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We suggest that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordi-

nary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed
point, which we identify with the destruction of fractional states by disorder.

The purpose of this paper is to propose the scaling dia-
gram for the quantum Hall effect illustrated in Fig. 1. We
are not presenting a rigorous or complete theory, but rather
arguing on general grounds that ifa scaling theory of the ef-
fect exists and if it may be projected onto the o. —o.~
plane in a meaningful way, then the simplest picture con-
sistent with existing experiments' has the topology shown in
Fig. 1. The purpose of this "minimal" scaling picture is to
provide a conceptual framework for future research on elec-
tron transport in this system. Its physical content is that all

quantum Hall steps are equivalent and that fractional quan-
tum Hall plateaus disappear with increasing disorder by nar-
rowing continuously, in rough analogy to the continuous
closing of a superconducting gap with increasing tempera-
ture. In addition, the plateaus are nested, so that the com-
plete destruction of any plateau implies the previous des-
truction of all those deriving from it hierarchically. .

The first step leading to Fig. 1 is the assumption that scal-
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FIG. 1. Scaling diagram for the fractional quantum Hall effect
generated by Eqs. (8) and (9). The units of conductivity are e~/it.
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where p is the Fermi surface density of states, ~ is the Fer-
mi energy, n is the electron density, and 7 is a suitable elas-
tic collision time, as the Fermi level is raised. The transi-
tion between these two behaviors as the length scale L of
the sample is increased is given by
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FIG. 2. Scaling diagram for the ordinary quantum Hall effect
generated by Eqs. (5) and (6) in the asymptotic region. The units
of conductivity are e /h.

ing theories ~ of the quantum Hail effect in the absence of
Coulomb interactions, based on recent field theoretical work
of three of us, 45 are topologicaily correct. An example of
such a theory is illustrated in Fig. 2. o-~ and a.~ are the
only relevant variables in this theory, so that the issue of
projectability is moot. We leave open the possibility that the
correct theory of the ordinary quantum Hall effect has the
strength of the Coulomb interaction as a third relevant vari-
able and must be projected onto the a —a.~ plane to look
like Fig. 2. This theory is specifically a description of the
phase transition that occurs as the Fermi level of a two-
dimensional electron gas in a strong magnetic field is raised
through the center of a Landau level ~ If the system is infin-
ite, its parallel conductivity a- remains zero, except over a
range of measure zero, while its Hall conductivity o-~ jumps
abruptly from zero to e2/h. If the system is very small, lo-
calization does not occur, and the conductivities maintain
their mean-field values, given by

Ee 7'
~ (o) (I)

m I+ (o),r)2

and

where P and P~ are given asymptotically (o- ~) by'

1 —4mo.
P = —
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and

P~ = —Dca 3 sin(2m a ~)e (6)

with DQ a possibly nonuniversal number thought to be of
order (4m)2 when the disordering potential is Gaussian
white noise. The units of cr and a.~ are taken to be e /h.
It is helpful to think of the starting values in the limit of
T ~, when o-~ represents the electron density and a.
represents the amount of disorder. Thus, the quantum Hall
jump in a large sample occurs when the Fermi level is raised
to make o.~ = ~, or when the Landau level is half full.
Figure 2 was generated using Eqs. (5) and (6) down to the
vicinity of the fixed point, denoted by a circle in Fig. 2,
where they need not be valid. Well below the fixed point,
they are invalid.

The second step leading to Fig. 1 is the assumption that
the transition between fractional quantum Hall states as the
Fermi level is raised or lowered is physically similar to the
transition between ordinary quantum Hall states in the same
circumstance. This similarity may be understood in the fol-
lowing way. Imagine two adjacent Landau levels with the
Fermi level between them, so that one is full and one is
empty. The full Landau level is the hole band and the emp-
ty one is the electron band. In the presence of disorder,
these broaden and merge into a continuum of localized
states interrupted by two "measure zero" extended-state
bands, one -each for electrons and holes. If the Fermi ener-
gy is raised sufficiently so that it passes through the
electron-extended-state band, the Hall conductance jumps
discontinuously by + e /h. Similarly, if it is lowered
through the hole-extended-state band, the Hall conductance
jumps by —e'/h. The transition between an ordinary quan-
tum Hall state and its neighbor is caused by the passage of
the Fermi level through a band of extended electrons or
holes. The analogous phenomenon in the fractional quan-
tum Hall effect would be the passage of the quasi-Fermi
level through a band of extended qua sielectrons or
quasiholes. Our present understanding of the T state is that
it is characterized by bands of quasielectrons and quasiholes
analogous to adjacent Landau levels. That this analogy
holds true for the localization physics, in addition to the
density of states, is suggested by one's ability to observe the
fractional quantum Hall effect at all. The gauge argument
identifying the quantum of Hall conductance with the quasi-
particle charge will not work unless charge added to the sys-
tem or removed from it is trapped on localized quasiparticle
states. If the transitions 0 —,

' e2/h, 3 e2/h 3 e2/h, and
Te2/h e2/h are all equivalent to the transition 0 e2/h,
then we must assign to each a fixed point like that in Fig. 2.
The assumption that the ordinary and fractional quantum
Hall steps are described by renormalization-group Aows with
similar fixed points allows for the possibility of different ex-
ponents at different levels of the hierarchy. We have made
the physically sensible, but arbitrary, assumption that the lo-
cation on the o- scale of the fixed point at a given stage in
the hierarchy is controlled by the dimensionless parameter
(e")2/y, where e' is the relevant quasiparticle charge and y
is an appropriate dimensionless measure of disorder.

The final step leading to Fig. 1 is the observation that the
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Te2/h 3 e2/h circle is topologically incompatible with the
0~ e2/h circle without the introduction of a new, totally
repulsive fixed point to separate them. This fixed point,
denoted by a box in Fig. 1, corresponds physically to the
phase transition in which increasing disorder destroys the 3

effect. That this is the case is sho~n in more detail in Fig.
3. The horizontal eigenflows out of the box, which may be
idealized as flowing into the 0 7e2/h and Te2/It e2//t

circles, bound a basin of attraction for the T state. If the
sample is sufficiently dirty so that the starting value a-(o)

lies above this line, the T state cannot be reached. If the
starting point is below this line, the T state cannot be avoid-

ed. Immediately above the 0~ Te'/h circle, the line is
vertical and is analogous physically to the vertical eigenflow
line above the 0 e//t circle. Crossing it by changing a.~to'

is tantamount to moving the Fermi level through a narrow
extended-state band in the quasiparticle density of states.
The curvature of this line at larger values of a. 0) and its
disappearance into the box imply that the quasihole-
extended-state band floats upward in energy with increasing
disorder, as does the extended-state band in the center of a
Landau level in the ordinary quantum Hall effect, ' and
eventually collides with the quasielectron-extended-state
band. The box is thus a gap-closing transition, but for a
mobility gap rather than a real gap. The symmetry of. this
diagram about o.~= 2 has the important implication that
the quasielectron-extended-state band does not float, insofar
as the starting value of o-~ reflects the electron density sole-
ly. The minimum number of boxes needed is one. It is
conceivable that the real system has more than one.

It is presently believed that a devil's staircase of fractional
quantum Hall states exists i&, &2 at each level of which a n
fractional state is formed from quasiparticles of the previous
one. For example, the ~ and T states observed experimen-
tally are thought to be condensations of charge Te
quasiholes and quasielectrons, respectively, added to the T
state. The validity of this picture implies that each level of
the hierarchy should be contingent on the existence of the
previous one, " and therefore that the box describing the
destruction of a daughter state should lie within the basin of
attraction of the parent. This is consistent with the current
belief that the energy gaps of the hierarchical states decrease
rapidly [roughly as (fraction denominator) 25], '2'3 and thus
that less disorder should be required to annihilate a
daughter state than to annihilate a parent. Given this re-
striction, the generalization of our ideas to describe the full
hierarchy of fractional quantum Hall states is straightfor-
ward. In Fig. 1 we have included bifurcations down to the
level of 5 7 T 7 and 5. The 5 and 5 states, which1 2 2 5 1 4

have not been shown conclusively to exist, do not derive
hierarchically from the T and T states, and thus need not
be contingent upon them. We have shown them contingent
in Fig. 1 because we believe this to be the case when the
repulsive forces between the electrons are Coulombic. The
p function actually used to generate Fig. I is

p = —,—(4m) tr1 2 3
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FIG. 3. Illustration of the closing of the mobility gap of the

state with increasing disorder. A larger starting value for o-~ irn-

plies more disorder, more broadening of the quasiparticle density of
states (shown on the left), and a smaller quasiparticle mobility gap.
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It is ad hoc and should be understood as an illustration only.
The ideas presented here may be tested experimentally in

a number of ways. A series of measurements of the energy
gap of the T state by the activation energy method' for in-

creasingly dirty samples would verify our picture of a con-
tinuous gap closing, as would measurements of the plateau
width. Conductivity measured at finite temperature or at
nonzero frequency can test the effects of finite size. We
suspect strongly that the partial resurrection of the T pla-

teau at finite frequency reported by McFadden et aI. ' is an
effect of the box.
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