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The "equilibrium" shape of a grain (with fixed volume) embedded in a simple-cubic crystal of the
same material and rotated by a small angle with respect to the [001] axis is studied. The dislocation
model of grain boundaries of Read and Schockley is used to compute the grain-boundary energy as a
function of orientation. The grain shape is then found from this energy via the Wulff construction.
Various aspects of the shape are analyzed for different values of both Poisson's ratio v and a con-
stant characterizing the core energy. One novel feature in this zero-temperature shape is curved
portions which meet facets at edges where there is a discontinuity in slope. For sma11 v the shape is
essentially a smoothly curved ellipsoid of revolution with four equivalent elliptical facets on the
(100), (010), (100), and (010) planes. For large values of v two smooth parts can meet at the equa-
torial plane with a slope discontinuity. In phase-transition 1anguage we find, besides first-order
transitions, triple points and, in a narrow regime in v, critical points. Effects of nonzero tempera-
ture and the dependence of the core energy on the character of the dislocation are explored qualita-
tively.

I. INTRODUCTION

When two bulk phases coexist a macroscopic inclusion
of one phase can remain in stable equilibrium with the
other "background" phase. The shape of such an in-
clusion is determined by minimizing the total'free-energy
cost of creating the interfacial boundaries for a fixed
volume of the inclusion. If both phases are isotropic, the
interfacial free energy is independent of the orientation
and the inclusion is spherical. If the included phase is an-
isotropic (Crystal) and the second phase is isotropic (va-
por), the broken rotational invariance of the crystal leads
to orientation dependence of the interfacial free energy.
The corresponding shape is less trivial, including facets
and/or curved surfaces. Such equilibrium crystal shapes
(ECS) have been studied extensively both theoretically'
and experimentally. In this paper we are concerned with
the problem of determining the shape when both the in-
clusion and the background are crystalline. In particular,
we consider the situation in which a grain, composed of
the same material as the background, is rotated by a small
angle with respect to one of the background symmetry
axes. We perform what is, to the best of our knowledge,
the first quantitative calculation of the shape of a grain at
zero temperature. We also explore the effects of finite
temperature qualitatively.

At the outset we should note that the formulation of
our problem contains conceptual difficulties in addition to
those of the venerable ECS problem mentioned in Ref. 1.
In the ECS problem the inclusion may be stabilized by
fixing the number of particles in the container which en-
closes both phases. Since the two phases have, in general,
different densities, it is possible to create a macroscopic
crystallite of the desired size with a time-independent
shape. On the other hand, there seems to be no physical
constraint in our problem which prevents the inclusion
from rotating back into alignment with the background

and, thus, losing its identity. Even though the creation of
an equi/ibrium (time-independent) grain appears unlikely,
metastable grains may be formed in the crystal growth
process. For our considerations to be applicable the grain
boundaries must reach equilibrium under the constraint of
fixed volume. On the time scale of observation, macro-
scopic (bulk) diffusion processes can be sufficiently slow
that the fixed volume condition is satisfied. Ideal grain
boundaries whose motion usually involves local rearrange-
ment of atoms can reach equilibrium and our calculated
"equilibrium'-' shapes may indeed correspond to experi-
mentally observable shapes. Such ideas on the application
of our results to experiments are merely intuitive; a proper
understanding of such metastable inclusions, though im-
portant, is lacking at this time.

To compute the shape at T=O K we first need the in-
terfacial energy as a function of orientation. We now
describe the model within which this computation is per-
formed. Since a grain boundary is the interface where
two single crystals of different orientation join, its energy
E is a function of five variables: the relative orienta-
tion of the two crystal (this involves three parameters,
such as u, the axis of rotation, and 6, the angle of rota-
tion) and the orientation of the boundary surface itself,
specified by its normal n (two parameters). Four addi-
tional variables which describe the translation between the
two crystals and the exact placement of the interface be-
tween the two grains may be defined but are neglected
here, since in practice they are usually allowed to relax to
equilibrium. When the orientation' difference 6 between
the crystals is small it is possible to join the two crystals
with a suitable array of dislocations lying in the
prescribed plane of the grain boundary. This dislocation
density increases with increasing misorientation until, for
large 6, the dislocation cores overlap and the dislocation-
network picture breaks down. However, for low-angle
grain boundaries, i.e., small misorientation 5, there is ex-
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tensive experimental evidence to support the validity of
dislocation models. ' Following Bragg and Burgers,
Read and Shockley (RS) showed that the dislocation
model can be used quantitatively to calculate the grain-
boundary energy E (n) for low-angle asymmetric tilt
boundaries [u=z, n=(cosg, sing, O)] in a simple-cubic
crystal. In this case the boundary consists of two parallel
nonoverlapping sets of edge dislocations. To obtain E(n)
for arbitrary n for fixed small 5 and u =z, we need to
know the dislocation content of such a boundary. This
can be done by using Frank's formula ' as explained in
Sec. III A. In our problem we find that two sets of mixed
dislocations forming a lozenge-shaped mesh are required
for general n.

Knowing the geometry of the dislocation mesh for a
given boundary orientation n, the energy per'unit area is
calculated within linear elasticity theory following RS.
This is done by determining the energy required to create
the dislocations and the work done in bringing them to-
gether due to the interactions between them. An outline
'of the calculations is sketched in Sec. IIIB with the de-
tails relegated to the Appendix. The calculation leads to
the energy of the grain boundary of the following form:

E(n) =(rob /2)EO5(A —ln5), (1.1)

where ~0——6 [2m(1 —v)] '
( G is the shear modulus and v

is Poisson's ratio), b is the magnitude of the Burgers vec-
tor, and Eo and 3 are dimensionless functions of n. A
typical (large-5) value of E is 10 ergs/cm, while A lies
between 0.1 and 0.5.

Given E(n), the grain shape can be calculated in time-
honored fashion using the Wulff construction9 (Sec. II).
We now provide a brief summary of the results of such a
calculation. (For a detailed discussion, see Sec. IV.)

For small v [Fig. 1(a)] the shape is approximately an el-
lipsoid of revolution truncated by four elliptical facets on
the (100), (100), (010), and (010) planes. The four facets
arise from four equivalent cusps in E (n) at
n=(+1,0,0),(0,+1,0), as explained in Secs. II and IV. The
rest of the grain is smoothly rounded, a feature not found
in previous ECS calculations at T=O. This difference in
our problem arises because we use a continuum model in
which long-range forces are present. In particular, the
spacing between the dislocations D is treated as a continu-
ous variable and the underlying lattice structure is ig-
nored. For 5 and n corresponding to D being an integer
or rational multiple of a lattice constant, cusps in E will
occur as noted in RS. However, for small 5 (large D)
these cusps are weak. Furthermore, either thermal fluc-
tuations or experimental-resolution effects will wash out
these cusps which we have ignored.

Another interesting aspect of the shape is that the
facet-to-curved-surface transition is first order in the
sense that there is a slope discontinuity at the edge where
they meet. In ECS models a continuous transition at such
an edge has been noted. ' ' This difference is due to the
fact that, in contrast to step energies in ECS models
which are finite, the dislocation energy per unit length in
the grain problem is logarithmically divergent with the
size of the system. '

Now consider larger values of the Poisson's ratio v.

FIG. 1. Sketches of a grain inclusion in which Poisson s ratio
v is (a) small and (b) large. In both cases four symmetry related
facets, with normals (100), (010), (100), and (010), meet the
smoothly curved region with discontinuous tangents. A good
approximation to (a) is an ellipsoid of revolution truncated by
four elliptical facets. In case (b) the smoothly curved region
above the equatorial plane meets its counterpart below the equa-
torial plane with slope discontinuity.

For large v the schematic shape is displayed in Fig. 1(b).
An interesting new feature is that when the smoothly
curved parts meet at the equatorial plane, the slope is
discontinuous. For intermediate values of v we find both
slope discontinuity and no slope discontinuity at the equa-
tor, interpolating between Figs. 1(a) and 1(b). In phase-
transition language the intermediate-v regime is especially
rich (see Sec. IV C).

Our calculation has several limitations: it holds only
for small rotations about symmetry axes; it assumes the
often unrealistic simple-cubic-lattice structure; it neglects
the n dependence of the core energy as well as thermal
and impurity effects; and it assumes that the grain is very
large and composed of the same material as the back-
ground. In Sec. V we discuss both the seriousness of these
limitations and possible extensions of our work which
connect more directly with experiments. Qualitative pre-
dictions are made for the incorporation of both the n
dependence of the core energy and thermal effects.

The outline of this paper is as follows. We recapitulate
the Wulff construction in Sec. II. Section III A contains a
discussion of, Frank's formula and its application to our
problem. In Sec. IIIB we outline the calculation of the
grain-boundary energy. A detailed discussion of the grain
shape can be found in Sec. IV. We comment in Sec. V on
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the effects of features which may be important in experi-
ments but are ignored in our calculation. The Appendix
provides details of the calculation discussed in Sec. III.

II. THE WULFF CONSTRUCTION

AR(r)= minE(n)/(n r) . (2.1)

Geometrically, it yields the elegant Wulff construction
described in textbooks Make a polar plot of E(n) as a
function of n (the Wulff plot). Draw a radius in the
direction n from the origin to the Wulff plot. Construct a
plane orthogonal to n and passing through the point of
intersection of the radius with the Wulff plot. The interi-
or envelope of all such planes (for all n) yields the "equili-
brium inclusion shape. " Cusps in the Wulff plot lead
naturally to extended planar regions which we term facets
in the case of the grain inclusion also. A detailed discus-
sion of various aspects of the Wulff construction can be
found in Refs. 1 and 13.

The curved parts of R (r) follow from E(n) by the use
of the following equations:

X =E sin8cosg+cos8cosg dE sing BE
s1118 8

BE cosP BE
Y =E sin8 sing+ cos8 sing +

sin8

aEZ =E cosO —sinO

(2.2a)

(2.2b)

(2.2c)

where

n = ( sin8 cosP, sinO sing, cos8) (2.3)

and X, Y,Z are the Cartesian coordinates of the inclusion.
These equations are obtained by performing the minim-

ization indicated in Eq. (2.1) explicitly. They relate the
curved part of E(n), where the derivatives of Eq. (2.2) ex-
ist, to the curved parts of R (r). Defining

The equilibrium shape of an inclusion is obtained by
minimizing the surface integral of the interfacial free en-

ergy subject to the constraint of constant volume.
Mathematically one minimizes

J E (n)ds —2A, J dU,

where 2A, is the Lagrange multiplier and E(n) is the inter-
facial free energy for orientation n. This leads to the
Wulff construction" for R (r), the radius of the equilibri-
um shape of the inclusion along the direction r; analyti-
cally, this is given by

III. CALCULATIONS

A. Application of Frank's formula

In this subsection we derive the dislocation geometry of
an infinite grain boundary with an arbitrary orientation n
for rotation around the z axis. Frank's formula states '

d=2(r&&u) sin(5/2), (3.1)

where r is an arbitrary vector lying in the plane of the
boundary, d is the sum of the Burgers vectors of the
dislocations intersected by r, and 6 is the angle of rotation
around the axis denoted by u.

It is instructive to provide a derivation of (3.1) for small
6. ' Consider two grains 3 and B rotated with respect to
each other by 6 around u. Let the plane of the boundary
be specified by its normal n. Consider an arbitrary vector
r in the plane of the boundary. Let r' have the same in-
dices with respect to B that r has in 3, with a common
origin. For small 6, a rotation 6u brings 3 and B into
coincidence making r and r identical. Hence, we have

r'=r+5(uXr) . (3.2)

Now perform the Burgers circuit connecting r and r' and
their origin. The closure failure of the end points of r —r
is obviously the sum d of the Burgers vectors of the dislo-
cation lines enclosed by the circuit, i.e., cut by r. Hence
we have Eq. (3.1), with 2 sin(5/2) —+5.

Since d is proportional to
~

r
~

for arbitrary orientations
of r in the boundary plane, the grain boundary is made up
of sets of uniformly spaced parallel dislocations which are
macroscopically straight. Note that the dislocation densi-
ty is proportional to 5 for small 5. The number of geome-
trically allowed models'is equal to the number of ways of
resolving a given d into the appropriate Burgers vectors
b;. In principle, one must calculate the energy for all pos-
sible realizations and choose the lowest energy configura-
tion. '

By making different choices for r in (3.1) the geometry
of the dislocations can be determined. For the case of
three sets of dislocations d is given by

d =c &b&+c2b2+ c3b3 (3.3)

Note that, for a given direction r, there can be multiple
solutions to (2.2) and (2.5), i.e., different points on the
Wulff plot contribute to the same r as extrema, leading to
spurious curved parts. ' One must use the minimum
(smallest R) among these solutions. Thus, knowing E(n)
we can determine the shape of the inclusion R (r).

r = (sinO cos4, sinO sinC&, cosO),

R (r) is given by

XR =(X'+ Y'+Z')'"
cosO=Z/R,

tan+= Y/X .

(2 4)

(2.5a)

(2.5b)

(2.5c) r] Q u6 —c2b2+ c3b3 ~ (3.4)

where the b; are the Burgers vectors (noncoplanar) and
c;(r) are the number of dislocations lines with Burgers
vectors b; intersected by r. Let r; be the sense vector
(direction) of the ith set of dislocation lines. If we chose
r=r1 ——

~

r
~
r1, then c1(r1)=0 since r is parallel to the

corresponding dislocation lines. Thus

The special case of these for two dimensions can be found
in the classic paper of Burton, Cabrera, and Frank. '

Also r&.@=0 since r& lies along the boundary. Thus we
obtain
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r&~nX[uX(b2X13)] . (3.5)

The dislocation density pi ——ci(r)/ i
r i, where r lies in the

boundary plane and is normal to r&. Choosing riir|X n it
is easy to show that

p& ——5inX(biXu)
~

(3.6)

B. Ca1culation of E(n)

In this subsection we outline the calculation of the ener-

gy E (n) of a grain boundary made up of arrays of dislo-
cation lines specified by the densities and sense vectors de-
rived in Sec. IIIA. We apply the method used by RS in
their calculation of E(n) for n=(ni, n3, 0) to the general
case. E(n) consists of the energy required to create the
dislocations and the work done in bringing them together
due to their mutual interactions. To compute the work
done we need the shearing stress on the slip plane (in the
slip direction). For a single dislocation this has the expan-
sion

b b
T—T} +72 + (3.8)

where b is the magnitude of the Burgers vector and R is
the distance from the dislocation. Here ~& is uniquely
determined by the elastic constants and the geometry of
the dislocation while the higher-order coefficients depend
on the structure of the core and the core—outer-region in-
teractions.

We now evaluate the stresses Si and S2 due to the two
sets of dislocations with Burgers vectors bi ——(1,0,0) and
b2 ——(0,1,0) respectively. Neither Si nor S3 yield stress
fields which vanish at infinity; however, their sum leads
to a stress field localized near the bouridary. In fact,
dislocation networks arising from Frank's formula always
give rise to stress-free grains far from the boundary. The
energy is obtained by considering one member of the
dislocation set 1 and bringing it from infinity and calcu-
lating the work done on its slip planes by the stress fields
Si (self-energy) and S2 (interaction energy). A similar

where bi ——(12X13)/[b& (bz Xb3)]. Analogous expres-
sions exist for p2 and p3. If we choose the rotation axis u
to be one of the symmetry axes, say, z, we have p3 —0.
For arbitrary orientation of the boundary n = (n i, n 3,n 3 )

the sense vectors of the dislocation lines are specified by

1
r&

—— 3 3, ( —n3, 0,ni),
(ni+n3)

(3.7)
1r2= 2 2 (0, —n3, n2),

(n2+n3)

when p;&0. The dislocations are of mixed character
(both edge and screw components) and form a lozenge-
shaped mesh in general. Note that for n=(n&, n2, 0) (the
equatorial plane) the two sets of dislocations are parallel
and form an asymmetric tilt boundary. For n=(0, 1,0) or
(1,0,0) one has only one set of parallel edge dislocations
and a symmetric tilt boundary. For n=(0,0, 1) one has a
twist boundary made up of a square net of screw disloca-
tions.

calculation can be done for the second set. When the two
energies are added together the divergent terms cancel and
a finite energy per unit area is obtained. The tedious de-
tails are provided in the Appendix. The expression for
E(n) which we calculate is given by

E(n) =(rob /2)5ED[A —ln5],

Eo ——ai+a2 —vn3(1/a&+1/a2), (3.9)

30——1+ln
b

2&7 0
(3.10)

where ro is the effective core radius which provides an
"ultraviolet cutoff" for the singular behavior of the elastic
fields near the dislocation centers.

In carrying out this calculation we make the same as-
sumptions as RS. In particular, as emphasized in the In-
troduction, the lattice discreteness is ignored in specifying
the location of the dislocations. Also, as elucidated in
Sec. V, we neglect higher-order terms in 5 and take the
core radius ro to be independent of n and, therefore, in-
dependent of the nature of the dislocations.

IV. RESULTS

In this section we discuss the results for the shape of
the grain inclusion obtained by applying the Wulff con-
struction (Sec. II) on the grain-boundary energy E(8,$)
derived in Sec. III. We have studied the grain shape
R (O, N) at different representative values of Poisson's ra-
tio v and core-energy constant C (defined later). The
shape shows different qualitative features for different v.
There exist at least three ranges of v: (O, v, ), (v, ,v,+),
and (v,+,0.5). The critical values v, and v,+ are functions
of C and the range (v, ,v~+) is quite small.

Before proceeding to a discussion of these cases we
record some useful properties of E(n). There are four
equivalent cusps in the Wulff plot' at 0=m./2, /=0, m/2,
m, and 3m/2. These cusps have logarithmically infinite
derivatives. They arise, as explained in detail by Read,
essentially because the energy per unit length of a disloca-
tion diverges logarithmically with the size of the system.
When there is a finite density of dislocations, the distance
between dislocations D —1/(P5) provides an "infrared
cutoff" and gives rise to lnD-in[1/(P5)] terms. The
cusps give rise to facets in the inclusion shape. In units
where (rob /2)5 is unity,

E(8=m/2, /=0) =AD —ln5=—C .

For 0=m/2 and P=~/2, ~, and 3m/2, E has the same
value C. Hence, within an overall constant factor, the
facets are at a distance C from the center of the grain.
Also

EpA =ED( Ao —1 ) + n ]a i +n @a2
—a

&
lna i

—a2 lna22 2

+vn3[(lna& )/ai +(lna3)/a3]

Here ~o ——6[2m(l —v)] ', G is the shear modulus, v is
Poisson's ratio, a i (n f——+n 3 )', and a q

——(n 2+ n 3
)'

The energy of the atomic misfit in the core region enters
through the unknown parameter A0 which is given by

r
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E(0=0, /=0)=2(1 —v)(C —1) . (4.2)

v+(3 —5v)(C —1) & 3 . (4.3)

Clearly this restricts C to be greater than unity. The
point 0=0, /=0 is an extremum (as is 9=rr, @=0) and is
a minimum for

the Wulff plot contributes to the shape of the inclusion.
Thus both /=0 and m/4 contribute to the shape. It is
easy to show that there exists a critical P, (()„such that
(() & (0,$, ) does not contribute to the shape, while
(t H [$„45'] contributes, giving rise to the curved part. In
particular (t, determines the corner between the facet and
the curved part. Its value is independent of C, G, and ~o
within our model and is determined by the equation

A. v&v,
ln cosP+ sin P —cos2$(sing+ cos(t )sing =0 . (4.7)

E,(P) =(rob /2)Eo(A —ln5)6,

Eo =c +s

(4.4)

(4.5)

This regime can be characterized by the fact that the
shape in the equatorial plane (O=vr/2) is determined en-
tirely by the Wulff plot in the equatorial plane (O=rr/2).
We have checked this by performing the Wulff construc-
tion in the full three-dimensional space. Let us then for
simplicity examine the shape at O=n/2. The energy in
the equatorial plane is given by

Solving this yields $,=40.368'. The corresponding point
in the shape +, depends on C and for C=4, 4,=42.616'.
An interesting feature of the shape is the slope discon-
tinuity between the curved and faceted segments. If we
measure the discontinuity As by the tangent of the angle
between the two parts, then b,s =tang, =0.850. In the
case of a Wulff plot (for some interfacial free energy f)
which has a cusp at Pp with a finite but discontinuous
derivative, the facet length I. is proportional to the differ-
ence in the slopes

s lns+c 1nc
A =30—cs- s+c (4.6) Bf Bf

+ B

/
/

(

/
/

l

(a)

l

I
/

l

I
/

C=

0—

-2—

-4—
(b) C=4

I

2 4 6
X

FIG. 2. (a) The Wnlff plot E,(P) and (h) the grain shape
R, (N) in the equatorial plane for C =4.0. The solid lines in (a)

give rise to the curved portions in (b) near 4=m//4+nm/2,
n =0, 1,2, 3. The points of the cusps in (a} give rise to the four
facets in {b). The dashed lines in (a) do not contribute to (b).

where s =
~

sin(t)
~

and c =
~
cosP

~

. Observe that the elas-
tic constants appear in an overall multiplicative constant

The Wulff plot and the shape for C=4.0 are
displayed in Figs. 2(a) and 2(b). The shape consists of
four flat parts connected by curved regions. The four
cusps in the Wulff plot [solid circles on the four axes in
Fig. 2(a)] give rise to the flat regions. Setting 0=~/2 in
Eqs. (2.5) allows one to calculate the curved parts. ' The
portions of the Wulff plot which give rise to the curved
segments are shown as solid lines in Fig. 2(a). '5 As dis-
cussed in the Introduction the curved parts arise due to
the continuum approximation which washes out the extra
cusps present in a lattice model with long-ranged interac-
tions. We remark, parenthetically, that if one neglects the

P dependence of A (RS point out that this variation is
small) the curved parts disappear and one obtains a square
in the equatorial plane.

Note that because of the lattice symmetry we can re-
strict our attention to the range /&[0, ~/4]. It can be
shown by using Herring's "tangent circle construction"'
that, in the case of small v, the point P=~/4 (9=m/2) on

In the grain shape problem, BE/Bp is infinite at the cusp.
In units where the facet is a distance C from the origin,
the length I is given by

as,I.=2 E,(P, ) sing, + cos(t,
B

(4.8a)

=2(C —0.3197. . . ) . (4.8b)

Thus the size of the facet increases linearly with C.
We now proceed to discuss the three-dimensional shape,

choosing v=0.3 and C=4.0. We use Eq. (2.2) to deter-
mine the curved part of the inclusion shape. For a fixed
value of @=4&o, the boundary of the rounded part is
traced [Z versus p = (X + I' )

' ] by solving the non-
linear equations

Y —X tanNo ——0

Z —Z() ——0,
where X, Y, and Z are functions of 9 and P. This is done
by using a standard routine to find the zeros of nonlinear
functions of two variables, exercising care to discard
spurious solutions.

In Fig. 3 a sequence of slices of the grain at 4=0', 30,
40', and 45' are shown. For 4~+,=42.616', the slices
intersect the (100) and the (TOO) facets. The top of the
grain is smoothly curved as seen from all the figures. The
curved and planar regions meet with a slope discontinuity.
As 4 increases, the faceted segment decreases, disappear-
ing eventually at N=@,. This is the same value at which
the corner between the facet and rounded parts occurs in
the equatorial plane. This fact defines this regime in v.
At &=45' the grain is completely rounded. To an excel-
lent approximation the shapes at + &@, can be obtained
from the 4 =45' shape, which is approximately elliptical,
by truncating it with two straight segments parallel to the
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X=C

0

C =4.0
v = 0.3

0

0—

-4—

f =30
-4 C = 4.0

v =03

I p
4 -4 -2

FIG. 3. Slices of the grain shape for fixed azimuthal angle 4
for C =4.0 and v=0. 3 & v, . Note that for +=45', this cut
does not intersect any of the four facets, while for the smaller
4&'s pictured, portions of the (100) and (100) facets appear [cf.
Fig. 1(a)].

z axis. The validity of this approximation can be under-
stood by the weak dependence of E(n) on P around 8=0.
Similar features occur for smaller C, say C=2.0, except
of course that N, is smaller [4,(C=2.0)=40.035'].

Now consider the shape viewed in planes at constant Z.
For Z small, they are very similar to the shape in the
equatorial plane [Fig. 2(b)]. Above Z =Z, =2.644
( C=4.0 and v=0.3) but below

Z =Z,„=4.2[Z,„=2( C —1)(1—v) ],
the shape is completely rounded. In Fig. 4 we display
shapes at two values of Z (Z= 1.5,2.5), showing how the
grain becomes increasingly rounded as Z increases.

. To visualize the shape of the grain it is useful to know
the outline of the shape of the facet. This can be traced

FIG. 5. Shape of any of the four facets for C=4.0 and
v=0. 3 ~ v, . This shape is well approximated by an ellipse.

by solving Eq. (2.2), with X fixed to be equal to C. The
shape of the facet is shown in Fig. 5 and is approximately
elliptical. Around Z=O, the facet shape is quadratic.
Thus the complete shape is, to a good approximation, a
smoothly curved ellipsoid of revolution truncated by ellip-
tical facets on four sides.

B. v) v,+

This regime is characterized by two features of the
shape: (i) parts of the shape for 8=7r/2 are determined
by portions of the Wulff plot with 8&rr/2 and (ii) the
curved parts above and below O=rr/2 meet with a slope
discontinuity when N=m/4. Since the C&=45' shape is
determined by the Wulff plot restricted to /=45', we per-
form Herring's tangent circle construction' and analyti-
cally determine the critical v, v, , above which there is a
slope discontinuity at 0=90':

2C —3+ln2
2 2C-2+ln2

0 2 = 1.5
C = 4.0

v = 0.3
2= 2.5

-2—

-4

I I

-4 -2
I

4 -4 -2 0 2 4 X

FIG. 4. Slices of the grain shape for fixed Cartesian coordi-
nate Z for C =4.0 and v=0. 3. In the equatorial plane, Z =0
[Fig. 2(b)]. Since Z &Z, in both cases, the slices pictured inter-
sect all four facets.

This calculation is performed locally and, hence, v~ v,+

provides a sufficient condition for the existence of a slope
discontinuity. For C =4, v,+=0.4253 while for C =2,
v~+=0. 3143. We illustrate some of the features of the
shape for C =4, v=0.45 ( ~ v~+). In Fig. 6 we show the
shape at different values of 4: 15', 40', 42.58', and 45'.
As in the v=0. 30 case (see Fig. 3), the faceted segment
decreases in size as @ increases. If the shape for 0=90
(equatorial plane) were entirely determined by the Wulff
plot at 8=~/2, then the faceted segment would be expect-
ed to disappear for 4 greater than 4p q 42.616'. How-
ever, the three-dimensional calculation yields a critical
value of W which is smaller, albeit by a tiny amount.
Thus at' @=42.58' (see Fig. 6), where one might expect a
faceted segment, there is none. Also note that for N ~ 4,
(see Fig. 6 for C&=45'), the smoothly curved parts meet at
the equatorial plane with a slope discontinuity as men-
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C=4
~ = 0.45
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-2—
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l
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FIG. 6. Slices of the grain shape for fixed azimuthal angle 4
for C=4.0 and v=0.4S~v,+. Note that the cuts which do not
intersect any facets exhibit a slope discontinuity in the equatori-
al plane, unlike the v & v, case (Fig. 3).

tioned earlier. While such a generic possibility has been
pointed out by Herring for the general Wulff construc-
tion, ' ' it is interesting to see it emerge, for the first
time, we believe, in an explicit calculation. In Fig. 7 the
shape of the facet is shown. In contrast to v & v, (Fig. 5)
the shape is not everywhere smooth —there is a slope
discontinuity at 0=~/2.

This regime occupies an extremely small region of v of
the order of 0.02. We point out a result for vE(v, , v+, )

merely to show that several qualitatively different features
can emerge from the Wulff construction for model sys-
tems. The shape is similar to that for v~ v,+ except that
the slice at N =4S' shows the section to be completely
smooth. Consider the shape as one goes around the equa-
torial plane (increasing @ from 0 to m/4). For 4&4,
there is a facet. At 4, the facet ends. For 4&E(4„&o)
the curved parts above and below O=m/2 join at the
equatorial plane with a slope discontinuity. For
vr/4&4&@o the curved parts join at O=m/2 continu-
ously.

Since the grain-shape nonanalyticities correspond
directly to phase transitions, ' we find it helpful to
characterize these diverse features .in phase-transition
language. The boundary of the facet corresponds to a
first-order phase transition, as for v& v, and v~ v~+. Qn
the equator at @=+, is a triple point, as for v& v+. The
equatorial edge for 4&, &@&4&o maps to a first-order
boundary. At the end of this first-order boundary N=4o
is a critical point. Surely, in this narrow regime in v the
phase diagram is especially rich. Presumably, as v~v,
from above, the first-order boundary with its critical point
shrinks toward the triple point to form a critical end point
at v =v, . Analogously, as v~ v~+ from below, the
Co &4S' critical point presumably approaches its 40~4S'
counterpart until, at v=v,+, the points merge so that, for
v&v~+, only a single first-order boundary remains near
C =4S'.

V. DISCUSSION

Z

X=C

The model investigated in Secs. III and IV contains
several simplifications which make its solution relatively
easy to determine. In this section we investigate in more
detail the assumptions of our calculation and explore
qualitatively certain effects, neglected in our calculation,
which may prove important in a comparison with experi-
ments.

We assume that the angle of rotation 5 of the inclusion
with respect to the background is small. Others have stat-
ed that the expansion in Eq. (3.8) for v. leads to the energy
of the grain boundary of the form ' '

E =(rob /2)Eo5(A —in5+85 + ) .

-2

-3
G =4.0
~ = 0.45

-2 2 3

FIG. 7. Shape of any of the four facets for C=4.0 and
v=0.45~ v+. Note that, unlike the v& v, case (Fig. 5), a slope
discontinuity occurs at the equatorial plane in the facet shape
[see also Fig. 1(b)].

For small-angle grain boundaries only the first two terms
within the second set of parentheses are retained, as in Eq.
(3.9). The coefficient 8 of the 5 term cannot be calculat-
ed within elasticity theory. B includes contributions from
the interaction between the core and the outer region. De-
tailed, reliable atomistic estimates for such energies are
not available.

In our calculation the inclusion is rotated about the
[100] axis of a simple-cubic crystal. The extension to ro-
tations around other axes (u=[110] or [111]) in the
simple-cubic case is straightforward if tedious. The case
of more realistic crystal structures such as fcc is more
complicated: One must take into account the possible dis-
sociation of dislocations into partials and the interaction
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between crossing dislocations which can give rise to new
configurations. The latter can yield hexagonal nets and
these have been observed experimentally. Further, aniso-
tropic elastic constants can give rise to new phenomena
since they introduce additional orientation dependence of
the grain-boundary energy.

In our model we take the core energy to be independent
of the nature of the dislocations. The reliability of this
approximation is still, unfortunately, not clear due to the
lack of systematic and reliable microscopic calculations of
the core energy. One way of taking this into account is
the Peierls model where the core cutoff parameter ra can
be shown to be

d sin P
r0 ——— +cos /3

e er(1 —v)

where p is the angle between the Burgers vector and the
sense vector of the dislocation line, d is some characteris-
tic length scale, and y=(1 —2v)/[4(1 —v)]. One can use
a phenomenological variant in which the relative coeffi-
cient of the two terms is an adjustable parameter:

ra ——(d /e) [Q sin p+ cos p] .

Usually the core energies for screw dislocations tend to be
larger than those for edge dislocations. We have included
this dependence on p in the expression for E(n) and per-
formed a few representative calculations of the shape for
different values of the parameter Q. For Q & 1, the screw
configuration is favored and this leads to sharper features
(first-order transitions between curved parts), while for
Q & 1 the shape is more rounded. This particular connec-
tion between Q values and sharp features is presumably
only true for rotations around the [001] direction. In gen-
eral, this core-energy variation will add to the orientation
dependence of E(n) in a complicated manner. However,
it appears that taking a standard model for the core ener-

gy (constant r0), as we have done in the bulk of the calcu-
lations of this paper, is reasonable at present.

Our calculation neglects the effect of thermal fluctua-
tions, i.e., entropic contributions to the free energy.
Several contributions to the entropy have been considered
by others. The configurational entropy due to the posi-
tion of the core and due to oscillations arising from the
possible flexibility of the dislocation line are usually negli-
gible. ' The vibrational entropy terms appear likely to be
most important. The presence of dislocations will alter
the frequency of the normal modes of the crystal,
predominantly near the cores where Hooke's law fails.
Read and Shockley' have made a crude estimate of the
free-energy change within an Einstein model which con-
tributes additively to C (core-energy term), thereby reduc-
ing it. At elevated temperatures, where grain boundaries
come to equilibrium, and for low-angle boundaries, the ef-
fect is still modest. Since E0 in Eq. (3.9) arises chiefly
from elastically deformed regions, using isothermal elastic
constants should be sufficient to take thermal effects into
account. Crudely, the decrease in both the elastic con-
stants and the parameter C with temperature lead to more
rounded grain shapes. For example, N, where the facet
ends in the equatorial plane is 40.035' for C =2.0 and de-

creases to 38.197' for C=1.50. The decrease in v also
smooths out sharp corners between curved parts. The
question of whether ideal grain boundaries "melt"
(roughen) as a function of temperature is open.

We have computed the interfacial energy E by assum-
ing an ideal infinite planar array of dislocations. Effects
due to finite size, curvature, and possible nonplanar con-
figurations have been neglected.

We neglect the influence of impurities in our calcula-
tion. The effect of impurities on the energy can be dis-
cussed qualitatively, as in the case of thermal effects. It is
well known that impurities tend to segregate toward boun-
daries. One experimentally important effect of impurities
is their tendency to hinder equilibrium: the motion of the
boundary is limited by the diffusion constant for the im-
purities.

We also assume that the background material is the
same as that of the grain. Experimentally, grain shapes
are more easily observed in alloy structures (alkali-metal
colloids in alkali-halide crystals, rutile in star sapphire, '

ZrOq in magnesia, Al-A13Ni eutectics, etc.). These can
involve considering the case where the inclusion and the
background have different symmetry groups. The
simpler case of different lattice constants and different
elastic constants but the same symmetry group (which can
occur in so-called Widmanstatten structures) has been in-
vestigated by methods similar to the one employed in this
paper. It appears that in such cases the Wulff construc-
tion must be modified, since a strain energy proportional
to the volume of the grain contributes in addition to the
interfacial free energy.

Our calculation may have indirect applications to the
problem of grain shapes in polycrystalline samples. This
problem has been understood in the limit in which the
orientation dependence of the grain-boundary energy is
neglected, in which it becomes equivalent to the shape of
a froth of soap bubbles. Mathematically the problem is
formulated as a constrained minimization of the total in-
tergranular free energy with fixed (in general, different)
volumes for each of the grains. Although a proof is lack-
ing, in two dimensions it appears that a portion of the glo-
bal shape between two adjacent grains will correspond to a
particular piece of the grain shape of an inclusion of one
of these grains in the background of the other. Complica-
tions arise in three dimensions due to the tiling of space
with inclusion shapes. Nevertheless, it seems possible that
portions of the shapes we calculate may be closely related
to the boundary between two nearly aligned grains in a
polycrystalline sample. An investigation of the relevance
of this mathematical formulation to experimental situa-
tions, incorporating the relevant experimental time scales,
seems important at present.

Note added. The shape in the equatorial plane
(8=w/2) has been calculated by Smith and Hazzledine.
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It is convenient to introduce two other coordinate
frames: Oxyz with z along r& direction and Ox'y'z' with
z' along that of r2. x and x' are fixed by choosing
b~'y=0 and b2 x '=0. If we define

APPENDIX: DETAILS OF THE CALCULATION
OF Eq. (3.9)

—n3 n&

2 2 1/2 ' 2 2 1/2(n ~+n3) (n ~+n3)
(Al)

We define a reference lattice frame OXI'Z as a coordi-
nate frame whose axes are along the three crystal axes of a
simple-cubic crystal. In this frame, consider a grain-
boundary plane with normal n = (n ~, n 2, n 3 ) obtained by
rotating two crystals by 0/2 and —8/2 about the z axis,
respectively. In general, we will have two sets of disloca-
tion lines in the plane along the, directions

1
r] 2 2 ]/2 ( n3 0 n'I)

(n&+n3)

1r2= 2 2, (0, —n3, n2)
(n2+n 3)

with Burgers vectors b&
——(1,0,0) and b2 ——(0, 1,0), respec-

tively. The separation between dislocations in the two sets
is

1 1

g( 2+ 2)1/2 ' 2
g( 2+ 2)1/2

The grain-boundary energy can be obtained by calculating
the energy due to these two sets of dislocation; this can be
done by integrating the shear stress over the slip planes.

1 0 0
T2 ——0

0
cosp —sinp

sinp cosp

respectively. The transformation matrix between the two
frames is

R —T2TJ ~ (A3)

In the Oxyz frame, since the set-1 dislocations are along
z we know how to sum their stress fields by introducing a
complex representation (RS). Let r =x +iy and
z& D&e'~, wh——ere P is the angle between the boundary and
the x axis (now the boundary is parallel to z). We have,
at point (x,y), the stress field due to these infinite disloca-
tions

—n3 n2
sinp=— 2 2, /2, cosp= 2(n2+n3) (n2+n3)

then the orthogonal transformations that rotate OXYZ to
Oxyz and Ox'y'z' are given by

cosa 0 —sina

Ti —— 0 1 0
sina 0 cosa

2 2Y
()) xn(xn —yn ) 7Tf' 7T 2 7TP

2 2
b ~, ——Re 2 D

& cosp ctg iD
& (y cosp ——x sing ) csc

(x„+y„) z
&

Z$ Z] Zi
(A4)

2 2 (1 v)b &, Re (———1 —v) ctg b &, ,„(x.'+y,')
(A5)

where x„=x+nD& cosP, y„=y+nD, sing. Also b&, ——sinn and b&, ——cosa are screw and edge components of the
Burgers vector of the first set dislocations. We have set 6/2m(1 —v) =1 and b = l.

The self-energy (per unit area) of set-1 dislocations is obtained by integrating

2D) ro

1 2
m.R 2 ITP p 2 1 ~ 2 ~R 2&7'p

cos a cosP sin2$ —ln +sin P + sin a sing —ln
2Di Di Di 2Di ~ Di Di

(A6)

where rp is the core radius.
The interaction energy between the two sets of disloca-

tion is found by calculating the work done in bringing in
one member of set 2 in the presence of all set-1 disloca-
tions. The interaction energy per unit area is obtained by
dividing by the product of the length of the dislocation
lines and the distance between the second set dislocations.
Since the stress field due to set-1 dislocations is periodic
in the z direction with period b, =D

~ /sing, where
cosP=z z ', we obtain, in the Ox'y'z' frame,

2D, a d y,'

where d 1s some constant. ~„y b2e+~zz b2, can be ex-~(&) ~(i)

pressed in terms of stress field in Oxyz frame. Since we
know the transformation matrix R;

'+Rd+~, y +
(13 ~ (&3E;'„",= — dz' (cosa' ~ +sina~~, )dy' .

2D, a d y,'
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By transforming (x,y,z) to (x',y', z') and carrying out the
integration, we obtain

mR
cos a cosP stn2$

2D)Dp

mR
(1—v)sin a sing .2

2D )Dp

We can carry out the same calculation for set-2 disloca-
tions. The result is the same except for changing
D, ~Dz, Dz~Dt, P~ml2 P—', and a~P, where P' is
the angle between grain boundary and x ' axis. We have

(p) I p mRE,' '= cos P sing'sin2$' —ln
2Dp Dp Dp

(1—v) . q mR, 2rrro
+cos p' + sin p cosp' —ln

2Dp Dp D~

(2) =E. , =— cos P sing' sin2$' — (1 —v)sin P cosP' .
2DIDp 2D)Dp

So, we obtain the final expression for energy

where

2
2 2 1/2 2 2 1/2 El 3

E0 t [(nt+n3) +(n2+n3) ]——
z z „,+(n ~+n3) (nz+n3)

Eq A = —,[ ( n
~ + n 3 )

' n
& + ( n q + n & )

' ~ n 3 ] Eoin-
&

——,
' I(n&+n )'3~ ln[(n&+n3)' ]+(nq+n&)' 1 n[(nq +n 3)' ]I

2 2

(n, +n3)' (n~+n3)'~

Setting Gb /2m(1 —v) back in, we obtain Eq. (3.9).
Rey and Saada have calculated the elastic energy for

two sets of parallel infinite dislocations. It can be shown
that their value of EOA disagrees with ours for all n ex-

cept n=(0, 0, 1). We believe that our expression is correct
and in a future publication ' we plan to discuss this
discrepancy.
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