different values of the
density parameter r, and the density ratio x = n+/n

FIG. 2. The electron density at a jellium vacancy, Full curve:
two-component density-functional theory; dotted curve: electron
density in absence of the positron. The distance is in units of the
Fermi wavelength corresponding to r, =2.07. The density is given
in units of the bulk density no=0.027 a.u.
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FJG. 3. The positron probability distribution ~g+(r)) and the
effective trapping potential V,flap(r) Full curve: two-component
density-functional theory; dotted curve: assuming no electron den-
sity response to the entering positron. The potentials are given in

units of the Fermi energy (11.7 eV).

values of the two approaches. The two-component calcula-
tion using Eq. (7) gives ()P) '=245 psec, i.e. , a value only
4% different from the first estimate. This signals that, as
far as rates of annihilation are concerned, there is a cancel-
lation between (i) the electron pileup in the trap due to the
presence of the positron and (ii) the diminished "local" an-
nihilation rate due to the nonzero positron density. The
results from this model calculation give strong a posteriori

support for the wealth of lifetime calculations reported in
literature which are based on the conventional approach.

The binding energy of a positron to the trap must, in the
self-consistent case, be calculated from the difference
between two total energies. This gives a value of E~ =2.65
eV, i.e., considerably larger than the old value, even if the
positron distribution is actually less localized. This signals
that the previous one-particle calculations for the positron
binding energies are subject to criticism; and should. be con-
sidered with suspicion, at least for quantitative purposes.

In summary, we have developed a two-component
density-functional theory applicable to nonuniform inter-
penetrating charged Coulomb-Fermi systems, such as
electron-hole plasmas or liquid metallic hydrogen. Here we
have applied the quantitative method to electron-positron
systems realized at defect-bound positron states. ' The
results show the correct electron and positron densities
when the cross-correlations are truly accounted for and thus
transcend all previous ones. We show that, due to cancella-
tion effects, the conventional estimates for the lifetime
values remain accurate. This, of course, is good news from
the viewpoint of positron-defect spectroscopy by lifetime
analysis, since the two-component calculations are substan-
tially heavier than the conventional ones. On the other
hand, the earlier estimates for the binding energy are much .

less reliable.
One should also note that the present LDA calculation in-

cludes the self-interaction effects, which can lead to consid-
erable errors for the trapped positron energy. This can be
remedied by introducing self-interaction corrections, '5 which
actually are a step from the true density-functional theory
back to the direction of the original formulation. We shall
report on these and the full details of the present work in a
forthcoming publication. '
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