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Ellipsoidal shell structure in free-electron metal clusters
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The possibility of ellipsoidal distortions in free-electron metal clusters, analogous to the shape variations
among atomic nuclei, is investigated with the use of a modified Nilsson Hamiltonian, In most cases, the
predicted equilibrium shape is ellipsoidal rather than spherical, so that the spherical shells are divided into
ellipsoidal subshells. A strong correlation is observed between the energy-level sequence of these subshells
and the sequence of peaks in alkali-metal cluster mass spectra, indicating that metal clusters generally as-

sume approximately ellipsoidal shapes.

Spherical electronic shell structure has been observed' in
the mass spectra of sodium and potassium clusters produced
by supersonic expansion, in agreement with several theoret-
ical analyses. " A representative mass spectrum of sodium
clusters is shown in Fig. 1(a). Major spherical-shell edges
have been identified for clusters containing N= 2, 8, 20,
40, 58, and 92 atoms; and the excellent correspondence of
theory and experiment for these numbers indicates a clearly
developed spherical-shell structure. The smaller peaks,
however, e.g. , N=12, 14, 26, 30, 34, 36, 38, 50, and 54,
cannot all be understood in the framework of strictly spheri-
cal theories, which inevitably contain the 2l+1 orbital de-
generacy associated with spherical symmetry. These minor
features are nonetheless reproducible under a wide range of
experimental conditions for sodium, ' and several of them
are also seen in potassium-cluster mass spectra. In this pa-
per an axially symmetric independent-electron model is em-
ployed in an attempt to include both major and minor
features in a consistent way.

A successful shell theory for axially symmetric distortions
was developed for nuclei by Nilsson. Applying his discus-
sion to clusters, we neglect spin-orbit coupling and describe
the states of the valence electrons of the cluster by the ef-
fective single-particle Hamiltonian
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parameter U is taken to be positive, this effectively flattens
the bottom of the potential well and gives it sharper edges. 8

An initial estimate of appropriate U values may be made by
matching ratios of energy-level splittings for various values
of U with the corresponding ratios from self-consistent
jellium calculations;9 this gives values in the range
0.04 & U & 0.08 for most sodium clusters of interest.

The energy scale of the potential well is determined by
coo, the characteristic frequency of oscillation in the spherical
harmonic-oscillator limit (8=0, U=O). The magnitude of
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where the ellipsoidal scaling factors may be expressed in
terms of a distortion parameter 8 by the equations 40
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assuming the constant-volume constraint 0 ~ 0,= 1. To
first order, the absolute value of 5 is the difference between
the major and minor axes of any equipotential surface of
the cluster, divided by the mean radius. The ellipsoidal
harmonic-oscillator potential is perturbed with an 12 term to
split the dynamical symmetry degeneracies in the spherical
oscillator case between different angular momentum states
with the same total oscillator quantum number n.7 If the
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Number of sodium atoms per cluster, N

FIG. 1 (a) Experimental mass spectrum of sodium clusters from
Ref. 1. The number of atoms per cluster N (which is also the
number of valence electrons) is shown for selected clusters. (b)
Second difference of the sum of single-particle energies as a func-
tion of X, with U= 0.04. See text for discussion.
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separates the levels of the Nth and (N+ l)th electrons; in
this case b2(N) becomes approximately the size of the ener-
gy gap.

The largest features in Fig. 1(b) reproduce the major
spherical-shell closings, while the smaller features corre-
spond to the filling of particular inn, A) subshells. These
smaller peaks agree well with the structure observed in the
mass spectra. In particular, the fourfold patterns in the 1f
and 1g shells are correctly reproduced, the variation
between N = 14, 16, 18 is matched, and the twofold pattern
in the 2p shell is understood as a case in which 5 changes
sign at midshell, so that a prolate subshell is filled at N =36
and an oblate subshell at N =38. The shell-closing peaks
predicted by spherical theories at N =18, 34 remain in Fig.
l(b), but with magnitudes comparable to the adjacent ellip-
soidal subshell peaks rather than to the other spherical-shell
peaks. This is entirely consistent with the experimental
data, and explains the absence of the major feature predict-
ed by spherical jellium models at N = 34.4

The only significant discrepancies between this model and
the observed mass spectra occur in the range N «12. This
is to be expected, because the ellipsoidal approximation is
less applicable to clusters with very few atoms. However,
for the larger clusters the correlation between model and ex-
periment is quite satisfactory throughout the range in which
detailed features are observed in the mass spectra.

A comparison of Figs. 1 and 2 will show that the peaks
appearing in bq(N) typically correspond to energy gaps fol-
lowing shell or subshell closings, and the number N at
which each closing occurs depends on the value of 5 as-
signed to each cluster. In particular, it is clear from Fig. 2
that a change in the sign of 8 usually implies a different set
of subshell closings, which would result in different peak
positions. Nearly all of the peak positions are properly
matched, indicating that the ellipsoidal model correctly dis-
tinguishes the more likely geometry, prolate or oblate, in
most cases.

The correlation between this simple model and the
features observed in mass spectra suggests that even the
finer details of the electronic enegy-level structure of free-
electron metal clusters may be approximately described by
considering only the energies of the valence electrons in a
smooth axially symmetric potential, without specific infor-
mation about the positions of the atomic cores. The cluster
energy is minimized by relaxation of the cluster shape to
conform more nearly to the shape of the available valence-
electron wave functions. This assertion has been given de-
tailed theoretical support for the smallest sodium clusters by
Martins, Buttet, and Car." They observe that when the
atomic positions in a sodium cluster are allowed to relax,
the eventual self-consistent wave functions for the valence
electrons may be described as "s-like", "p-like", etc.
Moreover, for the partially filled 1p shell clusters (N = 3—7),
they find cluster shapes which conform to the occupied p-

u = n, =p(l + —', 8'), (4)

which shows small increases in o. for both prolate and oblate
distortions. The ellipsoidal model may also offer a partial
explanation for the discrepancies between spherical-shell cal-
culations of photoionization potentials and experimental
results. ' The large discontinuities in ionization potentials
found at shell closings in the spherical theories are due to
the size of the energy gap to the next available level. But in
a nonspherical theory the clusters immediately following a
closed shell are distorted, arid this reduces the energy of the
newly populated level, thus reducing the magnitude of the
discontinuity in comparison with the values given by spheri-
cal theories.

The foregoing results suggest some possibilities for future
experimental work. Plasma-resonance peaks, for example,
will split into two peaks in the axially symmetric case, corre-
sponding to the two scaling factors Ai, 0,. This effect is
analogous to the splitting of giant dipole-resonance peaks in
nuclei, ' and offers an experimental way to measure 5.
Moreover, selection rules should be observed in the spheri-
cal and highly distorted limits, ~here the spherical and
cylindrical representations are good descriptions of the actu-
al eigenfunctions.

In conclusion, this model accounts for most of the
smaller features of alkali-metal cluster mass spectra by re-
laxing the common spherical-shape constraint to allow clus-
ters to assume energetically favorable ellipsoidal shapes.
The experimental features which have previously been asso-
ciated with spherical symmetry emerge naturally in the ellip-
soidal model as special cases in which the ellipsoids reduce
to spheres.

It is a pleasure to thank Professor Walter D. Knight,
Walter de Heer, and Winston Saunders, each of whom has
been generous with his time and advice throughout this pro-
ject. I am grateful to Dr. W. Ekardt for criticizing the
manuscript, and to Dr. Gary Schajer for assistance with nu-
merical methods. This work was supported in part by the
Materials Research Division of the U.S. National Science
Foundation under Grant No. DMR 81-15540.

like orbitals, differing from shapes generated by three-
dimensional close-packing arguments. The variation from
prolate to oblate geometry predicted by Nilsson theory for
the 1p shell is consistent with the equilibrium geometries
found in Ref. 11.

Several consequences of the ellipsoidal model are of in-
terest. Measurements of the static electric polarizability of
alkali-metal clusters' show that clusters with partially filled
shells typically have a larger mean polarizability than nearby
closed-shell clusters. The Nilsson Hamiltonian (with U=o
for simplicity) correctly describes this effect; when the po-
larizability is averaged over all orientations of the cluster,
the result to second order in 8 is'
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