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With the utilization of a new complex-band-structure technique, the electronic structure of [100]-
oriented model Si-Sil „Ge„and metal-oxide-silicon superlattices have been obtained over a wide

range of layer thickness I (11(l& 110 A), complementing previous results obtained for very thin
0 0

layer systems (I & 11 A). For I &44 A, it is found that these systems exhibit a direct fundamental
band gap, produced in large part by the Brillouin-zone folding of the bulk conduction-band edges.
In the same range, the transverse band-edge electron effective mass is reduced to a limiting value of
0.73 of the bulk conductivity effective mass, supporting our previous suggestion that a band-
structure-driven enhancement in transverse electron mobility over bulk silicon may be possible. Sim-

ple effective-mass scaling yields an enhancement of about 1.2 in the (low-temperature) impurity-
scattering limit and about 2.2 in the {high-temperature) phonon-scattering limit. Detailed considera-
tion is made of the simpler of the two cases, impurity-scattering-limited electron mobility, with the
result that enhanced mobility is indeed predicted for sufficiently high carrier concentrations.

I. INTRODUCTION

The applications potential of artificial semiconductor
superlattices has stimulated a corresponding interest in
the basic physics of these systems. In contrast to the
mainstream of fundamental research on systems derived
from compound III-V and II-VI materials, our interest in
semiconductor superlattices has focused on the nature and
properties of structures created from elemental group-IV
materials such as silicon. Within the confines of silicon
materials technology (i.e., excluding III-V and II-VI ma-
terials) the number of feasible superlattice structures is, of
course, greatly limited. With regard to conventional lay-
ered structures, the Si-Si& „Ge„system is perhaps the
prototype silicon superlattice. In addition to our theoreti-
cal work on this system, ' an increasing experimental in-
terest in fabricating and studying Si-Si, „Ge„superlat-
tices has also emerged. Historically, the major experi-
mental drawback to this type of structure has been the rel-
atively large (=5%) lattice-constant mismatch between Si
and Ge. It now appears, however, that this difficulty can
be largely overcome through the use of suitable strain-
layer epitaxy.

Beyond the Si-Sit „Ge„system, silicon materials tech-
nology also offers some other novel possibilities for super-
lattice structures. One is a metal-oxide-silicon (MOS)
configuration with a grided metal electrode made up of
fine parallel metal lines uniformly spaced on the oxide
layer, as illustrated in Fig. 1. In this system, it is en-
visioned that an extra periodic electron potential could be
extended into the silicon by holding alternate metal lines
in the grid at different voltages. The primary experimen-
tal challenge of creating such a system comes in produc-
ing a periodic metal electrode pattern of the ultrathin di-
mensions required ( & 500 A line spacings and

thicknesses). Fine-line technology is rapidly advancing to
the point where this may be feasible. A third possible sil-
icon superlattice structure could be one consisting of alter-
nately n- and p-doped silicon layers, as in the so-called n-
i-p-i superlattice, which in its own right has been active-
ly investigated for III-V-compound-based superlattices. '

In a previous paper, we formulated a realistic, but sim-
plified, tight-binding (TB) model of the electronic struc-
ture of silicon superlattices that could be applied to all of
the above cases. Straightforward application of the TB
method, however, was limited to systems with layer thick-
ness I & 11 A, because the size of the Hamiltonian matrix
increases linearly with I. We have now combined this
model with a new complex-band-structure technique, gen-
eralized from a method developed by Schulman and
Chang for III-V compound systems, " in which the size of
the Hamiltonian matrix does not increase with layer
thickness. We report here both the details of our method
as well as comprehensive electronic structure results ob-

FICx. 1. Conceptual drawing of a possible MOS superlattice
structure.
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tained for silicon superlattices over the complementary
range 11 & I & 110A, using this new technique.

One very interesti. ng question with regard to silicon su-
perlattices is whether or not a band-structure-driven
enhancement in electron mobility, related to the special
nature of silicon s bulk band gap, is possible. The initial
experiments on Si-SiI „Ge„systems showed, in fact, sys-
tematically enhanced transverse electron mobility in
[100]-oriented samples, even at room temperature and
without deliberate modulation doping. Samples oriented
in a [111]direction, on the other hand, did not display
such an enhancement. Consistent with this observation,
we pointed out in Ref. 1 that [100]-oriented silicon super-
lattices could have a reduced band-edge transverse con-
ductivity effective mass, while [111]-oriented superlattices
would not. Moreover, the expected magnitude of
effective-mass reduction appears to be in line with the de-
gree of observed enhancement. It remains uncertain, how-
ever, whether or not this effect is actually playing the de-
cisive role in raising the mobility. For one thing, the ex-
perimental results were obtained on relatively thick-layer
(& 300 A) systems, where such a quantum effect could be
greatly diminished. Secondly, the Si-Si& Ge„superlat-
tices employed in this study were not grown by strain-
layer epitaxy, so that the quality of the interfaces was not
well controlled. Possible interface effects and other
nonuniforrnities cloud any simple interpretation of the ex-
perimental results in terms of our theoretical model.
Nonetheless, the nature of electron mobility in these sys-
tems has clearly become a matter for more careful investi-
gation. As a theoretical step in this direction, we have ap-
plied our present electronic structure results to the first
full calculations of impurity-scattering-limited electron
mobility in silicon superlattices.

In Sec. II we first review our basic model for the elec-
tronic structure of silicon superlattices, then discuss our
complex-band-structure method for dealing with arbitrari-
ly thick layers, and finally present our calculated results.
In Sec. III we address the problem of electron mobility in
these systems and elaborate on our results for both drift
and Hall mobility in the impurity-scattering limit. We
conclude in Sec. IV.

II. SUPERI ATTICE BAND STRUCTURE

A. General theoretical model

We consider a [100]-oriented silicon superlattice of al-
ternating 3 and B layers with an underlying tetrahedral
symmetry of the bulk diamond lattice, as illustrated in
Fig. 2. We envisage that layer 2 consists of pure Si
atoms, while layer B either contains a second species (Ge
in Si~ „Ge„) or represents Si atoms where the electron
potential has been rigidly raised or lowered by some
amount (as in an MOS or n i p isuper-la-tti-ce). As in Ref.
1, we assume equal 2- and 8-layer thicknesses and a com-
mon bulk bond length d, so that the superlattice repeats in
the x direction with a period

s =21'=n, a/2,
where a =4d/v 3 is the lattice constant of pure silicon

Layer A Layer B

and n, is an integer. In the case of Si-Si& Ge we are
thus neglecting the slight increase in bond length in the al-
loy layer. We also deal here with the case of even n„so
that the superlattice always possesses simple tetragonal
symmetry.

In a minimal-basis TB description of the electronic
structure, consisting of one s and three p atomic orbitals
per site, the interatomic matrix elements coupling one
atom to another are primarily a function of bond length, '

varying approximately as d . Since d is fixed in our
model, these quantities remain the same in the superlattice
as in bulk silicon, for which we have obtained carefully
fitted nearest and second-nearest-neighbor values. ' The
silicon intra-atomic energies e, and E~ of layer 2, on the
other hand, are modified in layer 8 to some values
c, + V,

"and c + V,'~'. The case

(2)

corresponds to a MOS or n-i-p-i superlattice in which the
electron potential is rigidly raised by an amount V, in
layer 8. We have designated this as type-I behavior. The
opposite limiting case

(3)

in which s and p electrons effectively see equal and oppo-
site average potentials, turns out to be an appropriate
model, within the virtual-crystal approximation, for the
alloy component in the Si-Si& „Ge superlattice. ' We
have designated this as type-II behavior. In this case, we
have further derived an approximate empirical relation-
ship between V, and the Ge concentration x of the form

V, =(0.5+0. 1)x eV . (4)

In both the type-I and type-II models, therefore, we are
left with two free parameters: n„representing layer
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FIG. 2. Schematic diagram of the n, =8 superlattice

geometry, showing the projection of four planes of atoms onto
the z =0 plane. The unhatched circles represent the Si atoms of
layer A, while the hatched circles represent the atoms of layer
B. Atoms belonging to the planes z= —a/4, a/4, and a/2 are
marked —,+, and + +, respectively. The bulk regions I and
Il and interface layers S&, S2, S3, and S4 apply to the complex-
band-structure technique discussed in the text.
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thickness, and V„representing the physical or chemical
strength of the superlattice potential.

Band bending and other nonideal interface effects may
be incorporated into our model by allowing, for example,
V, to grow smoothly across several layers at the interface
instead of changing abruptly from zero. We have con-
sidered a number of such graded-layer calculations, but
they produce results so qualitatively and quantitatively
similar to the ideal case that we shall not consider this
complication further in the present discussion.

B. Tight-binding complex-band-structure method (TB-CBM)

A primitive unit cell of the superlattice contains 2n,
atoms, so that with four orbitals per site the TB Hamil-
tonian matrix is 8n, &&8n, in size. For n, =8 (correspond-
ing to l =11 A), the matrix is already 64X64, and hence
the calculation of the electronic structure in this manner
becomes intractable for even modestly thick layers. The
complex-band-structure technique of Schulman and
Chang" nicely overcomes this difficulty. In this method,
one views the superlattice as being composed of bulk re-
gions in each layer separated by interface planes, as shown
in Fig. 2. The number of atomic interface planes is taken
such that the atoms in bulk regions I and II are not direct-
ly coupled: for second-neighbor interactions, two planes
at each interface are required. One then capitalizes on the
fact that the solutions to Schrodinger's equation are local
and, hence, in the bulk regions must be some linear com-
bination of bulk states including both extended Bloch
states (real k) and evanescent states (complex k). For a
given energy E, there are in our case a maximum of 16
possible k states in each bulk region. ' These states, to-
gether with two-dimensional Bloch sums of atomic orbi-
tals centered on the interface-plane atoms, can be used to
expand the superlattice wave function in the form

Pq(r, E)= g e'q'" gA k (q)gf (r —L, E)
QNL

n, a

the 16 bulk states for each region are obtained. This in-
formation is contained in the complex band structure of
the bulk material, ' ' which need only be generated once
for each layer from the appropriate 8&(8 bulk TB Hamil-
tonians. The [100] complex band structure of bulk silicon
obtained from our TB parameters, and appropriate to
layer 3 for all V, and n„ is shown in Fig. 3. In the type-
I case, rigidly shifting this band structure upward by an
amount V„corresponding to intra-atomic energies c, + V,
and cz+ V„makes it also appropriate to layer B. In the
type-II case, however, the complex band structure for
layer B must be recalculated with intra-atomic energies
c., —V, and cz+ V, for each V, . The 48&&48 superlattice
Hamiltonian is then set up and diagonalized to obtain the
true superlattice energy E, for the assumed basis. One
iterates this procedure until E,=E, to some acceptable
tolerance. In our procedure, an accuracy of 10 eV in
energy is achieved with typically five iterations in less
than 1 min of central-processing-unit (CPU) time. By
varying q, the complete superlattice band structure may
be mapped out in this way.

Our tight-binding complex-band-structure method
(TB-CBM) improves upon that of Schulman and Chang"
in several important ways. First, our TB model includes
second-neighbor interactions as well as the first-neighbor
interactions considered by them. Second, Sehulman and
Chang supplemented the bulk basis states teak with only

4.0

0

LU 40

where q =q„x+k~
~

is the superlattice wave vector,
L= msx, with m an integer, k; =k' x+k~~ is a bulk wave
vector (i = 1,16), gj, is the corresponding bulk wave func-

tion for region o. (o=I,II in Fig. 2), and Pk is a two-
lt

dimensional Bloch state for interface plane S„(n=1,2,3,4
in Fig. 2) and atomic orbital a (a = s,p,p~,p, ). The wave
vector k~~ is contained entirely within the transverse plane
(here the y-z plane) and is common to both the bulk and
the superlattice. The resulting Hamiltonian matrix is of
size 48 0&48 independent of layer thickness.

The price that must be paid for a fixed Hamiltonian-
matrix size is an energy-dependent basis, requiring an
iteration procedure to calculate the superlattice band
structure self-consistently. For given values of n, and V,
one fixes the superlattice wave vector q and selects a trial
energy E=E, to be used in Eq. (5). For the chosen E„

-8.0—
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10 Irn(k ) 0 Re(k ) 10 Im(k ) 10
X X X

(Units of 27r/9)

FIG. 3. Complex band structure of bulk silicon in the [100]
direction with k=k x. Left-hand panel, complex bands with
Re(k ) =0; center panel, real bands with Im(k„) =0 (solid lines)
and real part of the complex band associated with the
conduction-band edge (dashed line); right-hand panel, complex
bands with Re(k ) =2~/a (solid lines) and corresponding imagi-
nary part of the complex band associated with the conduction-
band edge (dashed line).



1030 SRINIVASAN KRISHNAMURTHY AND JOHN A. MORIARTY

atomic orbitals a on the interface planes, restricting their
approach to the longitudinal k~I ——0 band structure. Util-
izing instead Bloch orbitals of the form

(r)= g~(r —r ii)e I J

where j spans the N~~ atoms in the interface plane n, al-
lows us to obtain the entire superlattice electronic struc-
ture and, in particular, the transverse q„=0 energy bands.
Finally, in constructing the superlattice Hamiltonian fr'om

the basis (5), we have included certain finite-layer correc-
tions to the bulk regions that are necessary to make the
method exact and which were neglected by Schulman and
Chang. These corrections become vanishingly small as
n, ~oo, but significantly affect fine details of the band
structure such as effective masses for the range of n, con-
sidered here.

The physical origin of the finite-layer corrections lies in
the fact that the bulk regions I and II are not infinitely
periodic in the x direction. That is, the g~ are not truely

l

exact eigenstates of the o.-region portion of the superlat-
tice Hamiltonian HsL, but rather one has

&1g (r,E)
~
HsL

~
I/Jk(r, E) &=E, S~J+5B(E,k;,kJ), (7)

where the correction term 58 is on the order of 1/n, One.
can attempt to derive an expression for 58 directly, but we
have found it more convenient to simply evaluate the ma-
trix elements on the left-hand side of Eq. (7) by writing
the bulk states in the form

and for i&j,

V"~ (first neighbors),

&~(r—Ri )
I ~sL I

~'« —RJ ) & = V.".' (second neighbors),

0 (otherwise) .

(13)

The resulting matrix is too lengthly to reproduce here, but
will be provided to the interest reader upon request. The
TB quantities c, V"', and V' ' as used in our calcula-
tions are tabulated in Ref. 1.

It should be noted that Eq. (7) implies that the bulk
states fk are not orthogonal to one another for different

k; in the same region o. Before attempting to diagonalize
the superlattice Hamiltonian matrix, it is convenient to
first make a unitary transformation to an orthonormal
basis. We do this, in practice, numerically by a standard
Gram-Schmidt procedure.

Finally, we have tested the exactness of out TB-CBM
scheme in three separate ways: (i) for V, =0, the bulk sil-
icon energy levels are reproduced; (ii) for n, =8 and any
V„ the TB-CBM results obtained here are identical to the
TB results of Ref. 1; and (iii) removing outer planes from
the bulk layers and treating them as additional interface
planes has no effect on the calculated energy bands. Re-
moving the interface layers, on the other hand, does alter
the results, as expected.

Qg (r,E)= g, ~
C „(k;,E)

N)( ~q [Xp(k;)]'~

&& g a(r —H„)e
j,n

where

W„(k, ) = g exp[ —i (k*, —k, ) H„]
n

is a normalization factor independent of j such that

Q I Cap(kiiE) I
=1 . (10)

Here p spans the two (anion and cation) sites of the bulk
basis and n spans the n, —2 planes of the bulk regions.
Note that for real k;, Nz n, —2. The expansio——n coeffi-
cients C~„(ki,E) are established from the complex band
structures of the bulk regions.

With the basis states PI", and Pk referred back to the

atomic orbitals a through Eqs. (6) and (8), it is, in fact,
straightforward to generate the entire 48 &48 superlattice
Hamiltonian matrix by applying the basic ground rules of
our TB model for orbitals centered on sites R; and RJ,
namely

(r—R;) ~a'(r —R, )&=5 5;, ;

for i =j,
E~ (layer A),

& ~(r —Ri )
I
IfsL

~

~'(r —R; ) &
=5~~ X ', + V

(12)

C. Electronic structure results

TB-CBM calculations of the silicon superlattice band
structure have now been carried out for 8 & n, & 80
(11&i&110 A) and 0& V, &1.0 eV for both the type-I
and type-II cases. In particular, the magnitude of the fun-
damental band gap, conduction-band-edge positions, and
band-edge effective masses have been obtained over these
parameter ranges. The variation of the band-gap magni-
tude Eg with V, for selected values of n, is shown in Figs.
4 and 5 for the type-I and type-II superlattices, respective-
1y. In both cases, Eg decreases with increasing V, and n„
but the E~ versus- V, curve quic-kly saturates for large n,
Extrapolation of the n, =80 curves in Figs. 4 and 5 sug-
gests that the band gap will close for V, =1.11 eV, the
bulk silicon band gap, in the limit n, ~~, as rigorously
required in the type-I case.

While the valence-band edge remains stationary at the
k=0 Brillouin-zone center (I point), the positions of the
conduction-band edges change as V, or n, is increased. In
general, the effective sixfold degeneracy of the bulk band
edges is lifted in the superlattice, with the [100] and [100]
edges folded back towards I and lowered in energy rela-
tive to the remaining [010], [010], [001],and [001] edges,
which remain close to the Brillouin-zone-boundaries (X
points). For n, ) 32 (1)44 A) the former two edges be-
come degenerate at I and a direct band gap results. This
situation is illustrated in Fig. 6, where the complete longi-
tudinal [100] and transverse [001] band structure E(q) in
the vicinity of the fundamental gap is plotted in a typical
case. The energy difference 5 between the X and I
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FIG. 4. Variation of the fundamental energy-band gap Ez
with V, for the type-I superlattice at five layer thicknesses. 0.19—

conduction-band edges always remains small ((0.0065
eV=75 K), however, and eventually declines back to zero
as n, ~ oo, as shown in Fig. 7.

The pronounced flattening of the [100] superlattice
bands, seen in Fig. 6, leads to very large (essentially infi-
nite) longitudinal effective masses. The transverse effec-
tive masses, on the other hand, display much weaker
dependencies on V, and n„with values both above and
below the bulk possible. Figure 8 illustrates the behavior
of the valence-band-edge transverse hole mass a, relative
to the (calculated) heavy-hole mass of the bulk for the
type-I and type-II superlattices. In the type-I case, o,, sat-
urates near 1.0 for large n„while in the type-II case, a,
displays a small linear decrease with increasing V, even
for large n, . The corresponding conduction-band-edge
transverse electron mass P, relative to the bulk transverse
electron mass is shown in Fig. 9 for the type-II superlat-
tice. The type-I results are almost identical, and in both
cases f3, saturates at 1.0 for n, )32.

0.18—

0.17—

0.16—

0 15
2'/a 0.0 2n/s

FIG. 6. Longitudinal [100] and transverse [001] band struc-
tures near the fundamental band gap of a type-II superlattice
with n, =64 and V, =0.2 eV. The bands shown are those
thermally accessible to mobile charge carriers at room tempera-
ture.

III. ELECTRON MOBILITY

The possibility of enhanced carrier mobilities in semi-
conductor superlattices is a subject of fundamental as well
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FICx. 5. Variation of the fundamental energy-band gap Ez
with V, for the type-II superlattice at five layer thicknesses.
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FIG. 7. Energy difference 6 between the X- and I -point
conduction-band minima vs V, for various type-I and type-II
superlattices. (Solid lines, type-I; dashed lines, type-II. ) The
n, =64, type-II result has been omitted for clarity.
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respectively, where Pt and f3, are the enhancement factors
of the bulk longitudinal and transverse band masses mt*

and rn,
* As d.iscussed above, Pi &&1 due to the band flat-

tening in the longitudinal direction, while P, =1. Because
of the more favorable averaging of the relatively small
transverse band mass m,

* in the superlattice than the bulk,
however, the effective transverse conductivity mass is re-
duced by a factor

is replaced by separate values perpendicular (i.e., longitu-
dinal) and parallel (i.e., transverse) to the layers. For a
single conduction band at I, for example, one can write,
for these latter quantities,

m,"L ——f31mt"

and

FIG. 8. Relative band-edge transverse hole effective mass a,
vs V, for various n, in the type-I and type-II superlattices.

as applied interest. It is well known that for III-V super-
lattices, such as GaAs-Ga& Al As, the preparation tech-
nique of modulation doping can reduce impurity scatter-
ing and raise carrier mobility dramatically at low tempera-
tures. ' ' Previously, ' we suggested that a quite different
enhancement mechanism, one driven by reduced trans-
verse conductivity effective masses associated with the su-
perlattice band structure, also appeared to be possible in
silicon superlattices. We have now addressed this ques-
tion more fully, and in the case of impurity scattering we
have done actual transport calculations, based on the
above band-structure results, to obtain realistic upper lim-
its on electron mobility enhancement at low temperature
in uniformly doped silicon superlattices

In the superlattice, the usual isotropic conductivity ef-
fective mass for electrons in bulk silicon,

yT =m,*T /m,*=0.73P, , (17)

where in the last equality I,*/m,* has been evaluated
from the known values of mt' ——0.97m and m,'=0.19m
for bulk silicon. ' Ideally, for ionized-impurity scattering
the mobility should be enhanced by a factor of yT

' and
for acoustic-phonon scattering by a factor of yT, if
these are the only energy. bands involved in the transport.
These factors are plotted in Fig. 10 as a function of V, for
selected n, in the type-II superlattice. Because P,~ 1 rap-
idly as n, increases, one approaches the saturation values
of yT

' ——1.17 and yT ——2.20 for even modestly thick
layers.

Of course, additional considerations enter the picture
beyond band-edge effective masses. For example, the bulk
conduction-band edges which split away and above in en-
ergy in the superlattice will always be accessible at a high
enough temperature. In practice, a thermal average of the
scattering over a number of bands is necessary to establish
the effective carrier mobility. Moreover, a different

3

[(1/mt*)+ (2/m, *)]
(14)
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FICs. 9. Relative band-edge transverse electron effective mass
P, vs V, for various n, in the type-II superlattice.

FICx. 10. Impurity-scattering-limited and phonon-scattering-
limited enhancement factors y T

' and y T
' vs V, for various

n, in the type-II superlattice. The n, =16 result for yT
' has

been omited for clarity.
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thermal average, which weights the low-energy states
more heavily in the superlattice than in the bulk, is usual-
ly appropriate. In the bulk, the conduction-band-edge
constant-energy surfaces are ellipsoidal in shape and the
density of states for a single band has the familiar form

N, (E)= 2 m,"(2m( )' (E E,—)' (18)

where E, is the conduction-band edge. In the superlat-
tice, on the other hand, the band flattening mentioned
above makes the constant-energy surfaces more nearly
cylindrical in shape, so that the corresponding density of
states is proportional to that of a two-dimensional elec-
tron gas. For a single conduction band at I,

N, (E)= I3,m,*,
%ms

(19)

which is independent of energy.
In our present studies, we have considered ionized-

impurity scattering of electrons from the screened
Coulomb potential

~2 ~
—Ap

Ul(r) =— (20)

where ~ is the dielectric constant of the host and A,
' is

the Debye length, A. =4mnle /(~k~T). , for uniform dop-
ing to a concentration nI. The scattering time 7(E) for
scattering from state k to state k' on the constant-energy
surface E(k) is calculated from the familiar transport for-
mula

1

r(E)
0 nI

(2m.h')

X f (1—cos8) [(fk~UI ~gk) ( dSz,

(21)

where 0 is the volume of the solid and the integral is over
the constant-energy surface. In bulk silicon, where the
density of states (18) is operative for each conduction-
band edge, the corresponding mobility of nondegenerate
electrons, p~ ——e (r(E).) /m, ", is well approximated by the
standard form'

32~' (ka T)'"
3 ~n 3 * ~n G~(n'

(8m. ) e nI(m, )
(22)

~ As(s, 8)sin8(1 —cos8)
Fs(s) = —',

2 d8,
[ssin (8/2)+ms]

(24)

and sz ——k A /(8m,*k&T). In Eq. (24) the term As(E, 8)
reflects the wave-function dependence of the scattering,
that is, the departure of gq from a plane wave. In prac-
tice, this quantity turns out to be remarkably close to uni-
ty for all c. and 0 of interest, so that we simply average it

where G~ is a slowly varying function of nI, T, and m,*

given by

Gs(nl, T,m,*)=f se 'F~ '(E)de,

with e=(E E, )/ksT, —

over energy and scattering angle and remove it from the
integrals as a factor = 1.

In the superlattice, a parallel calculation, but with the
scattering taking place on a cylindrical energy surface cor-
responding to a constant density of states like (19), yields,
for the ith conduction band,

)5s~'" &a &
psL ~ 2 + ~r2 G SL( nI» meT) r4~v' 2e (nl m,"r )

(25)

neglecting interband scattering. Here Gsz is also a slowly
varying function of the same form as Eq. (23) with Fs re-
placed by Fsl given by

1/2

f~ AsL(E, 8)( 1 —cos8)
d 8, (26)

[e sin (8/2)+ssL]
15 ~sL

FsL(&)=
8

with EsL——1, fi /(8 m,'r ks T ). The wave-function-
dependent quantity AsL(s, 8) behaves very much like
As(E, 8) and we treat it in an analogous manner.

In Eqs. (25) and (26), m,*r is the appropriate transverse
conductivity mass for the ith band. For band minima at
I, this is given by Eq. (16). For band minima near the g
points along the [010], [010], [001], and [001] directions,
on the other hand, a weighted average

2

[ I

/(Pimps*

) + 1/(P, mt* )]

is appropriate. In the latter case, longitudinal I and trans-
verse t are defined in the y-z plane with respect to the axis
of symmetry, so that both PI and P, in Eq. (27) are on the
order of unity. Note that with m~*&m,

* the constant-
energy surfaces for the X-point minima are elliptical
cylinders.

In the superlattice mobility psL, the inverse-square-root
effective-mass dependence of the bulk is recovered, as ex-
pected, but the temperature and impurity concentration
dependencies now reflect the two-dimensional nature of
the transport. Summing contributions. from all thermally
accessible conduction, bands i, the average electron drift
mobility in the superlattice is given by

psL= g n psL/nl (28)

Psr
1

pg T

where n; is the electron concentration in the ith band.
For T (300 K, the conduction bands which must be in-
cluded in Eq. (28) are shown in Fig. 6.

For a typical silicon superlattice, the calculated relative
mobility psL/ps based on Eqs. (20)—(28) is plotted in Fig.
11 as a function of III for selected values of T, and in Fig.
12 as a function of T for selected values of nI. It can be
seen that, at low temperatures, where impurity scattering
dominates other scattering mechanisms, an enhancement
in electron mobility is indeed possible for sufficiently high
carrier concentrations. fhe qualitative variations found

.with nl and T are most easily understood by considering
the high-temperature limit of Eqs. (22) and (25). In this
limit, Gs ——[in(3/Es )] ' and GsL ——1, so that

1/2

ln (29)
n
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3.0—

2.6—

2.2

300 K

200

where C& and Cz are constants. For a fixed T in the
range of interest, this function increases to a maximum
for some nI and then decreases monotonically. Similarly,
for a fixed ni, this function increases to a maximum for
some T and then decreases.

The corresponding Hall mobility in the superlattice
may be calculated by replacing Eq. (28) by the average

80 g r, n, (ps„)' g n, psL, (3O)
I-

1.8
Ch

Cl

co 14

60

40

where r; is a weighting factor reflecting the energy depen-
dence and anisotropy of the scattering and is given by

(31)

1.0 20
where for I -point minima C = 1, while for X-point mini-
ma

0.6 4E
(%+1)

(32)

0.2
14 15

~n n, ~cm-3~

17 18 I~ =P,m,*l(P,m,*)=5.1P(iP,

and P~ and P, are defined as in Eq. (27). In contrast, for
bulk silicon,

FIG. 11. Variation of the impurity-scattering-limited electron
drift mobility with donor concentration nI at selected tempera-
tures for a type-II superlattice, where n, =64 and V, =0.2 eV,
relative to bulk silicon.

3X(K+2)
(2%+1)

(33)

with K=mi*/rn, ' =5.1. Our calculated relative Hall mo-
bility is plotted in Fig. 13 as a function of ni for selected
values of T, and in Fig. 14 as a function of T for selected
values of ni, both for the same superlattice parameters as
in Figs. 11 and 12. Similar trends but somewhat lower
magnitudes are clearly seen.
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FIG. 12. Variation of the impurity-scattering-limited electron
drift mobility with temperature T for selected donor concentra-
tions, as in Fig. 11.

anni (cm 3)

FIG. 13. Variation of the impurity-scattering-limited electron
Hall mobility with donor concentration ni at selected tempera-
tures for a type-II superlattice, where n, =64 and V, =0.2 eV,
relative to bulk silicon.
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A final noteworthy feature of the impurity-scattering-
limited superlattice mobility not revealed in Figs. 11—14
is that it is predicted to increase linearly with layer thick-
ness, as evidenced by the factor of s in Eq. (25). This is
entirely a property of the cylindrical constant-energy sur-
faces and thus should also be present in the case of pho-
non scattering. Interestingly, the initial measurements of
room-temperature mobility in Si-Si~ Ge superlattices
did indeed show an increase with Si layer thickness, al-
though apparently not with Si& Ge layer thickness.

IV. CONCLUSIONS

FIG. 14. Variation of the impurity-scattering-limited electron
Hall mobility with temperature T for selected donor concentra-
tions, as in Fig.

'

13.

zone folding of the bulk [100] and [100] conduction-band
edges, and also that the band-edge transverse electron ef-
fective mass will saturate at 0.73 of the bulk conductivity
effective mass. These trends appear to be relatively in-
sensitive to the exact details of our model and apply to
both Si-Si] Ge layered superlattices and hypothetical
MOS and n-i-p-i superlattices.

Additional study will be required to determine if the
direct nature of the superlattice band gap will significant-
ly affect optical properties, as it does in many bulk semi-
conductors. For example, we have not attempted to ad-
dress the question of whether or not electron-hole recom-
bination rates will be enhanced in the superlattice. With
regard to the possibility of a band-structure-driven
enhancement of transverse electron mobility in silicon su-
perlattices, on the other hand, the dominant controlling
features of the electronic structure appear to be (i) the
band-edge effective masses and (ii) the cylindrical nature
of the constant-energy surfaces. Simple effective-mass
scaling suggests a possible enhancement of 1.17 in the
(low temperature) impurity-scattering limit and 2.20 in
the (high temperature) electron-phonon scattering limit.
Detailed consideration of the former case, however,
demonstrates that the two-dimensional nature of the
transport accompanying the cylindrical constant-energy
surfaces introduces special dependences of the mobility on
temperature, carrier concentration, and layer thickness.
Nonetheless, for sufficiently high carrier concentrations
we do find, in fact, that enhanced mobility is predicted.
The quantitative results we have obtained for the
impurity-scattering-limited mobility should be considered
as upper limits to what could be expected in real systems.
Neglected factors will undoubtedly tend to reduce the ac-
tual mobility, in particular interband scattering at higher
carrier concentrations and alloy scattering in the case of a
Si-Sii „Ge superlattice. At the same time, these latter
results take only partial advantage of the reduced-
effective-mass enhancement mechanism, which should be
much more effective in the case of phonon scattering.

The tight-binding complex-band-structure method that
we have developed has allowed us to make a comprehen-
sive study of the electronic structure and impurity-
scattering-limited mobility in prototype [100]-oriented sil-
icon superlattices for arbitrarily thick layered systems.
For layer thicknesses I & 44 A, we predict that these struc-
tures will possess a direct energy-band gap at the center of
the Brillouin zone (I point), established primarily by the
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