
PHYSICAL REVIE%' B VOLUME 32, NUMBER 2

Comments

15 JULY 1985

proofs are sent to authors.

Non-muffin-tin band theories of the multiple-scattering type

J. S. Faulkner
Metals and Ceramics Division, Oak Ridge National Laboratory,

Oak Ridge, Tennessee 37831
(Received 24 June 1983; revised manuscript received 7 December 1984)

Numerical calculations on an empty-lattice model are used to illustrate the fact that the greatest improve-
ment in the accuracy of the eigenvalues for a non-muffin-tin potential comes from the inclusion of the off-
diagonal elements of the scattering matrices. The eigenvalues calculated with a recently proposed formula-
tion are seen to be no better than those obtained with other schemes that ignore near-field corrections.

The band-theory equations derived from multiple-
scattering theory'~ by Korringa and from an equivalent in-
tegral formulation by Kohn and Rostoker6 have played a
central role in calculations of the properties of solids using
the local-density approximation. These Korringa-Kohn-
Rostoker (KKR) equations are well adapted to digital com-
puters, and they can be applied with equal accuracy to sim-
ple metals, transition metals, or rare earths. The multiple-
scattering approach has proved useful in deriving fast-band-
theory equations ' that have the speed of interpolation
schemes and the accuracy of first-principles methods. Also,
the KKR coherent-potential-approximation equations for
calculating the electronic" '3 states of substitutional solid-
solution alloys are derived from multiple-scattering theory.

In their original form, the KKR equations were worked
out for a crystal potential V(r) that has the muffin-tin
form. Such a potential is spherically symmetric within a set
of nonoverlapping spheres, and is constant outside these
spheres. The energy scale is always adjusted so that the po-
tential in the region between the spheres, called the intersti-
tial region, is equal to zero. Although muffin-tin models
have proved to be accurate enough in many applications,
there are cases for which more accuracy is needed. Much
effort has been made over the years to derive band-theory
equations from multiple-scattering theory without using the
muffin-tin approximation. ' ' Some of the resulting
equations were investigated numerically, but in other stud-
ies the only justification for the equations are the algebraic
virtues that they are perceived to have by their authors.
The purpose of the present paper is to comment on some
questions concerning non-muffin-tin effects in band theory
that have recently arisen and to illustrate these comments
with some specific calculations. The remarks are relevant to
the other applications of multiple-scattering theory as well.

The empty-lattice model is a simple non-muffin-tin model
for which the exact eigenvalues are known. It has been
used by band theorists since the 1930s. The crystal poten-
tial for this model can be written

V(r) = —6 g o-(r —R, )

where RI are the lattice vectors for the chosen lattice. The
function o. (r) is a step function which has the value one
when r is inside the unit cell and zero when r is outside.
The unit cells are most conveniently viewed as the Wigner-
Seitz cells that show the symmetry of the crystal. Since the
unit cells that are being summed over in (1) fill all space, it
is equally accurate to say that V(r) is a constant —b, . The
eigenvalues E(k) that should be obtained from a band-
theory calculation with this potential are obviously the free-
electron eigenvalues Ep(k) measured from —h. When
V(r) is taken to be the sum of nonoverlapping potentials,
as in (1), the volume of the interstitial region has shrunk to
zero. The interstitial region is just the part of space that is
within the distance ~ of the surface of the unit cells, in the
limit as e approaches zero.

The KKR equations for a non-muffin-tin potential that I
derived9 may be written as a set of simultaneous algebraic
equations

X M„,C, ,=0,
L

in which the indices L represent the pair of angular momen-
tum quantum numbers I and m. The eigenvalues E(k) are
the values for which the determinant of the matrix of coef-
ficients is zero

detM(E, k) =0

The matrix M(E, k) is shown to be

M(E, k) =X(E)+8(E,k)+N(E, k)

where X(E) is a matrix that describes the scattering from
the potential in the central cell u(r) as if it were embedded
in a vacuum, and the B(E,k) are certain structure con-
stants that may be calculated for a given crystal structure
using a technique invented by Ewald. The elements of
N(E, k) were dubbed near-field corrections by Ziesche. '~

The formula that I derived for them differs from Ziesche's,
and I will soon publish yet another version, but the nomen-
clature is still apt because the lattice sums are over only a
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few sites in the neighborhood of the central one. As was
mentioned before, the energy E that appears in these ma-
trices is measured relative to the constant value that V(r)
takes on in the interstitial region. There must always be an
interstitial region in order to apply multiple-scattering
theory, even though its volume may go to zero.

The potential function for the central cell in the empty-
lattice model,

is highly aspherical since it has the sharp corners typical of a
signer-Seitz cell. It can be expanded for lattices that have
cubic point-group symmetry as

(6)

where Ki(r) is a cubic harmonic. There is only one cubic
harmonic for each I of value 0, 4, 6, or 8 and higher angular
momenta will be ignored. The scattering matrix X(E) is
written

X(E) =Kc(E)s(E)

with ~ being the square root of E. The elements of the
cosine and sine matrices are

cLL (E) = Kh g ' ni(Kr)&ALL (r)@L L (E,r) r dr SLL'
1

+S
SLL (E) = K4 g ' j((Kr)o)LL, (r)@L,L,(E,r)r'dr

1

where

OiLiL2(r) g CLtL2~I(r)

and the constants in this expression are the Gaunt factors

(10)

the Yi (r) being real spherical harmonics. The functions

@LL (E,r) are solutions of the integral equations

$LL (E,r) =j~(Kr)5LL A—g„gi(E,r, r')OiLL, (r')
I)

x@L L (E,r')r' dr', (ll)

where

gi(E r, r') = —K[ji(Kr) ni(Kr') —n (iKr)ji(Kr') ] . (12)

These equations for c(E) and s(E) are essentially the ones
in Calogero's book, and they appear much more compli-

. cated than they are. If one replaces the spherical harmonics
in (10) with the linear combinations that can serve as basis
functions for the point group of the crystal, many of the
elements of c(E) and s(E) are zero and many of the
remaining elements are equal to each other. For example,
when the angular momenta I and I' in the matrix indices L
and L' are allowed to range from zero to I,„=4, the ma-
trices in (4) will have the dimension 25. For a cubic crystal,
however, only 19 of the possible 625 elements of c(E) or
s(E) must be calculated.

The results of all the calculations to be discussed in this
paper are summarized in Table I. The near-field corrections
N(E, k) are set equal to zero in all of them. These correc-
tions will be treated in a later paper. The matrices are made
finite by considering only those elements for which the an-
gular momenta satisfy 0» I» 4, and it follows from this
that only terms corresponding to I » 8 need to be included
in (6) because the Gaunt factors defined in (10) are identi-
cally zero when I & I&+I2. This is a large number of I
values for a KKR calculation. The I convergence is illustrat-
ed for this model in the calculations published by Williams
and van Morgan. ' All of the calculations are carried out on
the body-centered-cubic Bravais lattice.

Attention is focused on two sets of eigenvalues. One is
the set of 12 eigenvalues at the point 1 in the Brillouin
zone, i.e., k=0. In the free-electron case these eigenvalues
would be degenerate with energy equal to 2 in dimension-
less units. In the empty-lattice model they should remain
degenerate with energy 2 —6, but because of the neglect of
N(E, k) and the truncation in angular momentum this set
of eigenvalues is split into five subsets corresponding to the

TABLE I. Collection of rms errors for approximate empty-lattice calculations as a function of b, , the
amount that the potential has been lowered. Dimensionless energy units are used throughout. These units
are about the same as rydbergs for metallic systems. Briefly, the approximations considered are as follows:
case 1—multiple-scattering formula ignoring near-field corrections; case 2—same as case 1 but scattering ma-

trices are approximated; case 3—formula from Ref. 21; case 4—potential is replaced by its spherical average;
case 5—VA'gner-Seitz cell replaced by Wigner-Seitz sphere.

Exact
energy

Case 1

rms error
Case 2

rms error
Case 3

rms error
Case 4

rms error
Case 5

rms error

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

1.80,
1.60
1.40
1.20

0.8
0.6
0.4
0.2

0.005 06
0.008 81
0.01139
0.01301

0.00037
0.000 87
0.003 56
0.007 73

Eigenvalues from
0.005 13
0.008 75
0.011 18
0.012 66

Eigenvalues from
0.00042
0.00103
0.003 92
0.008 39

point I"

0.005 11
0.00901
0.01182
0.01370

point H
0.00044
0.000 58
0.002 86
0.006 46 .

0.023 48
0.047 39
0.072 28
0.098 52

0.015 12
0.03061
0.046 83
0.064 04

0.024 97
0.050 31
0.076 25
0.10303

0.016 16
0.032 63
0.049 55
0.067 07
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symmetry types I ~, I ~5, I"]2,I", and I"25. The other eigen-

values that are considered correspond to a k point at the
corner of the Brillouin zone that is called the H point.
There are six eigenvalues that have the energy 1 in the
free-electron case. In these empty-lattice calculations they
break up into the three sets with symmetries H~, H~2, and
H~5. The three energies that result from these empty-lattice
calculations are clustered about the exact value of 1 —A.
The rms errors in Table I are all calculated relative to the
appropriate exact value. The energies can be converted
from dimensionless units to rydbergs by multiplying by the
factor (2m/a)2, where a is the lattice constant expressed in
Bohr radii. This factor is about 1 for most metals, so the
dimensionless units are about the same as rydbergs.

The only approximation in the calculations called case 1 in
Table I is the neglect of the near-field corrections N(E, k).
The functions /zan (E,r) are calculated from the coupled in-

tegral equations in (11), and then inserted in the equations
in (8) to obtain the scattering matrices c(E) and s(E). The
structure constants B(E,k) are calculated with our standard
computer programs. The rms errors may not seem so small
at first sight, but it should be noted that the potentials in
this model calculation are much more aspherical than the
potentials that appear in non-muffin-tin calculations on real
metals. It was found in calculations in Rb, Nb, and Pd,
for example, that the potential differed from zero in the re-
gion between the muffin-tin sphere and the cell boundary
by approximately 0.1 Ry or less. The values of 4 used in
this calculation were chosen to be very much larger than
that just to emphasize the point that the near-field correc-
tions for this case are extremely small.

The calculations for case 2 are simpler than those for case
1 in that the function QLL (E,r) is calculated only approxi-

mately. The spherical average of the potential u(r) in (5)
will be called vo(r). It is just a constant times coo(r), the
component of the step function for /=0. I calculated thc
solutions Fj(E,r) from a radial Schrodinger equation using
the potential ~0(r). The normalization was chosen so that

lim Fj(E,r) =j~(~ r )r~0

The scattering matrices c(E) and s(E) were calculated from
(8) with the substitution

(14)

The rms errors for this case are essentially the same as the
ones for case 1. This illustrates that the error in the eigen-
values does not depend sensitively on the accuracy of the
calculation of c(E) and s(E)

It might seem strange at first that some of the rms errors
are smaller for case 2 than for case 1. The answer is easily
found by looking at the eigenvalues. Four of the five eigen-
values corresponding to the point I' and 6 = 0.4 are calculat-
ed to be greater than 1.60 in case 1. The approximation
used in case 2 causes all of the eigenvalues for this k to be a
little smaller, so it appears to diminish this particular error.
The only meaningful interpretation of the results in Table I
comes from looking at the overall trends.

The calculations in case 3 were done to test the equations
in a recent paper by Brown and Ciftan (BC).2' Their asser-
tion is that the expression in (4) should be replaced by one
in which N(E, k) is zero but the matrices c(E) and s(E)
that make up X(E) should be calculated from formulas that

are slightly different from the ones in (8). They would re-
place the solutions @LL (E,r) in those equations with solu-

tions of integral equations like the ones in (11) except that
the potential v(r) is replaced by another one u(r). Rather
than going to zero at the cell boundary, the potential u(r) is
equal to the total potential V(r) in (1) all the way to the
boundary of the sphere that circumscribes the unit cell. In
the empty-lattice model u(r) is just a constant —6, so the
BC prescription is to calculate c(E) and s(E) from equa-
tions like (8) except that the replacement

1 l/2

Qzz (E r) — j~(&E+«)8LL,E
E+6 (15)

~here S is the radius of the sphere that circumscribes the
potential and

[fg]= f(r) g " — " g(r)
dr dr

evaluated at r=S. The results. of calculations done with
these formulas are shown as case 4 in Table I. The rms er-
rors for this case are orders of magnitude larger than for the
preceding cases.

The simplest calculations that I did were with an empty-
lattice version of the spherical model in which the unit cell
is replaced by a signer-Seitz sphere that has the same
volume. The potential v(r) is approximated by a function
that has the value —b, when ~r~ is less than the Wigner-
Seitz radius r~s, and is zero otherwise. The cosine and sine
matrices have only values on the diagonal elements. They
are given by formulas like the ones in (16) except that S is
replaced by rws and F~(E,r) is replaced by the function in
(15). The rms errors for this model, referred to as case 5 in
Table I, are extremely large, as would be expected.

DISCUSSION

These calculations demonstrate that a large fraction of the
errors caused by ignoring the non-muffin-tin parts of a po-
tential function can be eliminated by the simple expedient
of including the nondiagonal parts of the scattering matrix.
Similar, but less extensive calculations encouraged Williams

is made. The rms errors listed in Table I for case 3 are not
essentially lower than those for cases 1 or 2, so the BC as-
sertion that calculating the scattering matrices differently
will reproduce the effect of near-field corrections is not jus-
tified by these calculations.

It might be thought from the rms errors for cases 1, 2,
and 3 that almost any approximation will lead to about the
same level of accuracy, but this is not the case. The crucial
point for reducing the errors into the mRy range is to
represent the off-diagonal elements in the scattering ma-
trices c(E) and s(E) with reasonable accuracy. For exam-
ple, suppose the potential v(r) in (5) is actually approximat-
ed by its spherical average vo(r). Instead of using the solu-
tion F~(E, r) to calculate the matrix elements of c(E) and
s(E) for the total v(r), these matrices would contain only
the diagonal elements

ALLO(E) +S [ +I ~l]5LLO

Szz (E) =~S [j),Fj]8zL
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and van Morgan'6 in their belief that an equation like (4)
with X(E, k) set equal to zero should be exact. It was later
recognized that multiple-scattering theory requires near-field
corrections.

Brown and Ciftan ' did some algebra that convinced them
that the effect of the near-field corrections can be complete-
ly absorbed into a scattering operation in a way that is com-
putationally very simple. Their specific proposal was out-
lined in the discussion of case 3 in the preceding section.
The variational step that they use on page 4573 of their- pa-
per to transform their equations into a tractable form plays a
different role from the one in Ref. 6. Although Kohn and
Rostoker chose to use the language of the Kohn variational
theorem in the body of their paper, they prove in their Ap-
pendix 1 that the same equations can be obtained nonvaria-
tionally. It would be a reasonable assumption that the intro-
duction of a true variational step would not help the conver-
gence of the theory. The numerical results in Table I pro-
vide evidence for this assumption. The empty-lattice model
is not very physical, but it is the only three-dimensional
model of a non-muffin-tin potential that I am aware of for

which the exact eigenvalues are known. As in any calcula-
tion, the series are approximated by a finite number of
terms. If Brown and Ciftan's equations were truly superior
to the others, however, it is reasonable to expect that they
would have begun to demonstrate some systematic reduc-
tion in the error at the level of convergence attained in
these calculations.

To sum up, it is my belief that the mathematical problem
of finding a set of band-theory equations from multiple-
scattering theory for a non-muffin-tin potential that is com-
putationally tractable is still unsolved. However, many
physically interesting problems can be treated by simply ig-
noring the near-field corrections.
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