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Interlayer binding of hexagonal boron nitride in the rigid-layer approximation
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A phenomenological model on the basis of the Coulomb and Lennard-Jones potentials is applied
to investigate the interlayer binding of layered hexagonal BN. The values of the relevant potential
parameters are examined by fitting the lattice sums of the potential derivatives to the values derived
from experimental values. It is shown that the model cannot'explain the experimental values con-
sistently when the full lattice sum of the repulsive inverse-12th-power interaction is included. How-

ever, when the repulsion terms, except those corresponding to the nearest-neighbor B-B, N-N, and
8-N atoms, are neglected, the model providing the effective charges as much as +1.6e is compatible
with the experimental values. In this case discussions are given on the binding energy, the van der
Waals attractive potential constants, the phonon dispersions, and the elastic constants of the crystal.

I. INTRODUCTION

Layered hexagonal boron nitride (hereafter abbreviated
as hexagonal BN or simply as BN) consists of layers of
hexagonal networks with a monatomic thickness similar
to graphite's. ' Since the primitive unit cell of hexagonal
BN contains only four atoms in two adjacent layers, its
crystal structure is one of the simplest among crystals
with layer structures. The interlayer binding of BN and
graphite is known to be very weak. For graphite, a simple
Lennard-Jones model has been shown to work well in
most cases except those involving c-axis shears, though
a density-functional theory by DiVincenzo, Mele, and
Holzwarth provides a better description of it.

As for hexagonal BN, to the authors' knowledge, its
interplanar binding has been studied exclusively on the
basis of a phenomenological model with the van der
Waals and Coulomb interactions. ' ' In these previous
works the potential constants have been estimated by a
nomographic method. There seems, however, ambiguity
in the construction of and the linear interpolation from
nomograms. In addition, the elastic constant c44 in
Green's model" is only a half of the value estimated with
the frequency of the zone-center rigid-layer shear
mode. ' ' It suggests an alternative approach based on
relevant experimental results. Similar approaches have
successfully been applied to a few layer crystals by Ka-
tahama et al. ' and Mori. '

The purpose of the present paper is to investigate the
interplanar binding of hexagonal BN on the basis of the
van der Waals and Coulomb potentials, but without any
nomographic method. %'e make, instead, use of relevant
available, though very limited, experimental results, in-
cluding the frequency of the zone-center rigid-layer shear
mode. The potential constants can be obtained by fitting
appropriate lattice sums of potential terms and of their
derivatives to the relevant experimental values or to the
values easily estimated with them. %'e apply the results

of the calculation to get the dispersion relations of rigid-
layer phonons and the two relevant third-order elastic
constants c333 and c443 ~

This paper consists of five sections. Section II will
present a calculation of lattice sums. The fitting pro-
cedure to obtain the relevant potential parameters will be
given in Sec. III. Section IV will contain the results of the
calculation and the discussions on them. Section V will
deal with conclusions.

II. CALCULATION

In this section, after a brief description of interlayer po-
tential energy, we will examine basic assumptions for its
calculation and calculate the lattice sum for each of the
relevant potential terms.

The intralayer binding of hexagonal BN shown in Fig.
1(a) is considerably strong compared with its interlayer
binding. ' It allows us to deal separately with the inter-
layer binding within the total lattice binding. Hereafter,
we confine ourselves to the case where each layer itself is
rigid and only its relative position may be slightly
changed. under relevant constraints. The crystal is as-
sumed to be large enough to neglect surface effects.

We further assume that the total potential energy for
interlayer binding E, can be expressed as the sum of the
two-center potentials P;J between all pairs of atoms i and j
belonging to different layers,

Hereafter, we will refer to an arbitrary pair of a nitrogen
atom and an adjacent boron atom in an arbitrary layer
which is located far from the surface. We define P;(N) as
the potential between the nitrogen atom of the above-
mentioned pair and any atom i in a different layer. Simi-
larly, P;(B) is defined for the boron atom. Equation (1) is
rewritten as
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E,=—g[y, (N)+y, (8)],
4

where n is the total number of atoms constituting the
crystal. The potential energy per pair of 8 and N atoms
can be expressed as

E= —,
' g[P;(N)+P;(8)] .

Thus E is the sum of the potential over a semi-infinite lat-
tice.

We assume that the two-center potential is given by
—6 —12 2 —1

Pij = —Aij rij +Dij rij +qiqj e rij. (4)

where A,J and D;~ are the I.ennard-Jones potential con-
stants, e the charge of the electron, q; and qj the effective
charges of the atom i and j in units of

~

e ~, and r,j the
distance between the atoms i and j. This form of expres-
sion is equivalent to that given by Danilenko et a/. ' It is
based on the implicit assumption that the charge distribu-
tions of the valence electrons of the nitrogen and boron
atoms can be approximated to be spherically symmetric.
The real distributions, however, should be anisotropic ac-
cording to the dominant covalent bonding within the layer
as is observed in graphite. ' Consequently, expression (4)
can be considered to be the lowest-order approximation,
including the anisotropic effect only, via the anisotropic
configuration of the lattice.

(b)
FIG. 1. Crystal structures and unit cells of (a) layered hexag-

onal and (b) rhombohedral boron nitride. The solid and the
open circles denote the boron and the nitrogen atoms, respec-
tively.

The difference of the charge distributions from the
spherical symmetry can be expressed as the dipole, quad-
rupole, and higher-order poles around each atom. The di-
polar part is zero because of the local symmetry. The
quadrupolar distribution is not zero. However, the lead-
ing term of their contribution to the interlayer potential,
which is the monopole-quadrupole interaction, decays
with the inverse fourth-power of distance and the sign of
this value is alternating in the lattice sum. Consequently,
the contribution of the monopole-quadrupole interaction
to the total interlayer binding energy may be small enough
to be neglected. The second leading term, which is the
quadrupole-quadrupole interaction, can be small but it is
not certain that this term is smaller than the first since
the sign of the second is not alternating. Fortunately, this
quadrupole-quadrupole term depends on the inverse
sixth-power of distance similar to the attractive part of
the van der Waals potential and can be included to it as an
effective van der Waals constant.

Hereafter, we calculate the sum of each term in the po-
tential (4) separately for a few adjacent layers, using the
lattice parameters of a =2.504 A and c =6.661 A report-
ed by Pease. ' We denote this energy sum for the nth-
nearest layer by E(n). Likewise, Ec denotes the sum of
the Coulomb term, the third term on the right-hand side
of Eq. (4), between a reference pair of 8N atoms and the
atoms in a neighboring layer. E, denotes the .sum of the
van der Waals attractive term, the first term, between the
reference pair and a sublattice in a neighboring layer. E„
refers to the repulsive term.

For the calculation of Ec and its derivatives, we have
used a formula by Green et al. " which is based on a
modified Ewald method. The absolute value of the effec-
tive charge is, only here, assumed to be equal to that of
the electron charge. When the u and the m denote,
respectively, the in-plane projection (u, u) and the z com-
ponent of the small relative displacement vector of the
relevant layer, the energy is expressed for the hexagonal
BN lattice as

Ec——( &ere /&)QI cos(g u—) —cos[g (ro+u)]]
8

X(1/~ g ~
)exp[ —(z+w)

~ g ~
], (5)

where z is the one-dimensional position of the layer at
equilibrium, g a reciprocal-lattice vector, ro the distance
vector between the nearest-neighbor 8 and N atoms, and
S-the area of the two-dimensional unit cell. Here we note
that Eq. (5) reduces to the formula by Green, except the
difference of the factor 3/a is due to the difference of

TABLE I. Coulomb potential Ec and its derivatives 'between a pair of B and N atoms and neighbor-
ing layers at equilibrium. The absolute value of the effective charges is assumed to be equal to that of
the electron charge.

Layer Ec(n)

(10 ' erg)

—1.0686
0.0001
0.0000

BEc(n)
BN

(10 ' erg A ')

3.0963
—0.0004

0.0000

82Ec(n )

BM
(10-'" erg A-')

—8.9718
0.0012
0.0000

02Ec(n)
BQ

(10 ' ergA )

4.4859
—0.0006

0.0000
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TABLE II. Layer lattice sum of —r;J, L„and its derivatives between a reference atom and a neighboring layer in BN. For each
value, the contributions from the two sublattices are shown in different columns. Sublattices 1 and 2 (abbreviated as Subl. I and 2)
refer, respectively, to those between the unlike species of atoms and those between the same species.

Layer L.(n)

(10 A )

Subl. 1 Subl. 2

M,.(n)
Bw

(10 A )

Subl. 1 Subl. 2

82L, (n)
BN

(10 3A 8)

Subl. 1 Subl. 2

O'L. (n)
BQ

(10-' A'-')
Subl. 1 Subl. 2

—2.2018
—0.1074
—0.0206
—0.0057
—0.0024
—0.0010

—2.0771
—0.1158
—0.0191
—0.0061
—0.0022
—0.0011

2.8081
0.0345
0.0029
0.0004
0.0001
0.0000

2.6186
0.0371
0.0027
0.0005
0.0001
0.0000

—4.4807
—0.0549
—0.0046
—0.0007
—0.0002

0.0000

—3.9899
—0.0587
—0.0043
—0.0008
—0.0002

0.0000

1.3242
0.0157
0.0012
0.0002
0.0000
0.0000

0.2936
0.0149
0.0011
0.0002
0.0000
0.0000

like atoms instead of two constants themselves between 8
and B and between N and N.

Now the number of the independent unknowns are five:
the effective charge, the two attractive constants corre-
sponding to the one between B and N and the half of the
sum of B-B and N-N, and the two corresponding repul-
sive constants. The number of the available experimental
values are four: the frequency of the zone-center rigid-
layer shear mode, the elastic constant c33 and the two in-
terlayer distances at equilibrium of hexagonal BN and
rhombohedral BN shown in Fig. 1(b). To decrease the
number of the unknowns by one, we assume that the pa-
rameter for the attractive interaction between 8 and N is
equal to the half of the sum of the constants between 8
and 8 and between N and N. The attractive part of the
van der %'aals interaction is due to the interaction be-

0

the unit of length. The calculation of Ec and their
derivatives at equilibrium is briefly described in Appendix
A. Table I summarizes its results.

For the calculations of E, and E„and their derivatives,
we must know the corresponding lattice sums of —r;~

and r,
&

and their derivatives in hexagonal BN lattice.
We have obtained these values by the direct summation
supplemented with use of the hexagonal symmetry as
described in Appendix B. The results are shown in Tables
II and III. Because of the very-short-range nature of the
repulsive interaction, we show its sum only for the
nearest-neighbor B-B, N-N, and B-N atoms separately in
the first row, as well as the usual layer sums in Table III.

III. FITTING PROCEDURE

The lattice sums calculated in the preceding section al- tween fluctuating dipoles, and the polarizability may not
low us to link the Lennard-Jones potential parameters to be much different for the atoms in the same row of the
the parameters obtained experimentally. Since there Periodic Table. While the atom of larger atomic number
seems no reliable parameter on boron and nitrogen in par- contains more electrons, the polarizability per electron is
tially ionic situations, we estimate these values by fitting smaller. This simple consideration may support the above
the first and the second derivatives of the potential func- assumption.
tion to the values indirectly obtained in experiment. When the relevant summations of the layer sum E(n)

According to the condition of charge neutrality, the ab- are used, we can obtain the following four equations, in
solute values of the effective charges of the boron and the each of which the summation extends from n = 1 to infin-
nitrogen atoms are equal to each other (=q) and their ity. Here, A is the attractive parameter, D the repulsive
signs are opposite. Furthermore, we take notice of the one between 8 and N, and F the half of the sum of the
fact that the configuration of the lattice is invariant under repulsive ones between 8 and 8 and between N and N
the interchange of the boron and the nitrogen sites. Con- The lattice constants of rhombohedral BN are assumed to
sequently, the lattice sums for like atoms, that is, 8-8 and be equal to the corresponding constants in the hexagonal
N-N, are equal to each other and it is sufficient for us to form since the differences between these seem very
deal with only the sum of the two potential constants of small. '

TABLE III. Lattice sum of r,j ', L„ its derivatives, and those obtained by referring to the distance vectors only between an atom
in a reference layer and the nearest atoms in one of the nearest layers in BN. The number of the sublattices is defined as in the head-
ing to Table II.

L,(n)

(10-' A-"}
Subl. 1 Subl. 2

aL, (n)
8LU

(10-' A-")
Subl. 1 Subl. 2

8 L,(n)
8$8

(10-6 A —l4)

Subl. 1 Subl. 2

B~L,(n )

BQ
(10 A '

)

Subl. 1 Subl. 2

NN'
1

2
3

5.3689
7.6311
0.0057
0.0001

5.7172
6.3966
0.0061
0.0001

—1.9345
—2.4474
—0.0009

0.0000

—1.7334
—1,8654
—0.0009

0.0000

7.5508
8.7635
0.0060
0.0001

5.6106
5.8755
0.0063
0.0001

—5.8083
—3.4008
—0.0008

0.0000

0.5716
1.4284

—0.0006
0.0000

'NN refers to the sum only for the nearest neighbors.
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When the repulsion terms except those for the nearest-neighbor B-B, N-N, and B-N atoms are neglected, the equations
are

=6d(5. 51A —l.936D —1.734F+ 15.50p ) =0,BE(n)
8LU

B E(2n —1)
Bu

=6(0.540A.—1. 93 6D+01906F+ 748p) =Spado d/4,

gn =6( —30.16A+25. 18D+18.70F—149.5p) =Sc33/dB E(n)
Bw 0

(8)

BE(n),h,~b,
BN

=61(5.41A —0.968D —1.734F+7.75p) =0,

A =(3.65 —0.54lp) X 10 erg cm

D=( —5.89+3.27@)X 10 ' ergcm'

(10)

F=(18.19—4.48@)X 10 ' erg cm' (12)

These three parameters must be not negative, and the
solution gives an estimate of the range of the absolute
value q ( =v p) of the effective charge in units of the elec-
tron charge,

where p denotes the square of the effective charge in units
of the electron charge, and d is the interlayer spacing in
equilibrium and taken to be equal to c/2. S denotes the
area of the two-dimensiona1 primitive cell and is equal to
(v 3/2)a . p is the density and co the angular frequency
of the zone-center rigid-layer shear mode. The x and the

y axes are taken within a layer and the z axis along the
crystalline c axis. The u, U, and m are, respectively, the x,
y, and z components of the displacement vector of the rig-
id layer. The sign of w is taken to be positive for dilata-
tion. The subscript 0 on the left-hand side means the
respective derivative at the equilibrium position. The ef-
fective charges for the rhombohedral form are assumed to
be equal to those for the hexagonal form.

Equations (6) and (9) are the conditions of the equilibri-
um in the hexagonal and the rhombohedral forms, respec-
tively. The summation on the left-hand side of Eq. (7)

cans to sum the shear force from each of the odd-
number nearest-neighbor layers. The summation sign in

Eq. (8) indicates summation of the compressional forces
between all layers across a specific layer gap. For sim-

plicity, we have excluded the factors 10, 10', and 10'05,

in the cgs units from the numerical coefficients on A, D,
and F in the above four equations, respectively.

We have used the value 3.0& 10"dyn cm as the elas-
tic constant c33 which is derived from the arithmetic
mean of the three reported values of compressibility.
The co is taken as 52.5 cm ' according to Ref. 14. The
calculation gives 1010 and 4890 ergs cm as the values of
Eqs. (7) and (8), respectively.

The solution of Eqs. (6)—(8) is as follows:

1.34(q (2.02 . (13)

The supplementary equation (9) offers an estimated value
itself: q=1.58.

Thus A =2.31&10 ergcm, 3=2.2&10
erg cm', and F=7.1)&10 ' erg cm' . The interlayer in-
teraction energy per pair of BN atoms for hexagonal BN
is expressed as

E= —(10.7p+91.2A —10.74D —11.44F) X 10 ' erg

= —(188.0—22. 5p) X 10 ' erg .

It is equal to —(2.71 —0.32@) kcal/mol, which reduces to
about —1.92 kcal/mol. Equivalently, the interplanar en-

ergy per area is —243 ergs cm
So far we have neglected the repulsive terms, except

those for the nearest-neighbor B-B, N-N, and B-N atoms.
When we inc1ude the contributions to the repulsive in-
teraction from all the pairs, it is shown that the present
model can provide no consistent set of potential parame-
ters compatible with the avai1able values obtained easily
from the relevant experimental results. Thus, hereafter
we confine ourselves to the first case, providing the con-
sistency between the model and the experimerital resu1ts.

IV. RESULTS AND DISCUSSIONS

A. Effective charge

The present calculation has given the effective charges
of +1.6e. Here, we will briefly examine the meaning of
the effective charge in the present model. If the charge
distribution around an ion is spherically symmetric, the
effective charge has a very simple meaning as far as the
electrostatics is concerned. In the present system with
considerable anisotropy, however, the effective charge can
be defined within the framework of the best one-
parameter approximation to the charge distributions
around ions constituting the system.

Though we can not specify the sign of the effective
charge solely by the present calculation, the nitrogen atom
should have excess electrons according to a consideration
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I

of electronegativity and to a band-structure calculation.
Thus the dominance of the repulsive interaction between
the same kinds of atoms over that between boron and ni-
trogen as shown in Sec. III may be reduced to the domi-
nance of repulsion between nitrogens. It corresponds to
the importance of the nitrogen m-electron distribution
near the middle of adjacent layers. The half of the dis-
tance between the nearest nitrogen atoms across the layer
gap is about 1.82 A, which is considerably larger than the
nearest-neighbor boron-nitrogen distance of 1.45 A. This
suggests that, according to the approximation of the
spherical distribution, an appreciable amount of electrons
assigned to boron may be included in this approximated
spherical distribution of electrons in the nitrogen atom. It
may explain the apparent largeness of the relevant effec-
tive charge.

Previous calculations"' have given the value 1.15 for
the effective charge q. The value estimated here is much
larger than the previous one. The difference stems from
the fact that our calculation is based on the fitting of the
shear elastic constant c44 which is about 2 times larger
than in the previous result.

B. Potential parameters and interlayer interaction energy

The calculated mean value A of the van der Waals at-
tractive constant is about 2.3 )& 10 erg cm, which
agrees well with the value 2. 14)&10 ergcm obtained
with nomograms by Green et al. " While their pro-
cedure with nomograms does not seem to have sufficient-
ly clear physical grounds, the value calculated by us is
based only on the experimentally obtained values.

As for the repulsive constants, our calculation gives the
value D between B and N and the mean value F of the
constants defined between B and B and between N and N.
While the D value by us is about two-thirds of the value
by Green, the F value by us is about twice as much as
Green's. Though D is nearly equal to F in Green's re-
sults, our calculation shows that the repulsive interaction
constant between the same species of atoms is consider-
ably larger than the constant between the different species.
Taking into account the relevant lattice sum, our result in-
dicates that the repulsive interaction itself may be more
significant for the first-nearest-neighbor B-B and/or N-N
pairs of atoms than for the first-nearest B-N pairs across
the nearest layers.

The calculated interlayer interaction energy per area is
—243 ergs cm, which agrees well with —244 ergs cm

by Green et al. " The energy per formula unit is —1.92
kcal/mol, which agrees well with —1.908 kcal/mol by
Danilenko et ai. '

C. Dispersion relations of rigid-layer phonons

The lattice sums of the second derivatives of the poten-
tial terms calculated in Sec. II allow us to estimate the
constants of force between layers. We have seen that only
the first- and second-nearest-neighbor interactions are im-
portant and that the sum of the contributions of the third
and further interactions is at most about 2% of the total
force.

We deal with the normal modes of vibration in a one-

where u„ is the displacement of the nth layer and f and g
are the force constants corresponding to the first- and
second-nearest-neighbor interactions.

If we assume that this equation has the solution

u ~ = U exp [l ( kx~ —co/ )]+C.c.

the dispersion relation is

(15)

co =4f[sin(kd/2)] [1+(4g/f)cos (kd/2)], (16)

where co is the frequency, k the wave number, x„ the posi-
tion of the nth layer, U the amplitude, and d the inter-
layer separation.

According to the calculation in Secs. II and III, the
compressional force constants are

f=5. 16 && 10 ergs cm and g = —52 ergs cm

The shear force constants are

f= 1.01 X 10 ergs cm and g = 1.4 ergs cm

We see that the two dispersion relations are well ap-
proximated by sine curves. The shift from the sine curve
is at most 2%%uo for the compressional or longitudinal
branch and 0.3% for the shear or transverse branch. The
directions of change in energy of the two dispersion
curves are opposite to each other, which corresponds to
the difference of sign in these two constants of the
second-neighbor interactions.

The above consideration affords us the correction term
for the shear elastic constant c44, which is calculated by
the approximated general relation given in Ref. 15. The
factor of the first correction term for c44 of BN is positive
and only about 0.6%.

D. Third-order elastic constants

The above calculations can be extended for two com-
ponents of third-order elastic constants of hexagonal BN.
These are c333 and c443 obtained by taking the derivatives
of c&3 and c~ with respect to the z component of the
strain.

According to the relevant calculations on the third-
order derivatives of the potential terms, the sums of the
contributions of the second and the higher nearest-
neighboring layers can be neglected. Thus the third-order
constants are expressed as

d 8 E(1)
BM

C333 =

d 8 E(1)
~443

BM BQ p

(18)

dimensional periodic array of rigid layers whose masses
are assumed to be equal to unity for simplicity. When we
use the conventional Born —von Karman cyclic boundary
condition, the equation of motion of the nth layer is

d
=f( n+1+ n —1 2an)+g( n+2++n 2— an) ~

dt

(14)
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where E (1).is the potential energy between a formula unit
of BN in a layer and all ions in one of the adjacent layers.
The calculation gives c333 ——4. 1& 10' dyncm and
c443 ——6. 1 & 10 ' dyn cm

We can estimate c333 from the pressure dependence of
the interlayer separation of BN. " The result is
c333 ——3.3 & 10' dyn cm . The absolute of the value
calculated by us is larger than the experimental one by
about one-fourth. It seems that the degree of the
discrepancy is not serious, considering that the present
calculation is based on an elementary phenomenological
model and that there seem to be variations between the
nonlinear parts of the compressibility data on hexagonal
BN.

The constant c443 can be estimated if we know the pres-
sure and temperature dependence of the angular frequency
co of the zone-center rigid-layer shear mode of BN,

Bcm Bp Bccc "d'1

Bp 8 BT 8

where p is the pressure and T the temperature. We can
use the approximated relation between c44 and co given in
Ref. 15. The first term on the right-hand side of Eq. (19)
is estimated to be —4.7&10" dyncm . There seems to
be no report on the temperature dependence, but we are
dealing with a quasi-isothermal process and can neglect
the contribution of the second term. Thus we see that the
absolute of the calculated value is, by about 30%, greater
than that estimated with experimental values. The model
seems not to have such a high accuracy as is provided by
a quantitatively correct value related to a higher deriva-
tive of interaction energy.

nearest-neighbor layers is less than about 6% of that of
the first-nearest layer. It leads to the conclusion that the
dispersion relations of rigid-layer phonons are close to
sine curves. It is shown that the dominant contribution
from the second-neighbor layer stems from the van der
Waals attractive potential.

By using the interlayer distances in two crystalline
forms, the compressibility and the frequency of the zone-
center rigid-layer shear mode, as fitting parameters, we
have studied the compatibility of the present model with
these values. It is shown that the inclusion of all the
repulsion terms leads to the inconsistency between the
model and the set of the experimental results. However,
when the repulsion terms —except those for the nearest-
neighbor B-B, N-N, and B-N atoms —are neglected, the
model provides consistent values of the responsible poten-
tial parameters.

According to the calculated repulsive constants, it is
not the first-nearest B-N but the first-nearest N-N atoms
that play the most significant role in the repulsive interac-
tion in layered boron nitride. It may correspond to the
importance of N-N repulsion in layer-stacking forms of
boron nitride.

Recently, Katahama, Nakashima, Mitsuishi, Ishigame,
and Arashi' have shown that the energy formula ex-
pressed as the sum of an attractive potential in inverse-
sixth-power form and a repulsive potential in exponential
form successfully describes interlayer bindings of a few
kinds of layer crystals on the basis of experimental studies
including Raman scattering and x-ray diffraction under
high pressures. An extension of the present work along a
procedure similar to theirs is in progress.

E. Concluding discussion

As described in Sec. III, the inclusion of all the repul-
sion terms leads to the inconsistency between the model
and the set of the relevant experimental results. In this
ease, if we do not take into account the frequency of the
shear phonon, the model provides an effective charge q
smaller than about 1.3 and the estimated c44 is less than
about a half of the value calculated with the shear phonon
energy. Green et al. " previously reported that the
Lennard- Jones potential seriously underestimates the
shear force in graphite. If the similar situation in hexago-
nal BN stems from more or less common origin, the n
electrons related to the remarkably strong anisotropy
might be responsible for it. For BN, however, as shown
in Sec. III, the truncation of the repulsive interaction
saves the simple empirical formula.

V. CONCLUSIONS

We have studied the interlayer binding of layered hex-
agonal boron nitride with a semiempirical method com-
bining the Lennard-Jones potential and the Coulomb po-
tential due to the partially ionic binding. Without any
reference to the potential parameters, we have calculated
each of the lattice sums responsible for the total binding
energy and their derivatives. It has been found that each
sum of the contributions of the second- and higher-
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APPENDIX A: CALCULATION
OF DERIVATIVES OF COULOMB ENERGY

+(g u)sin(g ro)]exp( —z
~ g ~

) . (A2)

The partial derivative of Eq. (5) with respect to w is ob-
tained simply by adding the factor

t g ~

in each of the
summand once by every order. The derivative by a com-
ponent of the in-plane coordinates does not depend on the
direction because of the hexagonal symmetry. If we pay
attention to the factor

f= Icos(g u) —cos[g (ro+u)]Iexp( —z
~ g ~

),
f is negligibly small for large

~ g ~

. Thus, only the terms
with small

~ g i
contribute to the energy. For small dis-

placement
~

u ~, we have the approximate expression

f=
I [1—cos(g ro)][1—(g u) l2]
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We see that the term linear to
~

u
~

vanishes according to
third-order symmetry.

r; =(x;+ti)'+(y;+U)'+(&d +to)' . (81)

APPENDIX B. TWO-DIMENSIONAL
SUM OF DERIVATIVES OF POTENTIAL

IN HEXAGONAL LATTICE

Here, we briefly describe simple expressions for deriva-
tives of a potential between an atom in a layer and all
atoms in a neighboring layer under the constraint of small
and rigid displacement of the layer. The origin is located
at the site of the reference atom. An arbitrary atom i in
the lth-nearest-neighbor layer is assumed to have the
coordinates (x;,y;, Id) at equilibrium, where d is the dis-
tance between the nearest layers.

The distance between the reference atom and the atom i
1s

Thus, the following relations hold:

1 +i+u= —n
Bu ." ."+2-

1

(82)

1 ld+ ur

(j~ I
5 p5+2 (83)

(n +2)(x;+u) r;—
u2 r" r" +=Il 4 (84)

8 1 =n
2 &n

(n +2)(ld+w) r;—
n+4
l

(85)

According to the hexagonal symmetry, the sum of Eq.
(82) vanishes at equilibrium. The sum of the factor
x; /r;"+ can be replaced by that of ,' (x; +y; )/—r;"+".
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