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We respond to the preceding Comment by Faulkner by examining the convergence properties of func-
tions used to represent solutions with Schrodinger's equation in the context of Green's-function band

theory. Such evidence as exists on the subject is reviewed. The conclusion drawn is that the data present-

ed in his Comment are sufficient to conclude that "a large fraction of the errors caused by ignoring the
non-muffm-tin parts of a potential can be eliminated by the simple expedient of including the nondiagonal

parts of the scattering matrix. " However, the data presented do not warrant the conclusion that our theory

is incorrect through the neglect or incorrect treatment of the "near field" or in any other manner. This is

a question that must ultimately be resolved algebraically, but the data so far presented do not seem to be
inconsistent with our theory being exact.

The evidence presented by Faulkner in the preceding pa-
per' is too weak to warrant the conclusion that our theory'
is incorrect. At this time we know of no algebraic errors in
our derivation, and unless an error in the derivation can be
demonstrated unambiguously, we shall continue to stand by
our original work. However, it is entirely reasonable to ex-
pect our theory, if it is correct, to pass well-constructed nu-
merical tests.

High-precision non-muffin-tin band theory is maturing as
a field of investigation, largely due to the cornerstone works
of researchers such as Evans and Keller, ' Ziesche, 4 Williams
and van W. Morgan, ' and Faulkner. It is perhaps time to
reinvestigate, in light of the advances made in this field in
the last decade or so, what kind of numerical performance
we might expect from an exact band theory. It is incorrect
to assume that a theory which is exact when expressed in
terms of some infinite set of basis functions will necessarily
produce better numerical results than the same theory ex-
pressed in a good approximation. Both theories become ap-
proximate in application because the basis is truncated and
because of finite-precision arithmetic in computers.

In this Response we will examine three things. First, we
will discuss the representation of solutions to Schrodinger's
equation and the question of convergence. Second, we will

address severa1 points where we disagree with Faulkner and
the reasons for that disagreement. Third, we will present
the "nonvariational" derivation of our results in a highly
abbreviated form. We omitted this from our original publi-
cation in favor of using the Kohn variation to make our
derivation resemble, as closely as possible, that of Kohn and
Rostoker. As a consequence of this omission some con-
fusion has arisen concerning our derivation for which we
apologize. We hope that this derivation makes it clear that,
while we prefer the variational approach for reasons detailed
in Ref. 2, it is by no means essential to our theory, nor is
its use in any way connected with our assertion that our
results constitute a generalized solution to the band-
structure problem.

When one compares two multiple-scattering solutions of
the Schrodinger equation for the infinite crystal, one is at
some level comparing how accurately the theories are capa-
ble of representing the crystal wave function inside the cell,
i.e., one is comparing the basis functions in terms of which
the solutions are expressed. (We use the term basis rather

loosely throughout to refer to any expansion set that one
uses as if it were a basis. ) In order to compare the theories
numerically, one must then examine the properties of these
basis functions. The questions to be answered are the fol-
lowing: Can the basis functions be used to express any ex-
act solution to the differential equation inside the cell
(Schrodinger's equation), and can they be used to express
any particular solution with given boundary conditions~

These are independent questions. A given set of
representation functions (such as that of Williams and van
W. Morgan), may be exact solutions to Schrodinger's equa-
tion throughout the cell and still be unable to represent
correctly some particular solution with given boundary con-
ditions. Alternatively, it is more common in physics to ex-
press a problem in terms of a set of functions that manifest-
ly satisfy the boundary conditions for a given problem and
then attempt approximately to satisfy Schrodinger's equa-
tions in the region of interest.

These questions are further complicated by the observa-
tion that a set of representation functions may converge
rapidly at first toward the solution of a given boundary-
value problem, but can still diverge from the correct solu-
tion (by no longer satisfying the differential equation or by
departing from the specified boundary conditions), - if carried
out to a high-enough order. This possibility was comment-
ed upon by Ziesche in Ref. 4.

In this respect, at least, our theory is certainly sound. We
prove in Ref. 2 that our basis is complete and uniformly
convergent; the functions used by Faulkner in Ref. 1 to
study our theory [his Eq. (15)], are manifestly so for the
empty lattice. Specifically, they satisfy the differential equa-
tion, are able to represent an arbitrary (square-integrabie)
solution in the bounding sphere, and are rapidly convergent.

Faulkner, in Ref. 1, shows by means of examining the
rms splitting in empty-lattice calculations that a large frac-
tion of the errors caused by the muffin-tin approximation in
a Green's-function band theory can be eliminated by the
simple expedient of including the nondiagonal parts of the
scattering matrix evaluated in an appropriate basis. While
he does not offer any algebraic explanation of why this
should be the case, we agree completely with this con-
clusion.

However, he attributes the rms splitting uniformly present
in his cases 1-3 to the neglect of the "near field. " Specifi-
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cally he claims that "The only approximation. . . in case 1

in Table I is the neglect of the near-field corrections
N(E, k)." This is not justified in his paper, either algebrai-
cally (which would still require a numerical estimate of the
near-field correction), or numerically. He does not show us
calculations from a theory that contains his near-field
correction at a11.

Furthermore, there are at least two approximations aside
from the near field in his case 1. The scattering matrices
required in all these theories are made finite by considering
only those elements whose angular-momentum index is
«4. While this is indeed a large number of- It values for a
Korringa-Kohn-Rostoker (KKR) calculation, this truncation
of the basis functions used is certainly an additional approx-
imation and introduces a rms splitting and mean error in the
location of the band eigenvalues quite independent of any
associated with neglect of a near field. In addition, there is
a numerical error associated with the decomposition of the
empty lattice potential, the integrations, and the matrix in-
version.

Faulkner does not study the I convergence of the theories
at all. Instead he uses Williams and van W. Morgan' s
results as a standard of convergence to justify his use ofI,„=4 in the scattered wave. He also uses their results,
which he closely reproduces in case 1, as a standard of non-
convergence, i.e., as a measure of the near-f'ield error. This
seems to be inconsistent. Examining their results we ques-
tion whether they justify either use.

Williams and van W. Morgan studied the numerical con-
vergence of their technique extensively. They were at-
tempting to gauge the residual errors introduced by truncat-
ing the expansion of the sharp "edge" of the empty cellular
potential and by truncating their expansion of the scattered
wave. They felt that these truncations would be the princi-
pal sources of error in their method.

Their results at 1,„=4 (in the scattered wave), were suf-
ficiently accurate for them to conclude, with considerable
numerical justification, that they had derived an exact
theory.

Williams and van W. Morgan's results in the convergence
study are reproduced in Fig. 1. We have converted their
units to rydbergs to make them more easily comparable to
Faulkner's dimensionless units. In these results, both the
mean-energy error and the rms splitting strongly decrease asI,„ in the scattered wave is increased from 0 to 4. There is
no reason to assume from this graph that the error in both
of these quantities will not continue to get smaller if I,„ in
the scattered wave is increased beyond 4. Williams and van
W. Morgan also held this view: ". . . the inclusion of
higher components in the wave function would decrease the
errors appreciably. "~ If this were the case then Faulkner
would be incorrect in attributing the remaining rms splitting
to the near-field error.

This is, as far as we know, the only systematic study of
convergence in high-precision band theories of this sort con-
ducted to date. Its implication is clear: Even for the theory
of Williams and van W. Morgan where an algebraic near-
field error is known to exist, the actual energy error intro-
duced by this near-field error may be much smaller than the
truncation error at I,„=4.

If this is the case, then our theory would actually be
suspect if it did not produce approximately the same rms
splitting of the eigenenergies as that observed by Williams
and van W. Morgan, . and later Faulkner. This possibility is
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FIG. 1, This is Fig. 3 from Ref, 5. The highest I in the empty-
lattice potential is eight, and its depth is 13.6 eV, or 1.0 Ry. The er-
ror in the mean and the splitting are still decreasing strongly as lm«
is increased from 3 to 4. There is no reason to believe that the er-
ror will not continue to decrease as Im» is increased to, say,
Imax= 6

further supported by the uniformity of the rms splitting re-
ported by Faulkner in his cases 1-3 in spite of very dif-
ferent ways of evaluating the near-field contribution. It is
difficult to see how case 2, which is the "worst" approxima-
tion on the face of it, could produce the smallest rms split-
tings at three of the eight points studied if the near-field er-
ror were not smaller than the other sources of error uni-
formly present in all three numerical calculations.

We feel that the study conducted by Faulkner is inade-
quate to resolve the near-field error, even in those theories
where it exists, from the truncation error. Since he did not
present for comparison a theory that corrects for the neglect
of t'he near field, his results do not study the near field at
all. The sole conclusion that his numerical results seem to
justify is that the bulk of the error introduced by the
muffin-tin approximation is eliminated by including the
off-diagonal elements of the scattering matrix for the cell.

Our derivation is based on our use of the correct basis
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functions throughout the bounding sphere. The primary
difference between our method (case 3) and the methods
Faulkner presents as case 1 and case 2 is that the expansion
of the exact solution to the empty-lattice problem, in terms
of our basis functions, actually exists. In the other cases
the basis functions do not span the space in which the solu-
tions are known to lie (or if they do it has yet to be demon-
strated); therefore it is unsurprising that they may require
some correction factor.

On the other hand, the expansion functions used in case
1 and case 2 are able to represent the actual solution quite
closely throughout most of the volume of interest (in fact
all three basis sets are identical everywhere inside the
muffin-tin sphere), and it is also not surprising that they get
very good results. However, until the expansioris used in
all cases are sufficiently converged that the truncation and
numerical error are strictly less than any method error, one
will not be able to tell numerically just how large the correc-
tion factor required will be.

Faulkner makes, in his discussion, the statement, "The
variational step that they [we] use. . . plays a different role
from the one in Ref. 6 [Kohn and Rostoker]. " This is in-
correct. We use it in precisely the same manner that Kohn
and Rostoker used it when deriving the secular deter-
minant of KKR band theory. Because some confusion has
arisen as to whether the derivation of a Green's-function
(or multiple-scattering) band theory can include a variation-
al step as a means of extracting a secular determinant, we
would like to note that our actual result is Eq. (3.21) on
page 4573 (of Ref. 2), which is derived directly from the
Lippmann-Schwinger equation for the infinite lattice.

Any method one prefers, including a straightforward pro-
jection against spherical harmonics such as that used by
Kohn and Rostoker in their Appendix 1, can be used to ob-
tain the same secular determinant [Eq. (3.27) on page
4573]. In fact, Faulkner himself notes that "it is not
surprising that the results are identical with the ones that
arise from the multiple-scattering equations" when discuss-
ing the Kohn variation on page 6189 of Ref. 6.

To elucidate this point we present the "nonvariational"
derivation below. We follow precisely the same step (pro-
jection against a spherical harmonic), going from Eq. (3.21)
[which is equivalent to Kohn and Rostoker's (A1.3)] to an
equation equivalent to their (A1.4) from which (3.27)
directly follows. This projection is allowed because our basis
functions, and hence our solutions, are defined throughout
the bounding sphere.

We begin with Eq. (3.21) from Ref. 2 [L —= (i,m) ],

oQQJ, (r) C, (~)+—XB, „S"„(~)aL=0.
L Li Lt

We multiply through by a spherical harmonic and in-
tegrate over the sphere r = I.b, —e where rb, is the radius of
the bounding sphere and let ~ 0. We obtain then a set of
equations (indexed by L'),

gK j,(orb) C, (~) + —XB S „(oo) az =0 .

)
Finally, we divide out the ~ j (~rb, ) from each equation

to obtain our secular Eq. (3.27) below from which the secu-

lar determinant trivially follows.

x C",(~)+—gB, „S"„(~)aL ——0.0
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t

In order for this last step to be valid, j (~rb,) must obvi-

ously be unequal to zero for each I'. This is the projective
analog to the condition (3.25) derived in Ref. 2.

Williams and van W. Morgan's multiple-scattering deriva-
tion used precisely this method to obtain their secular deter-
minant, but in their case it was not valid. Their basis func-
tions are defined to be zero outside of the (central) cell;
hence their Eqs. (2.10) and (2.11) are defined only for r re-
stricted to the cell. At the step in their derivation where
they obtain their secular equation by multiplying Eqs. (2.10)
and (2.11) by a spherical harmonic and integrating over an-
gles, the region of integration extends outside of the cell for
r greater than the muffin-tin radius. The orthogonality rela-
tion for spherical harmonics cannot, therefore, be used at
this point. However, a variational derivation like Kohn and
Rostoker's can always be used, and yields (unsurprisingly),
the same secular determinant as that previously obtained by
Williams and van W. Morgan, with an associated consisten-
cy condition analogous to (3.25). It is for this reason that
we prefer it.

On the other hand, Faulkner is quite correct in his state-
ment that the introduction of a variational step will not help
the convergence of a Green's-function or multiple-scattering
theory of this kind. That is determined by the completeness
and convergence properties of the functions used as a basis
alone. Variation can give one information on the rate of
convergence and it can ensure that one optimize one's use
of a truncated basis, but it will not improve it. Variation
cannot make a poor representation into a good one, in band
theory or anywhere else. This point has been made before
by Faulkner (in Ref. 6), and we agree with it wholehearted-
ly.

The phase-functional basis we use is demonstrably a com-
plete and convergent basis within the bounding sphere
(manifestly so in the case of the empty lattice). It is, in
fact, a way of solving Schrodinger's equation for very gen-
eral local potentials that is perhaps underexploited in physics
today. It can be used to obtain bourid-state energies, wave
functions, and scattering states all within the same theory
with orthogonality built in. It is the strength of this ap-
proach that we feel adds credence to our algebraic con-
clusion that our theory is exact.

In conclusion we would like to summarize our position.
We do not feel that Faulkner's results study the near-field
correction at all, and hence we cannot accept any of his con-
clusions concerning it. In particular we do not think that he
has shown our work to be in error, either algebraically or
numerically.

The issue here is not whether or not a near-field correc-
tion will improve the convergence of the theory; the ques-
tion is whether or not a theory without a near-field correc-
tion will converge at all to the correct result. Clearly all of
the methods studied by Faulkner as cases 1—3 are converg-
ing strongly to the correct result and there is no reason to
assume from the results obtained to date that they would
not continue to do so if I,„were increased.

To give Faulkner his due, we must admit that neither do
his calculations support our contention that our method is
exact. We agree that at some point, in some problem, our
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method should be demonstrably better than the other
methods. We do not feel that that point should necessarily
have been reached in this calculation.

The conclusion that we feel his results best justify is his
original one. The calculations (together with those of Willi-
ams and van W. Morgan), demonstrate that "a large frac-
tion of the errors caused by ignoring the non-muffin-tin
parts of the potential can be eliminated by the simple ex-
pedient of including the nondiagonal parts of the scattering
matrix. " Such a conclusion can only encourage further
study into this fascinating problem, both in application to
physically interesting cases and as a means to a deeper
understanding.

Note added in proof. We have just completed an exhaus-
tive numerical study of the empty lattice problem that com-
pares our method to that of Williams and van W. Morgan.
In particular, we study the convergence properties of the
two high-precision theories at 1 —max in the scattered wave

up to 6. Our results, summarized, show the following:
First, the mean error term behaves quadratically in the
depth of the potential, with small higher-order terms.
Second, Faulkner's results can all be understood in terms of

quadratic functions with approximately the same second
derivatives that intersect at one point. If one draws two
parabolas with this property one can easily see that one will

be larger than the other on exactly half the real number
line. Third, when the calculation is extended to
1 —max = 6, the rms errors resulting from the application of
our method lie uniformly and consistently below those
resulting from the method of Williams and van W. Morgan
at the same two points in the band studied by Faulkner.
This is because the second derivative of our error curve is
smaller than theirs, hence our curve is flatter. Further-
more, the overall error, especially in the eigenenergies cor-
responding to low angular momenta, dramatically decreases
as the higher-order scattering terms are included in both
theories, indicating that they are both still strongly converg-
ing. From this we must conclude that the observed error in
both theories, even at 1 —max = 6, still comes primarily
from the truncation of the potential and/or the scattering
matrix, not from the "near-field" error. We will present
the numbers and graphs resulting from this study, as well as
discuss the issue in greater detail, in a paper we are prepar-
ing for publication.
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