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A model of spin-polarized fermions hopping on a two-dimensional lattice with a nearest-neighbor .

interaction Vis studied. Random-phase-approximation calcuIations predict that the half-filled sys-
tem undergoes a density-wave transition for positive values of V, an odd-angular-momentum pairing
transition for small negative V, and a condensation-phase-separation transition for more negative
values of V. The classical lattice-gas Ising limit matches onto the density-wave transition for V& 0
and the condensation transition for V&0. A strong-coupling expansion in powers of the ratio of
single-fermion transfer-matrix element t to the two-body interaction V provides the leading correc-
tions to the Ising limit. In order to explore the intermediate-coupling regime, fermion Monte Carlo
calculations were carried out and various Green*s functions characterizing the quantum correlations
evaluated. With use of finite-size scaling techniques, the density-wave and condensation phase
boundaries were followed into the intermediate-coupling regime. At these transitions, measured
quantities scaled well with the usual Ising indices. Unfortunately, the weak-coupling regime lies
beyond the reach of these simulations, and we conclude that a method suitable for the weak-

coupling regime is needed to complete the phase diagram.

I. INTRODUCTION

The classical lattice gas (Ising model) studied by Lee
and Yang' has provided useful insight into the order-
disorder condensation phenomena of classical gases. Here
we consider the quantum version of this lattice gas in
which a near-neighbor single-particle overlap integral t
(hopping term) is added to the classical two-particle near-
neighbor interaction V. The particles are assumed to obey
Fermi statistics and to be fully spin polarized. Thus,
since only one spin orientation is considered, the fermions
are effectively spinless. Submonolayer films of spin-
polarized He, or metastable D, adsorbed on substrates
represent possible realizations of such two-dimensional
fermion lattice gases.

We have used several different approaches to gain in-
sight into the properties of such systems. In Sec. II we be-
gin by discussing perturbation theory and- RPA approxi-
mations for

~

V
~

It & 1. Then the strong-coupling regime
V/t»1 is discussed using results obtained from high-
temperature-series expansions of the anisotropic spin- —,

Heisenberg model. In Sec. III we use recently developed
quantum Monte Carlo techniques ' and a finite-size scal-
ing analysis to explore. the intermediate-coupling regime.
This is followed by a brief conclusion in Sec. IV and an
Appendix in which the fermion Monte Carlo procedure
we use is outlined. In the remainder of this Introduction,
we discuss the model and summarize some of our results.

The model we study has a Hamiltonian

H = g [ t(c; cj+c~—c;)+V(n; ——,)(nI ——, )], (1)
(~'j )

with i =(i„,i») and j=(j„,j») nearest-neighbor points on
a square lattice. The second term proportional to V is just
the usual classical lattice-gas model, and the first term is
the kinetic energy arising from the single fermion transfer
integral t between sites. The c; and cj operators create
and destroy fermions on the ith and jth sites, respectively.
These operators obey the usual fermion anticommutation
relations

Ic;,cj"J =5;, , (2)

and n; =c;c; is the. occupation-number operator for the
ith site. Here we focus on the half-filled case in which on
the average a finite-size lattice has half as many fermions
as sites. Thus, we have written Eq. (1) in a particle-hole
symmetric form.

In this lattice problem, the quantum parameter is t/V,
which is proportional to the square of de Boer's6 well-
known quantum parameter. We find it convenient to
work in units where t= l. Thus, for

~

V &&1, the quan-
tum parameter is small, and the system becomes classical.
In this limit, since the half-filled case corresponds to zero
magnetic field for the Ising model, an order-disorder tran-
sition occurs when sinh(

~

V
~
/kT, ) =1 ( T, =0.56

~

V
~

).
For large positive V the ordered state is characterized by a
staggered site density on two interpenetrating A-8 sublat-
tices (an antiferromagnetic Ising phase). For a large at-
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tractive interaction, the transition corresponds to the usu-
al (Ising ferromagnetic) gas-liquid condensation.

The phase diagram is schematically illustrated in Fig. 1,
which shows the transition temperature versus the interac-
tion potential measured in units of t W. e use the notation
TDw for the temperature of the density-wave transition,
TTp for the triplet-pairing transition, and T„„for the
condensation transition. The straight dashed lines corre-
spond to the Ising result 0.56

~

V ~, and the lattice illustra-
tions show one of the characteristic low-temperature
broken-symmetry phases. In the large- V limit, the onset
of order is continuous with the usual two-dimensional
(2D) Ising indices. As V decreases, we move into the
quantum regime and new phenomena occur.

From our studies described below, we find that the T V-
phase diagram including the quantum regime looks like
the solid curves shown in Fig. 1. For nonzero values of r,
the ordered phase of the system is a 2pF density wave
which becomes the usual staggered density phase of the
Ising model when V~&t. As V goes to zero, a random-
phase-approximation (RPA) calculation gives TDw
-exp( —m/~V). This suggests that the phase boundary
continues into the origin. However, fluctuations may
alter this behavior, causing TDw to vanish below a critical
value of V. We indicate this uncertainty by the short-
dashed part of the curve. Further work is needed to con-
struct a reliable weak coupling solution.

For negative values of V, the RPA calculations predict
that, at small values of V and low temperatures,
TTp exp( —2m/~V ), the system condenses into a pair-
ing state which is a superposition of odd angular-
momentum states. Again, fluctuation effects may entirely
wash out this phase and certainly at best the system can
have only a Kosterlitz-Thouless —like transition to a to-
pologically ordered state with no long-range order because
of phase fluctuations in this 2D system. In Fig. 1 this

phase is indicated by the narrow shaded region labeled by
TP for triplet pairing, which is appropriate if we think
of the fermion system as spin polarized. The phase
boundary is again indicated by the dashed line because it
occurs in a parameter regime which we are unable to
reach with our present Monte Carlo techniques. At larger
values of V, the usual condensation transition occurs, and
from the strong-coupling analysis of Sec. III we find that
initially T„„deviates from the Ising result as

T„„-=0.56 V
i

1— 1

V2

Just as for V&0, we argue that this transition is Ising-
like. We are uncertain as to how the competition between
the condensation and pairing phases is resolved. In the
XXZ Heisenberg model, the transition temperature of, the
Ising-like phase transition for J, & J~ and the Kosterlitz-
Thouless XI'-like transition for J, (J„both vanish at the
isotropic J,=J„point. However, we have not found a
corresponding symmetry argument for the fermion prob-
lem, and the resolution of the low-temperature part of the
phase diagram for negative V also awaits the development
of a reliable weak-coupling theory.

II. PERTURBATION THEORY
AND STRONG-COUPLING

APPROXIMATIONS

1H: g Epcpcp + g V(q)cp+qck q kccp2X
(4)

As we noted, the strong-coupling limit
~

V
~

&&1 of our
model corresponds to the Ising model. The extreme
weak-coupling limit V=O corresponds to a half-filled
band of noninteracting fermions. Expressing the Hamil-
tonian equation (1) in terms of momentum eigenstates we
have

l.o--

Here the band energy in units where t= 1 is

ep = —2(cosp~ +cospy ) —V,
and

V(q) =2 V( cosq„+cosq~ ) . (6)

I

-2

0.5--

(TP) +. ~

I I-I 0 2
V

FIG. 1. Schematic T- V phase diagram in units where t= 1.
The straight long-dashed —short-dashed lines correspond to the
Ising result appropriate for

~

V
~

&&1. The solid lines denote
the phase boundaries for the density-wave ( V& 0) and condensa-
tion ( V&0) transitions. The region labeled TP denotes an odd
angular-momentum triplet-pairing phase, but fluctuations may
wash out the phase transition at weak coupling, and we indicate
our uncertainty by drawing the phase boundaries with dashed
lines in the weak-coupling regime. We expect that if the TP
phase occurs, it exists only at significantly lower temperatures
than indicated in this schematic.

There are two special features of the noninteracting
V=O problem which play essential roles in the response
of the system. First, the Fermi surface of the noninteract-
ing problem, shown in Fig. 2, has perfect nesting for the
creation of a particle-hole pair with momentum transfers
2pF ——+(+m, tr). This gives rise to a low-temperature
divergence in the density-density susceptibility. Secondly,
for this near-neighbor hopping model, the single-particle
density of states in the continuum limit has a logarithmic
Van Hove singularity at the Fermi surface of the half-
filled band:

2

with K the complete elliptic integral of the first kind. As
co—+0, this diverges as
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FIG. 3. (a) RPA Feynman graphs for H, and (b) ladder
graphs for the two-particle t matrix.

(0,—vr)
FIG. 2. 2D Fermi surface for our half-filled model.

X(co):— ln(16/
~

co ) .1

27T2

This is actually a good approximation over the entire
band

~

co
~

&4. The zero-frequency density-density sus-
ceptibility at q=O is proportional to X(kT), so that the
noninteracting fermion system is highly compressible.
Finally, we will find that the q =0 limit of the neighbor
pair-pair susceptibility (triplet pairing if we think of the
fully polarized system)

&(q)= f d r(bq( r)bq( 0)), (9)

T„„=16 exp( vr /2
~

V—
~

) . (16)

For V&0 IIRpA(q) diverges when q =2p~ and, at low
temperatures, we find

1
IIp(2pF ) =

2~2
ln (2/T)

1
16y

2 7T

(17)

fore, for V&0 the RPA prediction for the condensation
transition temperature T„„,determined as the tempera-
ture at which IIap~(0) of Eq. (12) diverges,

1=4
i

V
i

ln(16/T„„),1

2772

gives

with

b,~
=—$ e (ci „-ci +c& -c~ ),iq/

I
(10)

with y = 1 .78. In this case, within the RPA, the 2pF
density-wave state occurs at a transition temperature set
by

110(0)= g — =X(kT),a
(14)

which diverges logarithmically as given by Eq. (5). There-

also diverges as T~O. Here, x and y are unit vectors in
the x and y direction, respectively. Thus, an analysis of
the noninteracting V=0 system clearly iridicates the three
types of order that are of interest. For V& 0, the density
response at 2p~ is favored, and for V&0 we must consid-
er the q =0 density response and the triplet-pairing
response.

In order to obtain some insight into the type of density
instabilities that may occur, we will study the zero-
frequency wave-vector-dependent density-density suscepti-
bility

&(q)= J {p (r)p (0))d (11)

and evaluate it within the RPA approximation, which
sums the diagrams shown in Fig. 3(a). In this case,

IIO(q

1+V(q) IIO(q)

with 110(q) the noninteracting particle-hole bubble

f (ep+~ ) f (e~)—
11oq =

p eu et +~

For q —+0 we have, at low temperatures,

TDw =2exp( —m/~V) . (19)

Ordinarily, we would have expected Tow to vary as
exp[ —1/X(0) Vj with X(0) the single-particle density of
states at the Fermi surface. However, as noted, the
single-particle density of states for the half-filled system
has a logarithmic divergence at the Fermi surface. This,
combined with the perfect nesting shown in Fig. 2, pro-
duces the ln (2/T) term in IIO and leads to the much
weaker V V dependence in the exponent of Eq. (19).
Hence, the transition occurs at a significantly higher tem-
perature in the weak-coupling regime. This effect, arising
from the Van Hove singularity, has the potential for pro-
ducing interesting physical consequences for other sys-
tems, such as the 2D Hubbard' model or the 2D
electron-exciton model. " Finite quasiparticle lifetime ef-
fects, of course, ultimately provide a cutoff for the loga-
rithmic 2D Van Hove singularities.

The triplet- or odd angular-momentum-pairing transi-
tion temperature TTp can be determined in this same spir-
it by evaluating the t matrix shown in Fig. 3(b). The sum
of the direct and the exchange interaction gives

V(p' —p) —V( —p' —p) =2V(sinp„' sinp„+sinp~ sinp~),

1=4VIlp(2pF) .

As V~O, this gives, for the critical temperature of the
density-wave function,
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and we have, for this separable interaction,

t(p,p)=t si np„si np~+t~ sinp~ sinp~,

with

(21)

2V
1+(V/N) g (sin p +sin p~)[1 2f—(ez)/2']

(22)

In this same approximation, the pairing susceptibility, Eq.
(9), can be written as

For —0.38 & V & 0 triplet pairing occurs at a higher tran-
sition temperature,

TTp —2 exp( 2—vr/u V )

than the condensation transition,

T„„=16exp( vr —/2
~

V
~
),

(28)

(29)

which is highest for V & —0.38.
It is also interesting to examine the strong-coupling

limits of the RPA predictions. Since T ~ V, the strong-
coupling limit is also the high-temperature limit. For ex-
ample, when q =2pF

Po(q)
P(q) =

1+2 VPo(q )

with

(23)
tanh( pe~ /2)

IIo(2pF ) =
N 2EE

since ez+2z
———e~. Expanding the tanh, we find that

(30)

r

Po(q)= g sin p + +sin p +Vx . 2 qy

2 y 2
q

IIo(2pp) =—1—
4.

+ ~ ~ ~

3
(31)

so that solving Eq. (18) for TDw to.leading order in t/V
gives

2
1 f (e~+q )—f (e~)—

~~+q+ ~~
(24)

1T =V 1 ——— +DW (32)

TTp —2 exp( —2m/v'
r

V ), (26)

which eventually dominates over the condensation transi-
tion temperature equation (16). Solving for TTP using the
full expression given by Eq. (17) and equating it to T„„,
we find that TTp exceeds T„„for —0.38& V&0.

To summarize, the weak-coupling limits of the RPA
predict that for V~ 0 a transition to a 2pF density wave
will occur when

TDw-=2exp( —m'/~V) . (27)

For V&0, both P(0) and the t matrix has a pole at a tem-
perature TTP given by

~

V
r

tanh(pTpe /2)1= g(sin p +sin p~) (25)2'
At low temperatures, the average of sin p„+sin py over

the Fermi surface of Fig. 2 gives 1, so that we can use the
results of Eq. (17) to obtain the weak-coupling limit,

Here we have put the hopping energy t in explicitly.
Thus, as V decreases, the system deviates below the Weiss
mean-field transition temperature TDw ——V. In a similar
manner, we find that

2

T„„=iVf 1— + ~ ~ ~

V
(33)

The RPA results for TDw for V& 0 and the weak- and
strong-coupling approximations to the RPA are shown in
Fig. 4. Figure 5 shows the same thing for T„„versus—V, and Fig. 6 shows the low-temperature crossover
where TTp exceeds T„„.

The strong-coupling limits, Eqs. (32) and (33), of the
RPA expression go to the mean-field T =

~

V
~

result
when V /t ~& 1. A true strong-coupling expansion
would approach the known Ising result T=0.56

r
V

~

in
this limit. In principle, the procedure for constructing a
strong-coupling expansion is straightforward. For exam-
ple, expanding Z in powers of the hopping term t, we
have

Z=Tr e
—PH, 1 p r2 ~31+ dr~ dr2 T(r~)T(rq)+ f dr~ f dr2 f dr3 f dr4 T(r&)T(rq)T(r3)T(r4)+. . .

(34)

Here T(r) is given by

T(r)=e ' g t(c; cf+cj.c;) e-
&~j&

(35)

and Ht is the near-neighbor interaction [second term in
Eq. (1)]. The terms containing odd powers of T vanish.
High-temperature-series expansion techniques can be used

t

to evaluate these terms in powers of tanh(PV), and a Pade
approximation constructed for the specific heat or a
relevant susceptibility. From this type of analysis the ef-
fect of (t/V) on T„„and TDw as well as estimates for
the indices of the transition could be obtained.

Clearly, such an analysis would be a major project, but
to leading order in (t/V) the effect of c; cj operators in
the kinetic-energy terms can be duplicated by the spin- —,

'
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FIG. 4. Solid curves give the RPA result for TD~ versus V.

Short-dashed curve is the strong-coupling limit, Eq. (32), and
the long-dashed line is obtained from Eq. (18) using the low-
temperature expansion of IIO, Eq. (17). The long-
dashed —short-dashed curve is the Weiss mean-field result
Tow= ~

0
0

I

O. l

I

0.2 0.5 0.4

FIG. 6. Weak-coupling low-temperature regime in which the
t matrix or pairing susceptibility P(0) (solid line) diverges at a
higher temperature than the condensation transition (dashed
line).

T„„—=0.56V[1—(t/V)'] . (36)

operators S;+SJ . This follows since with two factors of
T, see Eq. (34), a fermion can only go to a site and then
return. Two fermions cannot exchange until order
( t/V), so that the kinetic fermion sign factors are not
present to order (t/V) With .the replacement of the fer-
mion c;cj operators by the spin operators S;+SJ and
(n; ——,

'
)(nj ——,

'
) by St'S&*, the problem reduces to finding

the initial suppression of the Ising transition temperature
for an anisotropic, J„/J, « 1, two-dimensional
Heisenberg-Ising model. Here a number of authors' have
carried out high-temperature-series expansions for the fer-
romagnetic case to obtain the transition temperature and
the indices characteristic of the transitions. They con-
clude that the indices are those of the 20 Ising model un-
til J„=J„where the transition temperature goes to zero
for the spin problem. Fitting their results for the transi-
tion temperature as shown in Fig. 7, we find, to leading
order in ( t /V),

RPA
Vco

This is similar to the RPA result except for the factor of
0.56.

III. MONTE CARLO SIMULATIONS

Using the ferrnion Monte Carlo method described in
the Appendix, we have carried out numerical simulations
for both positive and negative values of V. As discussed
in the Appendix, each updating of a lattice variable re-
quires A' operations, where % is the total number of lat-
tice sites. Therefore, to perform an updating of all the
variables in a two-dimensional X=I.XI. system requires
L )&M operations, where M is the number of time slices.
This restricts the size of the lattices that can be studied,
and the work reported here is based upon lattices with
I. &12. In order to infer the characteristics of a macro-
scopic system from lattices of this size, we will make use
of the ideas of finite-size scaling.

Using the techniques described in the Appendix, it is
straightforward to evaluate finite-temperature single-
particle Green's functions as well as a variety of particle-
hole and two-particle response functions which provide
information on the quantum correlations in the system.

For example, we have evaluated the Fourier transform
of the equal-time single-particle Green's function to ob-
tain the momentum occupation number,

~t ON

( np ) =—g e'&" '(ct cl ) .
1,m

(37)

For V=O, this is, of course, just the usual Fermi function

0~
0 2.40.8 l.6

-V
FIG. 5. RPA results for T„„versus V with the same nota-

tion as Fig. 4. The short-dashed strong-coupling curve is ob-
tained from. Eq. (33) and the long-dashed curve from Eq. (16).

f (ez ) = [exp(Pe& )+1]
'with ez the band energy, Eq. (5). However, as illustrated
in Figs. 8(a) and 8(b), (n~ ) for the interacting system can
show significant deviations from f(e&). We will return
later to a discussion of these results.
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The nature of the density-density correlations are often
analyzed in terms of the structure factor

(38)

C

/i
0/ v'

0 2
I

4

I.O

—V
FIG. 7. Dots show the results for T„„obtained from a

high-temperature-series expansion of the anisotropic
Heisenberg-Ising model, Ref. 2. The dashed curve is a fit to the

large
~

V
~

part of this data, Eq. (36). The long-dashed —short-

dashed line is the Kramers-Wannier Ising-model result

T, =056' Vi.

Figure 9 shows S(q) at various temperatures obtained
from our numerical simulations on 12)&12 lattices for
V= —2. As previously discussed, for negative values of
V the system can undergo a condensation transition, giv-

ing rise to a peak in S(q) at q=(0,0), or possibly exhibit a
tendency towards odd angular-momentum pairing. For
V = —2, S(q) in Fig. 9 shows the development of a large
condensation peak at q=O.

In order to extrapolate to the bulk limit, we have car-
ried out simulations on different sized lattices. Figure 10
shows how the peak S(0,0) for V= —2 varies with tem-
perature for lattices with L=4, 6, 8, 10, and .12. The
height of the peak at low temperature is proportional to
the lattice size, while at high temperatures its value is in-
dependent of L. Near the transition temperature T„„of
the bulk system, correlations associated with a second-
order transition in a 2D lattice fall off as r "exp( r/g), —
with g-

~ p —p,
~

". Thus, for a lattice of size L we

have

()
0.8— S (0,0)-L "f(L '~'(P —P, ) } . (39)

CL
~1

CL

0.6—

0.4—

0.2—

oi
0

i.o&

Y=

(b)

For V ~&t, our model goes over to the 2D Ising antifer-
romagnetic model. As V/t decreases from positive
values, the transition temperature TDw moves continu-

ously from the Ising limit. As previously discussed, an
expansion in the hopping introduces only finite-range ef-

fective spin couplings, so that for weak hopping the sys-
tem remains in the 2D Ising universality class. This same

type of analogy to the ferromagnetic Ising model holds
for the condensation transition when V&0 and

~
V

~

&&t.
Naturally, as t increases so that t &

~

V ~, it is possible to
have a crossover to other types of fixed points, such as,
for example, an Xl' fixed point for the triplet-pairing
phase. However, within the parameter range presently ac-
cessible to our simulations, we have found only density-
wave ( V&0) and condensation ( V&0) transitions. There-
fore, we have analyzed our results for S(0,0) and S(m, n)
using the 2D Ising indices g= 4 and v=1.

CL

CL

0.4-

0.2—
V-

P

FICr. 8. Fermion momentum occupation number (n„) versus

momentum p=(p, p) for V= —2.0, and (a) P=1.2 (above the
' condensation transition) and (b) P= 1.4 (below the condensation

transition).

FIG. 9. Structure factor S(q) versus q for V= —2.0 at a
value of P=1.2. The long-wavelength density fluctuations give
rise to the peak at q=0.
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V=—2.0
1 l„+l

1oDW I ( gl —1I* 't~i ——, ) ),
l

(40)

while for V~0 the condensation transition has

20— /o.../=( —g(n, ——,'j ). (41)

10—

0 I i i i i I t i
+t

r

0.0 0.5 1.0
I I I I I I I I

1.5 2.0

FIG. 10. S(0,0) versus P for various sized lattices with
V= —2. In this and all similar figures, the error bars marked
with plus signs represent 4&&4 lattices, the octagons 6)&6 lat-
tices, the diagonal crosses 8/8 lattices, the diamonds 10)&10
lattices, and the sqUares 12& 12 lattices.

In Fig. 11 we have replotted the data of Fig. 10 in
terms of the scaled quantities S(0,0)/L and tL with
t = (P—/3, ) /P, and P, = 1.3. Empirically, using
(P—P, )//3, gave finite-size scaling over a larger range
than ( T —T, )/T, . Naturally, the degree of superposition
of the data from lattices of different sizes depends upon
the choice of p, and, in fact, provides a way of estimating
p, . We will examine this in more detail for the absolute
value of the order parameter.

For V& 0, the density-wave transition can be character-
ized by an order parameter ODw with

The normalization is such that (
~

0
~

) ranges from 0 to
0.5. On a finite lattice, the expectation value of the order
parameter in the limit of a sufficiently long Monte Carlo
run is equal to zero even in the temperature regime corre-
sponding to an ordered phase of the bulk system. For this
reason we have evaluated the absolute values of the order
parameter, Eqs. (40) and (41), respectively. In the high-
temperature phase, there will be a number of independent
domains proportional to the area of the system so that
with our normalization (

~

0 ) will vary as X ' . For
T near T„ the bulk order parameter varies as ( T —T, )~

and, using the Ising value of P= —,, finite-size scaling
predicts that

(
I

O
I

) -L '"+((P—P, )L )

The absolute value of the order parameter,

&
I
or. .. l &=( ~ X&*

)

(42)

(43)

for the 2D Ising model ( V—+ oo ), measured on lattices of
several different sizes, is shown in Fig. 12. In this case we
know p, =0.44 and Fig. 13 shows the scaled order param-
eter ( Ol„„s ~

)L ' plotted versus tL with
t =(/3 —p, )/p, .

Returning to the quantum problem, Fig. 14 shows
(

~
O„„~ ) versus p for V = —2 and various sized lattices.

Using the finite-size scaling relation (42), we have replot-
ted this data in Fig. 15 for three different values of p, .
Based upon these results and similar ones for S(0,0), we

0.4

P,= 1.3,V=--2.0

0'5
V = iaaf

0.4—

I I II I Il

0.3— 4
Q

O.3—

0.2—
C)
C)
M

S4
4
Q 0.2—
40

eI
x

x
x

X

I I I I I I I I I I I I I I I I I I
'

I I0 Ph

—4 —2 0 2
P 0

0.0
I I I I I I '

I

0,4
I I I I

0.6
t. r.'

FIG. 11. Scaling plot of S(0,0)L versus tL with
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) versus P for various sized lattices.
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~
O,»„~ ~

)L'~' versus
tL using the data of Fig. 14 with P, =0.44.

FIG. 14. (
~
O„„~ ) versus 13 for V= —2 and various sized

lattices.

(O,.„)=(—'g(ni ——,'i) .con (44)

As we previously noted, the average value of the order pa-
rameter vanishes for a finite system. However, the distri-
bution of (0„„)values obtained in Monte Carlo runs at
different temperatures are plotted in Fig. 17 and clearly
show a condensation transition. On the high-temperature
side of the transition, the distribution of (0„„)forms a
single peak about (n) =0.5, while at low temperature,
two distinct peaks with (n ~ )=0.9 and (nq )=0.1 are evi-
dent. At low temperatures it is possible for a Monte Car-
lo run on a large lattice (12)& 12) to simply remain frozen
in one of these two states. This is what happened in the
run where (n~), Fig. 8(b), was measured, and explains

believe that P„„=1.30+0.07 for V= —2.
We have prepared similar graphs for all the simulated

values of V, both positive and negative. Estimates of P„„
and PDw were made by estimating the value of /3 for
which the scaled data were best superimposed. Results
for the transition temperatures for different values of V
are summarized in Table I. Notice that T„„is lower than
TDw for the same magnitude of V. This can be under-
stood as a consequence of the "Fermi hole, " or the fact
that even for V=O the density-density correlation is
suppressed at short distances. For V&0 the interaction
must compete with the Fermi repulsion. Therefore, larger
values of V, or lower temperatures, are required for the
condensation transition than for the density-wave transi-
tion.

To illustrate the Ising character of these transitions,
Fig. 16 shows scaled results for the absolute value of the
order parameter for different values of V. It also contains
the data for the classical 2D Ising model. In this figure
the value of the abscissa has been translated by an arbi-
trary amount to separate the different curves.

It is also interesting to examine the distribution of
values of the order parameter,

why g (nz ) =0.889 rather than 0.5.
We have also calculated the zero-frequency density-

density susceptibility

P
11(~)=—ge's" ' I (n, (r)n (0))dr. (45)

1,m

For q =(vr, m ) this gives the staggered susceptibility,
whose divergence signals the onset of the density-wave
transition for V)0. For V(0, II(0) is equal to the
compressibility, which diverges at the condensation transi-
tion. Following the same arguments as previously used,
we expect these quantities to scale like the susceptibility of
the 2D Ising model with y =

4 ..

II( t,L) =L 7i4f ((f3 P, )L ) . — (46)

TABLE I. Monte Carlo estimates of critical temperatures.
For V~ 0 this is TD~, and for V& 0 it is T„„.

V

0.75
1.0
1.5
2.0

)3.5
2.4+0.2
1.4+0. 1

0.9+0.1

& 0.29
0.42+0.04
0.71+0.05
1.11+0.12

Tc

TIsing

&0.68
0.75+0.06
0.85+0.06
0.98+0.09

—1.75
—2.0
—2.5

2.0 +0.3
1.30+0.07
0.85+0.05

0.50+0.08
0.77+0.04
1,18+0.07

0.51+0.08
0.69+0.04
0.84+0.05

Results for Il(rr, rr) for V=1 are shown in Fig. 18 with
the corresponding scaling plots given in Fig. 19. For
V(0, II(0) is plagued by large statistical errors and gives
us no useful information.

The excellent superposition of data from different sized
lattices for S, (

~

0
~
), and II(n, m) using scaling based

upon the 2D Ising indices and the close similarity of the
results to the 2D Ising model lends numerical support to



32 T%0-DIMENSIONAL SPIN-POLARIZFD FERMION LATTICE GASES

0.6

P,=1.2,V=-2.0

0.5—

0.6
X

P,= 1.3,7=-2.0

0.5—
{b)

0.4—
A
O
V

CI

0 4
A
O
V

0.3—

0.8
—8

I I I I I I I

0
Li

I I I I I I I

0.6

P,=1.4,V= —2.0

0 2 I I I I I I I I I I I I I I I I I I I I
~ Fat

—4 0 8
t L1

I I I I I I I I

X
X

0.5— {c)

0 4
A
O
V

0 2
—4 —2

I I I I I I I I I I I I

0 2
t L

FIG. 15. Scaled data from Fig. 14, (
I
0„„

I
)L '~' versus tL with t =(13 p, )//3, for —(a) p, = I 2, (b) g, = 1 3, and (c) p, = 1 4.

. our arguments that the density-wave ( V&0) and conden-
sation ( V& 0) transitions are indeed in the Ising universal-
ity class. Unfortunately, at present, we have not been able
to extend these simulations to the low-temperature,
small-( V/t) regime. As explained in the Appendix, our
Monte Carlo algorithm becomes inefficient at very low
temperatures. Thus we have not been able to determine
numerically whether the phase boundary for the density-
wave transition extends into the origin, as suggested by
the RPA result, or goes to T, =0 at a finite value of V. '

Likewise, for small negative values of V we do not know
if an odd angular-momentum-pairing phase is present.
We do see an increase pairing susceptibility P(0) as the
temperature is lowered for small negative values of V.
However, II(0) is also increasing, and the simulations are
not able to provide sufficient information to determine the
low-temperature phase.

IV. CONCLUSION

The problem of a two-dimensional spin-polarized fer-
mion half-filled lattice gas interacting through a near-

0.8 I I ~ I i i I I I i I I I

V~hd.
V~-2.0 V~-8.5 ~ V~8.O V~1.5

V~-1.V5 X '4)C

)p gg D

g j i g' @ v-o.i5
~ O.4—

lII'

P
0

Q A I. . . , I. . . , I. . . , I
~ 0/

—80 0 40

FIG. 16. Scaled results for the order parameter (
I
0

~

)L'~
versus tL for different values of V. The abscissa has been
translated by an arbitrary amount to separate the different
curves.

0.8

O
X

20

neighbor coupling has been investigated. Our results and
.conclusions can be simply illustrated by the phase dia-
gram shown in Fig. 20. The long-dashed —short-dashed
line represents the classical Ising result, appropriate for
Vjt~ ac. The dashed line represents the strong-coupling

I

V
I
It » I solution for the condensation transition equa-

tion (3) for negative values of V. For positive values of V
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0.2

we were unable to find high-temperature-series expansions
for the antiferromagnetic Heisenberg-Ising model, so we
have simply taken the RPA coefficient of —, from Eq. (32)
and plotted

00 1 I l I 1 I 1 ) 1 1

0

C

I 5"

—8 2
t I,

FIG. 19. Scaled plot of the data of Fig. 18, H(m, ~)L
versus tL with P, =2.4.

TDw ——0.56V[1——,
' (t/V) ] . (47)

I 0-.

The points with error bars represent the results for the
condensation transition from our Monte Carlo simula-
tions. A weak-coupling theory is needed to complete the
phase diagram. As discussed in Sec. II, RPA-like calcula-
tions suggest that at small negative values of Vjt and low
temperatures an odd angular-momentum-pairing phase
exists. If indeed this is the case, it is likely to be an XY-
like phase with only topological order. Such a phase
poses real difficulties for numerical simulations, again
emphasizing the importance of developing a weak-
coupling theory.

0 5.-

I
I I t

0 I 2 3
V

FIG. 20. ( T, V) phase diagram. The short-dashed line corre-
sponds to the Ising result T, =0.56

~

V
~

. The dashed line is the
strong-coupling limit, and the dots with error bars are obtained
from the finite-size scaling analysis of the Monte Carlo data.
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APPENDIX

In this appendix we discuss some details of the Monte
Carlo calculation based on the general approach presented
in Ref. 2.

%'e are interested in calculating correlation functions of
the form

( T[A(r)8(r')]) =trte ~ T[A(r)8(r')]I/tre

—h~Hl=e (A3)

Then, using the fact that A~ times the characteristic ener-
gies in H are small, we approximate Ul by

—A~HO —h~H
e (A4)Ul —e

Here,

a=Ho

In order to construct an expression which can be
evaluated with an importance-sampling Monte Carlo al-
gorithm, we first perform the traces over the fermion de-
grees of freedom. The initial step in this process is to
divide the interval 0 to P into M subintervals of width b,r
so P=b,r M. We restrict the values of r and r' to r~ =1 b,r
with 1=0,1,2, . . . ,M —1. The point rM ——I3=Mb, r is
identified with ~o——0.

The operator which translates the system through the
Ith imaginary-time interval, that is from ~l 1 to ~l, will
be denoted by Ul,

where

A(r)=e' A e

er'HJl e r'H—

(Al)

(A2)

and

Hp = —r g (c; cj +cJ c( )

Hg ——V g (ng ——,
'

)(nj ——,
'

) .
&ij&

(A6)

(A7)

3 and 8 are functions of the creation and annihilation
operators c;,c; defined in Eq. (2) and 0&v, r'&P. H is
the Hamiltonian of Eq. (1).

The term exp( b,rH& ) is the—n treated by making use of a
discrete Hubbard-Stratonovich transformation introduced
by Hirsch. ' For V~O,

—h~ v/4
exp[ —br V (n; ——,

'
)(nj ——,

'
)]=

2

with cosh(hr J)=e, while for V&0,

exp[ hr JS~(l)(—n; n)], —
S"(l) =+ 1il

(AS)

b,v. V/4

exp[ b,r V(n; ——, )(nj ———, )]= exp[ br JS~i(l)(n;+—ni —1)],
S"(l) =+1

EJ

(A9)

Ql

IS; (l)I =+1IS,"(1)I =+1

X is the number of lattice sites. For V& 0,

with cosh(br J)=exp( —br V/2). Note that Sz(l) is defined on the link between nearest-neighbor lattice points i and j,
and in the interval between allowed imaginary times ~l 1 and ~l.

Making use of Eqs. (AS) and (A9) and undoing the factorization of Eq. (A7), we can write

U (
I —hr~ V~ /4)2N g e drH(l)—

(A10)

H(l)= gc; h~J(l)cJ= rg (c;cj+c—

jc;)+Junc;c;I[S,

, „-(1)—S,. -,.(1)]+[S,, -(1)—S,. -,.(1)]I, (Al 1)

while for V&0,

H(l)= —J g S;J(l)+ gc; , h(li)c J
&ij& ij

= —J g SJ(1) t g (c; cj+cj—c;)+J+ c; c;[S,, -(1)+S,. -,. (1)+S, , „-(1)+S,. -,.(1)] .
&~j'& &ij & i

(A12)

Because H (1) is quadratic in the fermion creation and annihilation operators, the traces over fermion coordinates can
be evaluated in closed form. In effect, we have transformed the original problem into the problem of a system of fer-
mions that have no self-interactions, but which are coupled to a fixed, imaginary-time-dependent spin field, IS,J(l)I,
which is summed over all possible configurations. This sum will be carried out using the Monte Carlo technique dis-
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(A13)

where

cussed in Ref. 3.
Let us start by considering the single-particle Green s function. Making use of Eqs. (Al) —(A3) and (A10), we write

G,J(Ti,Tm)=(T[c;(Ti)cj(T )])=gzg;J(Ti, T ) gz,
tsj Isj

z =tr(uMuM 1 u, u1) .

For I )m,

gij (TJ, Tm ) =Z f, (uMuM 1
' ' ' ui+1C& ui llm +1CJ um ' ' '

u 1)—1

while for 1 & m,

gij(Ti, Tm ) = —Z tl[llMuM 1
' ' um+1CJ um

' ' ui+1«'ul u 1]
—1

(A14)

(A15)

(A16)

The sums in Eq. (A13) are over all spin configurations on all time intervals.

g J(Ti,T ) is obviously the single-particle Green s function for a fermion in a fixed, time-dependent external spin field.
Making use of the identity

c;ui =ui(e ) JcJ ——ui(Bi ),JcJ (A17)

which follows directly from Eqs. (2) and (A10)—(A12), we see that, for l&0,

gJ( i»=( i)kgkJ«i 1T )- (A18)

gij (TO) Tm ) ( M )ikgkj (TM —1tTm )

Summation over repeated indices is implied.
Iterating Eqs. (A18) and (A19) M times and making use of Eq. (2), we find that

(I+B B —1 B 2B 1BMB M —1 B +2B +1) kgk(T 'T )=Fik(m)gkJ(T T ) ~ J

I is the unit matrix, I;k =5ik. Adopting matrix notation for g, we see that

g(T, T ) =[F(m)]

g(TJ, Tm)=BiBi 1. . Bm+,F '(m), l )m
g(Ti Tm)= —BiBi 1

. B2B 1BMBM 1. . Bm+1F (m), l (m .

(A19)

(A20)

(A21)

The next step is to calculate the spin-dependent parti-
tion function z. We assert that

correct for b,T=O. Next we see from Eqs. (A10)—(A12)
and (A21) that

and

z=det(I+BMBM 1
- B2B1), V)0 (A22) M —1

ln(z) = —g tr I [I—g(Ti „Ti,) ]h (l) J .
1=1

(A24)

Differentiating the logarithm of the right-hand side of
Eq. (A22) gives the same result as can be seen from Eqs.
(A17) and (A21). Integrating the derivatives from 0 to b,T

gives Eq. (A22). Equation (A23) follows from the same
set of arguments.

e are also interested in correlation functions with four
ore fermion creation and annihilation operators. Us-

the above reasoning, or simply making use of %'ick's
rem, we find, for example, that

z=e ' g SJ(l)det(I+BMBM 1. . B2B1),V&0
1, ('J)

(A23)

where we have dropped the trivial factors
( —,'e ™~V

~
/2) of Eq. (A.10) since they do not enter

into any physical results. ing
Let us begin with Eq. (A22). We first note that it is theo

G;; ... ( ,Ti,TiT,mT)m=(T[c, (T, )c, (T, )c,'( )Tcm, (Tm )])
= g Z[g( j (T11~Tm )gi2j2(T/2~Tm ) —g(1j (T11~Tm2)g) J (TJ2~Tm1)] g Z (A25)

We perform the sums over spins in Eqs. (A13) and
(A25) by a Monte Carlo calculation. We generate sets of
spin configurations with probability proportional to z. z

plays the same role as the exponential of the action in bo-
son Monte Carlo calculations.

In obtaining the spin configurations we make use of the
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heat-bath algorithm to bring each spin into equilibrium
with its environment. In determining whether a particu-
lar spin should point up or down, we are required to cal-
culate the ratio of the values of z for these two spin states.
We now turn to he problem of evaluating this ratio.

It is conveni nt to express the single-particle Hamiltoni-
an, h(/), defin d in Eqs. (All) and (A12) as a sum over
link Hamiltonia s. We denote two nearest-neighbor lat-
tice points by q =(q„,q„) and p =(p„,p~) and write

8(q,p, /) =e

is a symmetric L &L matrix with

8&J(q&p&/) =~&J'& ~&JAq&p

B&q Bp————0, i&q&p .

(A30)

(A31)

with analogous expressions for the other sub-
Hamiltonians. Here,

h(l)= gh(q, p, /) . (A26) For V&0,

On an L XL spatial lattice the components of q and p can
take on integer values ranging from 1 to L. In Eq. (A26)
the sum is over all allowed values of q. For fixed q, p can
take on the values (q„+1,q~) and (q„, qua+ I}with the
understanding that we are using periodic boundary condi-
tions.

The h(q,p, l) are L &CL matrices whose elements will
be denoted by h J(q p, l), i =(i„,iz), j=(j„,j~). Referring
to Eqs. (All) and (A12), we see that only four of the ele-
ments are different from zero, and we can choose those to
have the form

JS~ (1)
Bqq(q, p, 1)=cosh(b, r e) —sinh(Ar e),

JS~ (/)
8»(q,p, /) =cosh(br e)+ 'sinh(br e),

8~(q,p, /) =B~q(q,p, /) = —sinh(hr e),
E'

with e=(J +t )', while, for V&0,

Bqq(qp, /) =8»(qp, l)=e ~ cosh(Art),

8~(q,p, /) =B~q(q,p, /) =e ' ~ sin(hr t) .

(A32)

(A33)

hqq(q, p, l) =JS~(/),
—JS~(/), V &0

"»'qP"= JS (/) V~o

h~(q, p, /) =h~q(q, p, /) = t . —

(A27)

With errors of order (b,r), we approximate B(k) by

4
8(l) =exp /&&r g h'(1) =—84(l)83(l)82(l)8'(1) .

We shall refer to a link for which q„ is odd (even) and
p =(q„+1,q~) as an odd (even) x link, and a link for
which q~ is odd (even) and p =(q„,q~+ I) as an odd
(even) y link. We now rewrite Eq. (A26) in the form

h(l)= g h(q, p, l)+ g h(q, p, l)

(A34)

Making use of this approximation, the determinant in the
expressions for z becomes

Qdd

x links
even

x links D =det[I+84(M)83(M)82(M)

+ g h(qp 1)+ g h(qp/)
Qdd even

y hnks y links

—=h'(1)+h (1)+h (1)+h (1) . (A28)

Each of the sub-Hamiltonians h'(1) is a sum of mutually
commuting single-link Hamiltonians. Thus,

8'(l)=e — ' = Q 8(q,p, l), (A29)
Qdd

x links

&&8'(M)B4(M —1) . . 8'(1)] . (A35)

From Eq. (A29) and analogous expressions for the other
8'(1), we see that D involves a very long ordered product
of the 8'(q, p, l).

%'e are now in a position to calculate the change in D
and hence z due to the flipping of a single spin, S~(/).
Since D is unchanged by a cyclic permutation of the 8'(1),
we can assume that 8(q,p, l) is the right most term in the
product. That is, if 8(q,p, l) is a factor in 8 (1), we write

D =det[I+8' '(/) - 8'(l)84(/ —1) . . 8'(/+1)84(l) 8'(l)]=det[I+b(1 i)] .

I.et us now imagine that S~(/)~ —S~(/). Then,

B(q,p, 1}~B(q,p, 1)[I+to(q, p, 1)],

(A36)

(A37)

where co( , q, p)/is an L )&L matrix which has only four nonzero elements, toq(qq, p, ),/cozen( pq, ),/co~(q, p, /), and
co~(q,p, /). Their values can be trivially computed from Eqs. (A32) and (A33).

We are interested in the ratio of the determinant after and before the spin flip,

R =detII+b(/, i)[I+to(q,p, /)]] Idet[I+b(/, i)]
=det[I + g(/, i )b (/, i)to(q, p, 1) ]

1+[g(l i)b(l i)to(q p l)]qq I I 1+[g(l i)b(l i)to(q p /)]» j fg(l i)b(l i)to(q p /)]~ fg(1 i)b(l i) ( topq/)]~q (A38)
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Here we have introduced

g(l, i) = [I+b(l,i)] (A39)

Notice that g(l, i) is just an extension of the single-parti-
cle equal-time Green's function. In fact, g ( i, 1 )

The numerical calculation of the ratio R is thus trivial;
however, it does require a knowledge of the Green's func-
tion g(l, i). Suppose this matrix is stored in the computer
and we do flip the spin S~(l). We must then calculate
the updated Green's function,

g(l, i )~g I(l,i)
= II+b(l, i)[I+co(q,p, l)] I

=g(l, i) g(l, i)—b(l, i)co(q,p, l)g I (l,i) . (A40)

g(l, i+1)=B'(l)g(l, i)[B'(i)] ', i =1,2, 3

g(&+1, 1)=B'(&)g(&,4)[B'(l)]
(A41)

Because co(q,p, l) has only four nonzero elements, Eq.
(A40) can be solved for gI(l, i) merely by inverting a
two-dimensional matrix. The bottleneck occurs because
we must calculate all L elements of g I(l, i).

Once we have equilibrated each spin in h'(l), we can go
on to h'+'(l), or h'(l+1) if i=4, by making use of the
relations

5g(l, i) =g(l, i) g(l, i—)[I+b(l,i)]g(l,i)

+5g(l, i)[I+b(l,i)]5g(l,i) . (A42)

We drop the term on the right-hand side of Eq. (A42),
which contains two factors of 5g, and thus obtain a simple
first-order correction to g(l, i) We. use this correction
whenever roundoff errors cause us to lose approximately
half the significant figures in the elements of g(l, i) Fu.ll
machine accuracy is generally restored. The frequency
with which one must make this correction is strongly
dependent on /3 and the other parameters in the model. It
must be determined interactively during the running of
the calculation by monitoring the size of 5g in Eq. (A42).
Unfortunately, the frequency with which we must update
g increases with P because the matrix I+b(i, i) becomes
badly conditioned as P becomes large. This is why we
were unable to carry the Monte Carlo calculations to very
low temperatures.

Because of the sparseness of the B'(l), this calculation
takes only of order L numerical operations. Thus, if we
calculate g(1,1), for example, once at the beginning of the
Monte Carlo process, we, in principle, never have to invert
an L )&L matrix again. We simply update the appropri-
ate g(l, i ) as we go along using Eqs. (A40) and (A41).

The one remaining problem is that roundoff errors ac-
cumulate in g(l, i); indeed, they are amplified by succes-
sive updates. Let us denote the difference between g(l, i)
and the exact inverse of I+b(l, i) by 5g(l, i) T.hen,
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