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The optical-absorption coefficient o.(m) in heavily doped n- and p-type GaAs is evaluated for
comparison with the observed values of Casey et al. The purpose is to test the theory of electrons in
heavily disordered systems derived by Sa-yakanit and the absorption matrix element (ME) which fol-
lows from this theory. The present calculation of a(m) begins with the density of electron states
(DOS) and the electron wave functions. The ME is then derived. The screening of the interactions

by the carrier electrons depends on the DOS. Since the DOS, ME, screening, and the Fermi energy,
which provide the essential input for a(m), are interdependent they must be evaluated iteratively un-

til consistent. The final u(co) agrees quite well with experiment. The overall a(~) is also similar to
that calculated by Casey and Stern although very different inputs for a(co) are used. The o.(co) is
found to be very sensitive to the DOS, the ME, and the band-gap shrinkage. The comparison with
experiment suggests the present combined model of the DOS and the ME represent heavily doped
GaAs well but that the band-gap-shrinkage calculations need further refinement.

I. INTRODUCTION

Optical absorption and transport in heavily doped semi-
conductors has been an active field of research for over 25
years. This interest, which has been exhaustively reviewed
by Abram et al. ,

' by Redfield, and by Efros, is motivat-
ed largely by the development of semiconductor lasers and
Esaki diodes. Here we present a specific calculation of
the optical-absorption coefficient ct(co) near band edges in
heavily doped GaAs at T =297 K. The aim is to test a
recently developed theory of the densities of carrier
states p(E) in the band-tail region and the absorption ma-
trix element (ME) that follows from this theory. The new
ME is developed in the present paper. The interdependent
p(E), ME, Fermi energy, and screening provide an inter-
nally consistent model for a(co) which can be tested by
comparison with experiment. GaAs is considered because
of the relative simplicity of its band structure and because
both experimental measurements and previous calcula-
tions are available for comparison.

Any calculation of a(co) is necessarily complicated. A
model must include a description of the band structure
and the density of carrier states under heavy doping. The
interaction between the carriers and the dopant ions must
be considered. The wave functions of the carriers and a
model for the ME using these wave functions is required.
The screening of the interactions by the carriers, the Fer-
mi energy, and the variation of the band gap with doping
must be also determined.

The present model begins with pure GaAs having a sin-
gle conduction band separated from a doubly degenerate
valence band by an energy gap Eg. Below the doubly de-
generate valence band there is another "split-off" valence

band which we ignore. Since absorption near band edges
only is considered the bands are assumed to be parabolic
with an appropriate effective mass. This restricts the in-
vestigation to a narrow range of energies, 1.35
eV &~& 1.55 eV. We also consider "vertical" transitions
only which again restricts us to GaAs where the
conduction- and valence-band edges lie directly above one
another.

When GaAs is doped with impurities of positive charge
Z (relative to GaAs) the electrons donated by the impuri-
ties occupy states immediately below the conduction band.
At heavy-doping levels, XD ) 10' cm, these impurity
electron states merge with the conduction band and form
a conduction-band tai1 reaching into the energy gap. ""
The impurity electrons are here assumed to interact with
the impurity ions via a screened Coulomb potential.
Screening is described within the Thomas-Fermi approxi-
mation. As pointed out by Wolff, ' the average (Hartree)
electron-electron and electron-ion potentials cancel due to
charge neutrality. The impurity electron-band-tail states
are therefore determined by Auctuations in the electron-
impurity ion potential which follow from local fluctua-
tions in the impurity-ion concentration.

Similarly, when the doping impurities have a negative
Z, hole (acceptor) states appear above the valence band.
At doping levels Xz ) 10' cm these hole states form a
valence-band tail reaching up into the energy gap. A
specific example of band tails in both the valence and con-
duction bands calculated here for Xz ——1.5X10' em
&D ——3X10' cm ' giving p=N& —AD=1.2X 10' cm
is shown in Fig. 1. For both positive and negative impuri-
ties we assume "shallow" impurity states so that at high
doping the impurity states always form band tails.
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FIG. 1. Sa-yakanit-Glyde (SG) density of states (DOS) in the
valence and conduction bands of p-type GaAs [Eq. (3) in the
text]. The doping levels are N„= l.5 X 10' cm ', 1'——3 X 10'
cm, p=N& —ND ——1.2&(10" cm, and Eq and E, are the
valence- and conduction-band edges, respectively.

A central approximation in the present model is the
neglect of electron-hole interactions. While this (exciton)
interaction is very important in pure" GaAs, the strong
screening of the electron-hole interaction by the carriers
(electrons and holes) is assumed to reduce its importance
in the heavy-doping limit substantially. This restricts the
model to the heavy-doping limit. Also if the doping is
heavily compensated (Nz -ND) so that there is no net
carrier concentration to provide screening, the electron-
hole interaction becomes important. ' Thus we must
avoid strongly compensated doping here. The present
model also uses the heavy-doping liinit (ND qa && 1 where
a is a typical Bohr orbit radius of a carrier) to obtain
p(E). In this limit each carrier interacts with many im-
purities and the carrier-impurity interaction fiuctuates in
strength throughout the semiconductor depending upon
the local concentration of impurities.

Heavy-impurity doping also causes the gap, Eg, be-
tween the valence and the conduction band to shrink.
This shifts the absorption to lower energy. This band-gap
shrinkage b,Eg is due chiefly to the (negative) exchange
energy of the added impurity electrons. ' However, there
are several other high-order contributions which are diffi-
cult to evaluate with confidence. Here we describe the
band-gap shrinkage using an empirical expression
developed by Casey and Stern and by a more fundamen-
tal expression due to Inkson. ' While the band-gap
shrinkage shifts a(co) to lower co, the rise of the Fermi lev-
el EF into the conduction band on heavy doping shifts the
absorption to higher energy (the Moss-Burstein shift' ' ).
Thus b,Eg and the Moss-Burstein shift tend to compen-
sate for each other. To identify the effect of b,Eg alone
we also present results with AEg set arbitrarily to zero.

Kane' and Bonch-Bruevich' first derived a semiclassi-
cal density of states (DOS) in the low-energy band-tail re-
gion. This was extended to a full quantum theory by
Halperin and Lax. These theories are thoroughly re-
viewed by Abram et ah. ' Since these reviews Sa-
yakanit ' and Sa-yakanit and Glyde (SG) developed a
theory using the full quantum ideas of Halperin and Lax
which takes advantage of the Feynman path-integral
method. They were able to obtain an analytic expression
for the density of states p(E) over the whole energy range
E.

In the SG theory, the fluctuation seen by an electron (or
hole) due to the impurities is modeled by a harmonic well.
The curvature of this well depends upon the electron
(hole) energy in the band and is found using the Lloyd-
Best ' variational principle. Carrier states deep in the
band tail (low E) arise from deep, sharply parabolic har-
monic wells. The ground-state wave function of a particle
in a harmonic well is a Gaussian function. Thus we use
Gaussian wave functions to describe carrier states in the
absorption matrix element appearing in a(co). Once the
model-impurity harmonic well is determined variationally
at each carrier energy both the DOS and the wave func-
tions to be used in the matrix element are determined. In
an earlier publication we evaluated the screening length
g in the Thomas-Fermi approximation and the Fermi
energy EF in heavily doped n-type GaAs using the SG
density of states. These calculations showed that Q is not
greatly sensitive to the specific form of p(E) in the band-
tail region. This is because the total number of states in
the band tail is small compared to the number of states
higher in the band.

The only direct measurement of p(E) for heavily doped
p-type GaAs is the Schottky junction tunneling result of
Mahan and Cooley. We show later in this paper that the
SG p(E) agrees well with the Mahan and Conley measure-
ments. Takeshima has derived a p(E) using a Green-
function technique which also agrees well with the Mahan
and Conley data. Unfortunately, while the Mahan and
Conley results demonstrate band tailing clearly, the data
is not discriminating and any reasonable treatment of
band tailing (such as Kane's original' semiclassical ap-
proximation) will agree with it.

A central aim here is therefore to test the SG p(E) and
the ME that follows from it by calculating a(co). In the
present model, the p(E), the matrix element, the screening
length Q ', and the Fermi energy are all interdependent
and must be determined iteratively until consistent. The
model therefore has substantial internal consistency which
removes some of the possible choice of model parameters.
Comparison with experiment provides a global test of the
complete model.

In the Sec. II we present the expression for a(co) and
the SG DOS used in the present calculation. We then
present the new initial- and final-state wave functions for
the absorption transition which are associated with the in-
itial and final energy states in p(E). The transition matrix
element is evaluated and shown to approach correct
asymptotic values. The evaluation of the band-gap
shrinkage is also discussed.

In Sec. III we present the absorption coefficient for
both p- and n-type GaAs with and without band-gap
shrinkage. The sensitivity of a(co) to the DOS is also test-
ed. In the Sec. IV we discuss the DOS and a(co).

II. OPTICAL-ABSORPTION COEFFICIENT

A. Absorption

Optical absorption can be readily described using a
"one-electron" approximation. In this picture, once the
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density of states has been determined, incoming photons
are absorbed by exciting noninteracting electrons from
states in a valence band i to states in a conduction band.
This gives a coefficient, in cgs units, of

4~e 0
a;(a) ) = 2 f dE p„; (E)p, (E')M(E,E')

fly pen co

p( E) p T (E)[ 1 B—(E E*—)]+p~ (E)B(E E*—), (3)

where B(x) is the Heaviside step function. Kane's DOS
for a band having effective mass m* is

m ~) /4 (E Ep) /4gg

DOS, consists of the tail DOS pT(E) up to the energy E*
at which it crosses px (E). Thereafter px (E) is used, i.e.,

where E' =E+~, co is the photon frequency, e and m p

are the electron charge and mass, respectively. The n, c,
and II are the refractive index, velocity of light, and
volume of the (pure) crystal, respectively, and f(E) is the
Fermi-Dirac distribution function. The p„(E) and p, (E)
are the SG DOS's for a single spin per unit volume in the
valence i and conduction bands, respectively. M(E,E') is
the effective matrix element of the momentum operator
for transitions between states in the valence band i at en-

ergy E and states in the conduction band at-energy E'.
When there are degenerate valence bands, as in GaAs, the
total a(a)) is a sum over each i Also. , since there is no
spin flip possible in the transition, spin degeneracy is in-
cluded by multiplying p„(E) by 2. Therefore

2

a(a))=2+a;(co) . (2)

XD 3/2 ( —(E EP ) /—~gg ),
where Ep is the mean and g(3 2vrZ ——e "K/Qe(3 is the vari-
ance of the fluctuating impurity potential. In (4) Dz(x) is
the parabolic cylinder function and % is the number of
impurities of charge Z. Equation (4) can be expressed in
terms of the dimensionless energy v=(Ep E)/E~ —where
Eg fi Q /——2m* as

p(v)g~9/4 —v /4g'D(v/3/gI ) (5)

where g'=g~/E& and pz(E) is now in units of
Q3/E g& 2

The pT(E) is obtained from Eq. (2) of Ref. 7. In the
same units as in (5), this is

We now examine the basic ingredients of a(a)): the DOS,
the Fermi energy in f(E), the ME, and the band-gap
shrinkage AE.

( )
e 3/4 a(v z) b(vz)/4$—

pT( V~Z j —g
b(v, z) 3/4

XD3/2([b(v, z)/g']'/ ), (6)

B. Density of states

The density of states for carriers in a heavily doped
semiconductor is obtained by treating a carrier as a parti-
cle in a disordered system. The disorder is created by the
randomly located impurities in a host having a constant
static dielectric function E'p. The low-energy electron
states in the band tail are obtained when fluctuations lead-
ing to dense clusters of impurities create deep attractive
potential wells.

As noted above, Kane' and Bonch-Bruevich' indepen-
dently obtained a p(E) from this model in a semiclassical
approximation. Since the (positive) kinetic energy of lo-
calization of the carriers in the deep well was ignored,
their result underestimated the carrier energy and predict-
ed too many carriers having low energy (too large a band
tail). This problem was corrected by Halperin and Lax
using a full quantum-mechanical treatment. However,
their p(E) is obtained as a numerical table and is not easy
to use. Sa-yakanit, following Halperin and Lax's ideas,
was able to obtain an expression for p(E) valid at all E.
This expression ' reduces to a simple form in the band-
tail region (low E) and reduces to the expected parabolic
value at high E. However, it is quite complicated at inter-
mediate E, too complicated to use conveniently. At low
E, the simple tail DOS, pT(E), agrees well with Halperin
and Lax's result. The pT(E) can also be extended to high
enough E that it crosses the Kane DOS, px. (E), which is
valid at higher energies.

The DOS we use here, denoted the SG (Refs. 6 and 7)

where a(v, z) and b (v,z) are dimensionless universal func-
tions defined in Eq. (4) of Ref. 7. The z(v) is the varia-
tional parameter which is determined at each carrier ener-

gy E [v=(E0—E)/E~] using the Lloyd and Best ' varia-
tional principle. Numerical results for pT(E), px(E), and
Halperin and Lax's DOS have been presented in Ref. 7.
Values of p(E) given by (3) for GaAs are shown in Fig. 1.
In Fig. 1 the scales for the conduction and valence bands
differ and p(E) for the conduction band is significantly
smaller than that in the valence band.

p=g f p„(E)fb(E)dE, (7)

where p is the net hole concentration (normally set at
p =X~ ND). Q is obtain—ed from

Q'=g f p (E)
l

~fb «)
dE .

aE

We calculated EE and Q here via (7) and (8) for both p-
and n-type GaAs at T=297 K using the SG DOS [Eq.

C. Screening and Fermi energy

In a(co) we need the Fermi energy EF [to be used in the
Fermi function f(E)] and the screening length Q
From (5) and (6), p(E) also depends on Q. Previously
we calculated both EE and Q in n-type GaAs using (3).
We follow the same procedure here for both n- and p-type
GaAs. In the case of the p-type GaAs, EF is determined
using
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(3)], the Kane DOS [Eq. (4)], and the well-known parabol-
ic DOS. In the former two cases, Eqs. (7), (8), and the
DOS must be evaluated iteratively until consistent. To
model the parabolic bands we used m, =0.066mo for the
conduction band, and I~I, ——0.55mo and m~~ ——0.085rno
for the heavy-hole and light-hole valence bands, respec-
tively. These values of the effective masses (and the dop-
ing concentrations) were taken from Casey and Stern so
that we may compare our absorption coefficients with
theirs. The results are displayed in Table I and show that
Q is insensitive to the DOS. However, EF is quite sensi-
tive to p(E).

D. Matrix element

M,„„=fd r y*, (r)y„(r) (10)

The matrix element appearing in a(co) is

M(E,E') = f dr/, '(k„r)(e.p)P„(k„r),

where p is the carrier momentum operator and e is a unit
vector in the direction of the incoming photon. As dis-
cussed by Kohn, the wave function P(k, r) of a carrier
near the band extremum (k=0) may be written as a prod-
uct of a Bloch function u (r) (k=0) and a slowly varying
envelope function p(r), i.e., P, (k„r)=y, (r)u(r). Using
the property that each y(r) is slowly varying with r, the
M(E,E') may be separated into a Bloch term and an en-
velope term,

M (E,E') =MbM, „„
where

temperature the energy gap is Eg ——1.424 eV and the
spin-orbit splitting is 6=0.33 eV. More recent studies
find that the Mb is 25% larger than the value used previ-
ously. We have accordingly increased (12) by a factor of
1.25 and used this single increased value of Mb in all cal-
culations of a(co).

Several values of M,„, have been used in the past. Ea-
gles, for example, assumed a localized acceptor wave
function y, of hydrogenic form and a delocalized accep-
tor function y, of plane wave form. This gives

(1+a k, )" (13)

where I3 and k are energy-dependent parameters and r; is
the impurity location. In the SG- theory the potential
wells seen by the carriers due to the impurities are
modeled by harmonic wells. The curvature of the wells
(men ) is an energy-dependent variational parameter; relat-
ed to z(E) by fm=2E~/z . In this model the kinetic en-

ergy of localization is T = ,' fico = ', E&/—z . T—he ground-
state wave function of a particle in a harmonic well is a
Gaussian and at low E only ground states are included in
p(E). Thus it is natural (see the Appendix) to use Gauss-
ian envelope functions of the form

where a is the Bohr radius. For transitions right at the
band edge (k, =0) this

~
M,„„~ becomes simply

(64rra /0). This band-edge value is often used as simple
constant model ME for all transitions. Casey and Stern
use envelope wave functions for all states of the form

y(r) =(P3/ir)'/ exp(ik r)exp( —P
~

r —r;
~
),

and
y(r) = 2/

3/4

exp(ik r)exp[ —y(r —r;) ] (14)

Mb= —fdru, '(r)(e p)u„(r) .0
Squaring and averaging M (E,E') over all directions gives,

M(E,E') =MbM, „„.
An expression for Mb has been derived by Kane for

transitions between p- and s-like Bloch functions using
perturbation theory. For all III-V semiconductors, this is

for energies up to where the carrier ceases to be localized.
Here y(E) is the energy-dependent Gaussian parameter,
y(E)=mes/R=mg /z and k is determined as discussed
below. On substituting y(r) in (10), and averaging the r;
over all random impurity positions we obtain '

3/2
'VU+'Vc

sinh
Tv+'YcI,P m pEg Es+5

Mb = 1.25 —1.25
1 I, (12) —(k +k )/2(y +y )

Xe (15)

where P is the ME defined by Kane. In GaAs at room This ME is a substantially simpler than that obtained us-

TABLE I. Self-consistent results for heavily doped GaAs at T=297 K using the Sa-yakanit-Glyde (SG) density of states. The ef-
fective masses used are 7tl =0.066plo, t7lhp =0.55mo, and ttlpl =0.085mp. XD and X& are the donor and acceptor concentrations.
Q

' is the screening length. E~ E„and Ez —E, are Ferm—i energies measured away from the valence- and conduction-band edges,
respectively. g~ is the potential fluctuation parameter defined in Eq. (4).

cVD

(cm 3) (cm )

p-type GaAs
Q Q

(cm ') (A)
E EF
(meV)

gl /2

(-'V)
cVD

(cm ) (cm )

n-type GaAs
Q Q

' EF E, —
(cm ') (A) {meV)

( 1
/2

(meV)

3.0x 10"
6.0x10"
4.ox 10"

1.5x10"
3.0x 10"
2.0x 10'

2.49 x 10' 40.2
3.45 x 10' 29.0
7.47 x 10' 13.4

—70.2
—47.5

33.7

23.3
28.1

49.3

2.5x10"
4. 1x10"
8.4x 10"

5.0x 10' 2.06x 10 48.5
8.0X 10' 2.30X 10 43 4
1.7x 10' 2.64x 10 37.9

82.8
121.0
198.0

33.2
40.1

53.8



1094- %. SRITRAKOOI. , V. SA-YAKANIT, AND H. R. GLYDE 32

(16)

ing hydrogenic envelope functions. It also has correct
asymptotic limits. For example, for transitions between
states far from the band edges (delocalized states) both y,
and y„go to zero. In this limit

(m,„„~'=„„„5(k„-k,)
C

2 3

5(k, —k, ),
Q

2-0

1.5

, 1.2

1.0

which is the result expected for two plane-wave, delocal-
ized carrier states. Similarly, for a transition from a lo-
calized state near the valence-band edge (k„=O,y„&0) to
a delocalized state high in the conduction band
(k, &O, y, =0) we find (15) becomes

3/2
1 2~

e
k,'n—

0 y,

0.8

0.6

For transitions right at the band edge (k, =0) we obtain a
constant ME,

3

05 i l l I I I } I I I I

-50 0 50

0.4

E —E„(meV)
FIG. 2. Uariational parameter, z ={@co/2E~) ', describing

the curvature of the model harmonic wells (m*co ) seen by the
carriers due to impurities. Here E&=—A' g /2m* where Q is the
inverse screening length [g =0.025 A ' from Eq. (g}].
T= ~%co/E~ ——

~ /z is the kinetic energy of localization {in

units of E~) which vanishes at high energy E —E„. The light-
hole valence band is considered (m *=mI, ~

——0.085m 0) at
p=1.2)&10 ' cm

' 1/3
k„= 6~z J p„(E')dE' (20)

We found that a(co) was insensitive to the method of
determining k, and k„ for the choice of E,=E, and

DE

PARASOL lC
D l S PE R SION
RELATION

LOCALIZED STATES

kDOS

DELO
ST

which may be compared to Eagles's constant matrix ele-
ment describing the same transition.

As noted above y„=mQ /z„(m =ml, t or mi, ~) and

y, =m, Q /z, are determined directly by the variational
parameters z„(E) and z, (E) appearing in the band-tail
density of states, pr(E). However, for energies E & E' in
(3), where the Kane density of states is used, the z is not
known. For E&E* we have determined z by a simple
linear extrapolation from z (E) for E &E' using the phys-
ical idea that the localization energy T = ,'Ef2/z must—
vanish at high energy E. Typical values of z and T (in
units of E&) for the light hole (m =m~t) valence band in
GaAs with p =1.2&(10' t.m are shown in Fig. 2.

To determine k„and k, we have followed two methods.
Firstly, we have used the concept of a well-defined "mo-
bility edge" E~ in Anderson's theory of localization and
of separable bands above and below E~. Below E~ we
simply assume a completely localized band and set k =0.
Above E we assume a free-particle band with k given by
the parabolic band relation Rk =[2m (E E~ )]'~ . Since-
the choice. of the Em is not clear, we take them at the
nominal band edges, E,=E,=E~ and E „=E„=O.
This choice is depicted graphically in Fig. 3.

Secondly, we use the counting method proposed by
Casey and Stern. In this method we determine k, at ener-

gy E, for example in the conduction band, by counting the
number of states per unit volume, N(E)/A„occupied up
to energy E in the band using the real p, (E). We then as-
sume a parabolic density of states for which there is a
well-defined relation between k, E, and N(E). The k,
value is that value of k needed to accomodate the number
of states X(E)/f), in the assumed parabolic density, i.e.,

K(E)/A, = f p, (E')dE'=

Similarly, for the valence band

k, /(2m )
3

FIG. 3. Schematic representation of the band structure show-
ing (on the left) localized states between E„and E, and delocal-
ized states outside this range. On the right the parabolic DOS
used to describe the delocalization states above the mobility edge
E,=E, and below E „=E„is shown.
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E. Band-gap shrinkage
-17
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LIGHT HOLES

Heavy doping has two important effects on the bands
in addition to band tailing. Firstly, there is a rigid shift
downward of all the bands by an amount Fp due to the
positive donor ions. Halperin and Lax give an explicit
expression for Ep. Since all bands are shifted equally, this
shift has no direct effect on a(co). Secondly, the conduc-
tion band shrinks downward' ' ' relative to the
valence band by an amount b,Ez, due chiefly to the ex-
change energy of the donor electrons in the conduction
band. Contributions to b,Eg also come from the donor
electron correlation energy and from lattice relaxation
around the impurities. If the exchange energy is approxi-
mated by the free, unscreened electron gas-exchange ener-

gy we expect' AFg o: n '

Inkson' has evaluated AE& by calculating the relative
shift of the conduction and valence band using a
Thomas-Fermi model of screening. This gives

r

2e kF g ~, k~1+ ——tan
kF 2 gKCp

(21)

hE = —1.6X10 (p)' (22)

where p is in cm and b,Ez is in eV. The ATE& due to
Inkson, ' due to Abram et al. ,

' using Lindhard screening,
the unscreened exchange value, and Casey and Stern's

where the first term is the unscreened result in a medium
having static dielectric constant so. Abram et al. ' have
improved this result by using Lindhard screening. Casey
and Stern determined an empirical expression for b,Eg
for p-type GaAs at 297 K by fitting to observed values of
a(co). This is

-18
10

HEAYY HOLES

CASEY-STFRN S COUNTING

METHOD TO F IND k

~Eg= -34meY

p TYPE GaAS at T= 297 K

p=1.2X10 cm
18 -3

-19
10 /

/
/

/ PHO
/

-zo /10 —/=/:/
r

10 I I l I I I I I I I I I I I I I I I

-100 -50 0 50
E-E„(meY)

empirical expression are compared in Fig. 4. All curves
except the Casey and Stern value are taken from Abram
et al. An accurate determination of b,Es is clearly diffi-
cult and is as yet an unresolved problem. "

Here we use the b,Eg due to Inkson' with Q deter-
mined as discussed above, and due to Casey and Stern.
From Fig. 4 it is clear that the Thomas-Fermi approxima-
tion overestimates AEg and that the Casey and Stern
value is hkely to yield the best results for a(co).

FIG. 5. Envelope matrix elements, Eq. (15), for electron exci-
tation from the light- (dashed line) and heavy- (solid line) hole
valence bands to the conduction band for three incident photon
energies Ace=1.55, 1.42, and 1.37 eV. The counting method
proposed by Casey and Stern (Ref. 9) is used to determine k„
and k, in

~

M,„„~ . The energy scale is shifted by AEg = —34
meV.
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III. RESULTS

A. Preliminary results

To introduce the results for a(co) we show in Figs. 5
and 6 the present envelope matrix element (ME) given by
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FIG. 4. Band-gap shrinkage AEg in p-type GaAs calculated
by Inkson (Ref. 15} using Thomas-Fermi screening, by Abram
et ai. (Ref. 1) using Lindhard screening, by Casey and Stern
(Ref. 9) using an empirical fit to observed values, and as given
by the unscreened exchange term.
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FIG. 6. As Fig. 5 with k„and k, determined assuming para-
bolic bands starting at the mobility edge (here E,}with AEg =0.
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Eq. (15). In Fig. 5 the parameters k, and k, in
I M,„, I

are established using Casey and Stern's counting method
which is discussed in Eqs. (19) and (20). In Fig. 6 the k,
is established by simply assuming a well-defined mobility
edge in the band. Below the mobility edge we assume
k, =0. Above the mobility edge we assume a parabolic
energy band with k, related to E by the usual parabolic
band relation. A similar argument for the valence band
determines k„. This we call the mobility edge method.
Comparing Figs. 5 and 6 we see that

I
M,„, I

is quite in-
sensitive to how k„and k, are determined for a photon
energy of 1.55 eV. At lower photon energies the energy
dependence (on E E„) of—

~
M,„, I

depends somewhat
upon how k, and k, are determined. However, the mag-
nitude of M,„, is relatively insensitive to the method of
determining k. Since

~
M,„„~ appears in a(co) integrated

over (E—E, ) [see (1)], the final a(co) changes by only a
few percent when

~

M,„,
~

in Fig. 5 is replaced by that in
Fig. 6. Thus, with the present choice of mobility edges, it
matters little whether Casey and Stern's counting method
or the mobility edge method is used to determine k, and
k, .

In Figs. 5 and 6, E is the initial energy of the excited
electron in the valence band (E'=fico+E). The present

I
M,„,

~

shown in Figs. 5 and 6 are approximately ten
times smaller than those obtained by Casey and Stern.
However, the present

~
M,„„I

is a much broader func-
tion of (E E, ) and e—xtends over a much wider interval
of E —E, . Thus when the Casey and Stern and present

I
M,„„I

appear integrated over E in a(co) they give ap-
proximately the same a(co).

In Fig. 7 we show the present a(co) for both p- and n

type GaAs with the band-gap shrinkage AEz arbitrarily
set to zero. The purpose is to display the Moss-
gurstein' ' shift in the calculated a(co). In Fig. 7 the
calculated a(co) is shifted to higher energy, displaying a
larger apparent energy gap, than the observed a(co). This
is because the Fermi energy moves up in the conduction
band, increasing in energy with increased doping concen-
tration. The electrons must be excited to states above EF
so that the apparent energy gap shifts to higher E (Moss-
Burstein shift) as EF increases. With bEg =0, the calcu-
lated dependence of a(co) on doping concentration clearly
disagrees with experiment in both n- and p-type GaAs.
The positive Moss-Burstein shift is canceled by the nega-
tive band-gap shrinkage AE& in real semiconductors.

In Fig. 8 we show the sensitivity of cz(co) to
~
M,„„

The dashed line shows cz(co) calculated using Eagles's con-
stant ME given by (18). This ME describes electron exci-
tation from a localized state right at the top of the valence
band E =E„ to a (delocalized state) right at the bottom of
the conduction band. The (constant) a(co) in Fig. 8 is cal-
culated using this fixed ME for all transitions, i.e., for all
energies. The Eagles's ME describes tx(co) quite well for
Ace~ 1.40 eV, where transitions are indeed between the
band edges, but overestimates a(co) at higher fico. On the
other hand, the parabolic ME, which is valid for com-
pletely delocalized states, describes n(co) well at high Ac)
where transitions are indeed between delocalized states far
from the band edges. The parabolic ME, given by (16), is
used in o.(co) together with parabolic bands having no
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FIG. 7. Absorption coefficient in GaAs calculated (solid
lines) using the present element, Eq. (15), and assuming a para-
bolic band above the mobility edge to determine k [Eq. (19)].
The band-gap shrinkage is set to zero (DE~=0). The dashed
lines are the observed a(co) of Casey et al. (Ref. 8).

B. Optical absorption

In Fig. 9 we show the present tz(co) calculated using the
present matrix elements shown on Fig. 6 and Casey and
Stern's empirical expression for b,E&. The a(to) for three
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FIG. 8. Absorption coefficient calculated using (a) Eagle' s
constant matrix element (ME) (constant), (b) the ME in which
all states are delocalized [Eq. (16)] (parabolic), and (c) the
present ME [Eq. (15)] (present) all with AEg =0.

band tails. The difference between the present full a(co)
and the parabolic result shows the important contribution
of band tailing to a(co) at low fm.
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FIG. 9. Absorption coefficient calculated (solid lines) using
the present theory with EEg given by Casey and Stern's empiri-
cal expression (22) for both p- and n-type GaAs and with the
mobility edge method for determining k. The dashed lines are
the observed values of Casey et al. (Ref. 8).

doping concentrations of both n and p--type GaAs is
shown in Fig. 9. The values of b,Eg used are listed in
Table II. For n type Ga-As we have simply used Eq. (22)
with p replaced by n. The mobility edge method is used
to determine the values of k„and k, . The agreement with
the observed a(co) is reasonably good at all energies %co in
p-type GaAs. The agreement depends upon a complicated
combination of the DOS, the screening, EF, and Eg. The
agreement is not as good for n-type GaAs. At low fuu,
the calculated a(co) shows a much greater sensitivity to
doping concentration than does the observed a(co), for ex-
ample. At low fico, a(co) is very sensitive to bF&. This
suggests that Casey and Stern's empirical rule for AE~ es-
tablished for p-type GaAs cannot be simply translated to
n-type GaAs with accuracy. In n-type GaAs, the calcu-
lated a(co) at high fm lies substantially below the observed
values.

Figure 10 shows a(co) calculated as in Fig. 9 but using
Inkson's' Thomas-Fermi expression (21) for b,Eg. Com-
paring Figs. 9 and 10, a(co) is clearly very sensitive to

FIG. 10. As Fig. 9 with AEg given by Inkson's Thomas-
Fermi result.

AEg at low %co. Since Inkson's EEg is a theoretical value,
Fig. 10 is a more fundamental calculation of a(co). For
p-type GaAs, the Inkson EEg is clearly too large and
gives an a(co) which lies to the left of the observed a(co)
at low Ace. In this case, the Casey and Stern AEg provides
better agreement with experiment. However, for n-type
the agreement with experiment is equally good (or poor)
in Figs. 9 and 10. Comparing Figs. 9 and 10 we also see
that a(co) is insensitive to bE& at high fm, as expected.
Figures 9 and 10 represent the central results of the
present paper.

IV. DISCUSSION

We review here the assumptions underpinning the
present model of absorption and discuss their impact on
a(co). The central assumption is the one-electron approxi-
mation; a photon is absorbed by exciting a single electron
from a one-electron state in the valence band to a similar
state in the conduction band. The a(co) in Eq. (1) con-
tains an internally consistent treatment of the DOS [Eq.
(3)], the envelope matrix element [Eq. (15)], the screening
[Eq. (8)], and the Fermi energy [Eq. (7)]. The DOS is ob-

TABLE II. Values of band-gap shrinkage used in present calculations obtained using Inkson s for-
mula (21) and Casey and Stern's empirical formula (22) for both p- and n-type GaAs.

p
(cm )

p-type GaAs
Inkson Casey and Stern
(meV) (meV)

n
(cm-')

n-type GaAs
Inkson Casey and Stern
(mev) (meV)

1.2&&10"
2 4&&1018

1.6~ 10"

—34.9
—45.8
—93.8

—17.8
—22. 1

—41.1

2 F1018
3.3 X 10"
6.7X 10"

—33.7
' —40.0
—50.8

—17.8
—22. 1
—41.1
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1P

8
I I

tained by evaluating the energy states available to a single
electron interacting with randomly located, ionized im-
purities. Explicit electron-electron interactions are ig-
nored. The impurity potentials seen by the electron are,
however, screened by the other identical electrons. The
screening is treated in a one-electron, Thomas-Fermi ap-
proximation. The screening length Q ', depends upon
the DOS. The Fermi energy EF depends upon both Q
and the DOS so that all three of EF, Q ', and DOS are
evaluated here iteratively until consistent.

The interaction between a single carrier and the impuri-
ties is represented by a screened Coulomb potential. The
total potential seen by a carrier fluctuates as the concen-
tration of impurities fluctuates throughout the sample.
The fluctuating total potential is modeled by a nonlocal,
harmonic well [—,

' m*co r (r)] which has a variable curva-
ture co (E). The co(E) is treated as a variational parame-
ter. The model ground-state wave function of the elec-
trons (and holes) is therefore a Gaussian (see the Appen-
dix). Thus we use Gaussian wave functions in the en-
velope matrix element [Eq. (15)], and once co (E) is deter-
mined the parameters in the Gaussian electron (and hole)
wave functions are fully established.

In Fig. 11 we show cx(co) calculated using the present
SG DOS given by (3) and using the Kane DOS. In both
cases Eagles's constant matrix element is employed. The
purpose of Fig. 11 is to display the sensitivity of a(co) to
p(E). We use Eagles's ME because the parameters y„and
y, needed in the present ME [Eq. (15)] cannot be deter-
mined for Kane's DOS. As noted in Fig. 8 the cc(co) at
high photon energies i5cu in the "plateau region" is overes-
timated using Eagles's ME. However, Eagles's ME is
quite accurate at low Rco involving states near the band
edges.

From Fig. 11 we see ct(co) is very sensitive to p(E).
Kanes p(E), which is too large in the band-tail region,
clearly predicts an a(co) which is too large at low fun.
Also, Fig. 8 shows a(co) calculated using a parabolic
DOS. In this case a(co) is too small at low fico. Thus
a(co) can clearly distinguish the SG from the Kane DOS
and suggests the SG is, at least, approximately correct.

However, at this stage, a(co) cannot be evaluated with
enough confidence to distinguish between the SG and
Halperin and Lax DOS, for example. The good agree-
ment with experiment obtained for p-type GaAs shown in
Fig. 9 therefore depends on an accurate band-tail DOS
such as the SG or Halperin and Lax values.

As a further test of the DOS we compare the SG DOS
calculated for p-type GaAs at 4.2 K with the observed
values of Mahan and Conley in Fig. 12. In this case the
screening length is Q '=1.99&10 cm '. Clearly, on
the scale shown in Fig. 12 the agreement of the calculated
and observed DOS's is good. The calculated and observed
scales are set so that the parabolic DOS lies on the ob-
served DOS at low energy. However, since the observed
results are presented on a linear scale, they are not
discriminating in the region E —E, —100 meV where im-
portant differences between models of band tailing occur.
Any reasonable DOS such as Kane's DOS would agree
with the observed value in Fig. 12.

From Fig. 8, a(co) is also clearly very sensitive to the
envelope ME. The present ME [Eq. (15)] is a new ME
which uses Gaussian envelope functions. It is algebraical-
ly much simpler and very different numerically from that
developed by Casey and Stern who used hydrogenic en-
velope wave functions. The present ME, shown in Figs. 5
and 6, is relatively small in magnitude (the peak value is
about one-tenth that of the Casey and Stern ME) but is a
broad function spread over a wide energy interval. The
Casey and Stern ME, in contrast, is a sharply peaked
function of E. It is interesting that these two widely dif-
ferent ME's lead, when integrated over E in a(co), to very
similar ci(co) values as shown in Fig. 13. At high energy
(fico) 1.45 eV) in the "plateau region" the two calculated
cc(co) agree closely, with the present value lying
—15—20% above Casey and Stern's value. At low Acu,

the difference between the present and Casey and Stern
values of cc(co) shown in Fig. 11 is due almost entirely to
the different values of b,Eg used. The present a(co) used
b,E& from (21) while Casey and Stern used (22). If we had
used (22), the two a(co) would lie nearly on top of one
another at low fico (see Fig. 9). In the present case, once
the DOS is established, the envelope ME is completely
determined and there is no further adjustment possible.
Clearly the combined SG DOS and the present ME lead
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FIG. 11. Absorption coefficient calculated using the Kane
and the Sa-yakanit and Glyde (SG) density of states in p-type
GaAs. The dashed lines are for AEg:0 and the solid lines for
Inkson's AEs In all cases, Eagle's matrix el.ement [Eq. (13)] is
used.
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FIG. 12. SG and parabolic density of states compared with
the observed values of Mahan and Conley (Ref. 26).
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mining k with (b} Casey and Stern's (Ref. 9) calculated n(co)
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to a very reasonable value of a(co).
The a(co) is also sensitive to the value of EF. This sen-

sitivity appears at low ii'ico; as EF increases, a(co) is shifted
to the right (the Moss-Burstein shift). EF is proportional
to the doping concentration as shown in Fig. 7. As noted
above the increase in EF with doping competes with the
shrinkage of the band gap AEg, which is opposite in sign
and larger in magnitude than EF. Thus it is difficult to
isolate the precise impact of EF in comparing the calcu-
lated a(co) with experiment.

To test the sensitivity of a(co) to the band-gap shrink-
age b,Es we evaluated a(co) using b,Eg given by Casey and
Stern's empirical expression and as calculated by Inkson.
The two a(co) are shown in Figs. 9 and 10, respectively.
The a(co) is clearly very sensitive to EEg. As discussed by
Mahan, by Berggren and Sernelius, and by Sterne and
Inkson, b,Eg is difficult to evaluate with accuracy and
improved values wi11 certainly appear in the future.
Inkson's AE~ appears to be too 1arge and this displaces
the calculated a(co) well to the left of the observed a(co) at
low %co. Inkson's AEg is probably too large because the
Thomas-Fermi approximation overestimates the screen-
ing. A better treatment of screening will bring AEg back
closer to the unscreened values (see Fig. 4). Thus the
present values of a(co) shown in Fig. 10 are uncertain and
subject to change with AEg.

Also, we have ignored the electron-hole interaction
throughout the present calculation. This interaction
should be small since it is strongly screened by the added
electrons in the conduction band when GaAs is heavily
doped. However, there may be a remnant of it (particu-
larly at large compensation ratios). Since it is attractive,
it would lead to an apparent reduction of E~.

As noted in Figs. 5 and 6, the ME is not very sensitive
to the way in which k, and k, are determined. The
simpler mobility edge method may therefore be preferable.
However, the actual values assigned for the mobility edges
E „E „ in this method is somewhat arbitrary
(E,=O,E,=Eg). If E~, is increased, for example, the
magnitude of a(co) increases at high fico in the plateau re-
gion but a(co) changes little at low fico. For a 15% in-
crease in E~„ the plateau of a(co) in Fig. 9 increases by

—50% to lie just above the observed a(co). For
E, ~ 1.15Eg, all the conduction-band states become lo-
calized within the energy range covered in Fig. 9 and a(co)
cannot increase further.

We have chosen the heavy-hole valence-band mass as
mob

——0.55m& to conform with the value used by Casey
and Stern. We could equally well have used the value
m~~ ——0.68m o proposed by Ehrenreich. ' We found
changing m„z from O.SS to 0.68 changed a(co) little
(10—20% in the plateau region) so that a(co) is not great-
ly sensitive to mbb. We regard the a(co) shown in Fig. 9
as our best and final result for a(co). Is the difference be-
tween the calculated a(co) and experiment shown in Fig. 9
significant? In the plateau region of a(co) lies -40—S0%
below experiment. As noted above this difference could
be removed by a slight adjustment of the mobility edge.
Indeed, given the great sensitivity of a(co) to the ME and
the DOS, both of which are unadjusted, the agreement
with experiment is very good. At low co, the energy (fico)
at which a(co) becomes significant depends critically on
b,Ez, on EF, and on the density of states. Given that DER
is not well determined, we cannot attribute much signifi-
cance to the difference between the calculated and ob-
served a(co) at low photon energy. Particularly, the ap-
parent band gap depends on a sensitive cancellation be-
tween EF and AEg.

Note added in proof: Recent measurements [L. G.
Shantharama et al. , J. Phys. C 17, 4429 (1984)] suggest
mb in (12) should be close to its original value without the
factor of 1.25.
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