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A model is presented to explain the observed properties of the metastable alloy system of type
(CxaAs)& „(Ge2)„. It assumes only the observed short-range order and exhibits the critical composi-
tion x, below which long-range order exists. The value of x, in the model depends on the morphol-

ogy of the kinetic growth. An analytic approximation is used to show the existence of x„ the criti-
cal behavior of the correlation length, and the variation of the long-range order parameter S as a
function of x.

I. INTRODUCTION

Metastable compounds of the form (GaAs)~ „(Ge2)„
have been studied both experimentally and theoretically.
Some examples are (GaAs) ~ „(Ge2)„,'

(GaAs)t „(Si2)„, (GaSb)( „(Ge2)„, ' and
(GaSb)& „(Snz)„. For the compound (GaSb)~ „(Ge2)„,
it has been found that there are no Ga-Ga or Sb-Sb
nearest-neighbor pairs. These compounds crystallize in a
diamond-type lattice. At the low-x end the crystal has a
long-range zinc-blende order as occurs for the x=0 com-
pound, while at the high-x end the zinc-blende order
disappears and only the diamond-lattice order remains as
occurs at x= l. The disappearance of the zinc-blende or-
der occurs at a critical composition x, . The unusual
feature of the transition is that x, is not unique but varies
with the morphology of the kinetic growth. Before the
experimental result of the nonuniqueness of x, was
known, several theoretical models were proposed to ex-
plain the variation of the optical energy gap of these com-
pounds as a function of x. However, these models
have to be supplemented to explain the variation of x, .
Since the alloys are metastable their properties are not
thermodynamically controlled and their nonunique nature
indicates that variations in the morphology of the kinetic
growth process can affect their properties. In the litera-
ture a description of a possible transition of this type is
known as a "kinetic" phase transition. ' ' The model
we proposed previously and discuss in more detail here is
different from the one described in Ref. 10, but it belongs
to the same group in the sense that the transition depends
on the kinetics of the growth, not on thermodynamics.

In this paper we describe our model in greater detail
and discuss the predicted properties that are amenable to
experimental verification. A spherical growth is used to
model the sputtering of the samples onto a glass substrate.
A planar growth is used to model the epitaxial growth
onto a GaAs single-crystal (100) surface. The effect of
varying the substrate for this (100) growth case is also in-
vestigated. A planar growth in the [111] direction has
been studied to see if there is any variation when a dif-
ferent surface is used as the substrate.

We point out that the planar growth in the [100] direc-
tion is an extended form of the cellular automata prob-

lem. ' It is different from the simple cellular automata
problem described by Wolfram' in two aspects: ours is a
three-state, not a two-state problem; and ours involves a
probability while the simple one is totally deterministic.
Nevertheless, the results show many of the characteristics
of a cellular automata problem.

II. MODELS

Our model of growth occupies the sites of a diamond
lattice in the following manner. The growth begins with
an initial layer. Subsequent layers are added, one after the
other. The first of the rules based on extended x-ray ab-
sorption fine structure measurements is that no Ga-Ga or
As-As nearest-neighbor pairs are allowed and no site is
left vacant. (From now on, Ga, As, and Ge will be used
as representatives of elements of groups III, V, and IV,
respectively. ) A parameter t determines the probability of
having a specific atom at a given site. When there is no
restriction, the probabilities of having Ge, Ga, and As at
one particular site are t, (1—t)/2, and (1—t)/2, respec-
tively. To satisfy the first rule, the probabilities are
changed when the nearest-neighbor sites are already occu-
pied by either Ga or As atoms. When both Ga and As oc-
cupy the nearest-neighbor sites, the site is forced to have a
Ge atom. When there are only Ga and any Ge, the site is
occupied by an As atom with the probability
(1 —t)/(1+t) and Ge with 2t/(1+t); when there are only
As and any Ge, the site is occupied by a Ga atom, with
the same probabilities. The composition x is determined
by counting the numbers of Ga, As, and Ge atoms after
the growth is completed. Physically the model corre-
sponds to crystal growth from a vapor, with probabilities
of hitting a particular site given by the first probabilities.
The probability of sticking depends on the nearest-
neighbor environment. It is zero for Ga if there is a first
neighbor of Ga (and zero for As if there is a first neighbor
of As), while it is one for all other cases. This short-
range-order restriction changes the probabilities to the
second values given above.

In the case in which some of the elements are more
volatile, e.g., As, so that the sticking coefficient may not
reach one, the model is still applicable. In that case the
first probabilities represent the product of the probability
of hitting a particular site times the sticking coefficient.
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(V2/2)ao. The relative positions of sites in different
layers are shown in Fig. 1(a). They repeat the pattern
after four layers. There are always two already occupied
nearest-neighbor sites, unless the site is on the edge of the
plane. When a periodic boundary condition is applied, the
above condition is true for every site. A periodic
boundary condition was used for this study, except when
stated explicitly otherwise.

All the sites in a layer belong to the same zinc-blende
sublattice, and neighboring layers always belong to dif-
ferent ones. The initial plane is filled with Ga atoms to
model the growth on a perfect GaAs (100) surface. Dif-
ferent initial planes were also used to see their effect on
the growth.

B. Planar growth in [111]direction

v (/2 ao

The initial and subsequent layers are (111) planes.
There are two different distances between neighboring
planes, (~3/4)ao and (W3/12)ao. The sites in a (111)
plane form a triangular lattice whose lattice constant is
(V2/2)ao. When the next plane is separated from the
preceding one by a distance of (V 3/4)ac, the sites are ex-
actly on the top of sites in the preceding layer and each
site has only one already occupied nearest-neighbor site
just beneath it. When the next plane is (V 3/12)ao from
the preceding layer, each site has three already occupied
nearest-neighbor sites, and the relative position of the sites
in the new plane is as shown in Fig. 1(b). In Fig. 1(b),
sites in planes 2, 4, and 6 are exactly'on top of the sites in
planes 1, 3, and 5, respectively. The pattern repeats after
six planes.

As in the case of (100) planes, all the sites in one layer
belong to the same zinc-blende sublattice and neighboring
layers belong to different sublattices. As there can be two
different initial planes, both cases were tested. (This is
equivalent to saying that the crystal grows in the opposite
direction. ) Different conditions for the initial planes were
used as in the [100] direction.

FIG. . 1. Relative positions of sites in (a) the (100) planes and
(b) the (111)planes of a diamond lattice. The conventional cubic
lattice constant ao is the unit of distance in all figures.

Thus, an overpressure in the vapor would be required to
compensate for a smaller sticking coefficient.

Some details are different from case to case. They are
described below.

C. Spherical growth

The initial "layer" is one central atom, which in our
study is Ga. A subsequent layer consists of sites equidis-
tant from the central site. Other layers are added one by
one in the order of increasing radius. There is no
nearest-neighbor pair among sites in the same layer, and
all the sites in one layer belong to the same sublattice of
the zinc-blende structure. Each site has one, two, or three
already occupied nearest-neighbor neighbor sites, depend-
ing on the geometry of the particular site and on the layer.
Sites in the same layer do not necessarily have the same
number of .occupied nearest neighbors. Neighboring
layers belong to different sublattices most of the time, but
not always.

A. P1anar growth in [100] direction

The initial and subsequent layers are (100) planes. The
distance between neighboring planes is —,ao (the lattice
constant of a conventional cubic cell). The sites in the
(100) plane form a square lattice whose unit cell size is

III. RESULTS OF COMPUTER SIMULATION

A. Planar growth in the [100]direction

First, we grew the crystal in the [100] direction with Ga
filling all the sites of the initial plane. This corresponds
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state becomes very large near x, and decreases on either
sj.de.

When a steady state is reached, the order parameter can
be determined. The order parameter S is defined as'

S=2 f—
2

where f is the fraction of Ga atoms in a Ga sublattice.
When the order is perfect, S =1—x, while S=O for a
completely random system. The definition of the order
parameter is equivalent to the difference between fractions
of right and wrong atoms. The order parameter as ob-
tained by the computer simulation as a function of x in
the steady-state condition is given in Fig. 3. The uncer-
tainties come from the fiuctuations due to the finite num-
ber of atoms. The critical composition x„above which
the order parameter becomes zero, is about 0.26+o o2.

Next, we grew the crystal in the same direction but
with different initial planes. Several initial conditions
were used, but here we present only the results from the
most disordered initial condition. All the sites in the ini-
tial plane were filled with Ge, giving a zero initial order
parameter. Then the crystals were grown following the
same rules. As there is no long-range order with x ~x„
even when the initial order parameter is one, we used only

' x values smaller than x, . As there is no distinction be-
tween right and wrong atoms, one was arbitrarily chosen
as the right atom and the other as the wrong one.

The order parameter of the crystal grown from the
disordered initial plane is not as large as the one grown
from an ordered initial plane, even after allowing further
growth But w.hen the final plane is examined carefully,
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FIG. 2. The fractions of "right" (dashed line) and "wrong"
(dashed-dotted line) atoms in a crystal grown in the [100j direc-
tion, as functions of the distance from the initial plane. Also
plotted by the solid line is the fraction of Ge atoms: (a) t=0.OS,
x=0.11; (b) t=0.10, x=0.2S; and (c} t=0.14, x=0.33. Fluc-
tuations-have been smoothed out, and the fluctuation is shown
by error bars except when two curves are overlapping.

to a completely ordered initial state and simulates the ac-
tual growth on a GaAs single-crystal substrate. The cross
section of the plane had dimensions of 100X 100 primitive
cells. A periodic boundary condition was applied. (To
make sure that the plane was big enough, a few simula-
tions were done on a plane of 150&&150 primitive cells.
The results were basically the same. ) As the crystal grew,
the number of "right" and "wrong" atoms were counted
and their fractions were plotted as functions of the dis-
tance from the initial plane. In all even-numbered planes
(including 0, the initial one), Ga are the "right" and As
are the "wrong" atoms; the reverse is true in the odd-
numbered planes. The results are shown in Fig. 2 for
three different t (and consequently x) values as a function
of film thickness. The decay length to attain the steady

S 0.5—

0 O. I 0.2 0.3 0.4

FICx. 3. The steady-state order parameter S as a function of
x, as determined by planar growth in the [100]direction.
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FIG. 4. The cross section of a crystal grown in the [100]
direction from a disordered initial plane. Only one quarter
{50X50) of the total plane {100&(100) is shown. 0 and X
represent Ga and As atoms, respectively, while Ge atoms are
represented by blank spaces.
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we find domains W.ithin each domain, the order parame-
ter appears as big as that from the ordered initial state.
One example is shown in Fig. 4. As there is no predefined
right or wrong atom, different regions in the plane will
have different atoms as the right atom As a. result, the
fraction of one kind of atom, when averaged over the
whole plane, is not as big as when averaged over the
domain.

Some crystals were grown without applying the period-
ic boundary condition. The reasoning is as follows. The
domains grow in size as the thickness increases; when
there are only a few domains, they compete with one
another. If the periodic boundary condition is loosened,
the competition lessens at the boundary. As a result, the
overall order parameter increases faster (than when the
periodic boundary condition is applied), but a . single
domain is still not attained in several hundred layers of
growth.

B. Planar growth in the [111]direction

There is one basic difference between growing the crys-
tals in the [100] and growing them in the [111]direction:
two different relations exist between neighboring planes in
the [111]direction but only one in the [100]direction. As
a result, neighboring planes in the [111] direction can
have quite dissimilar structures. Figure 5 shows the frac-
tions of Cia and As in odd- and even-numbered planes,
with the initial plane considered to be plane 0. All the
sites in the initial plane are filled with Ga and the param-
eter t is 0.02. In the steady state the odd-numbered planes
have a small fraction of their sites filled with Ge (-0.02
at t=0.02), and the rest of the sites are divided equally be-
tween Ga and As. The even-numbered planes, on the oth-
er hand, have a quite large fraction of Ge (-0.66 at

FIG. 5. The fractions of "right" {dashed line) and "wrong"
(dashed-dotted line) atoms in a crystal grown in the [111jdirec-
tion from an ordered initial plane, as functions of the distance
from the initial plane. Also plotted by the solid line is the frac-
tion of Ge atoms (a) in odd-numbered planes and {b) in even-
numbered planes. t=0.02 and x=0.34. Fluctuations have been
smoothed out, and the fluctuation is shown by error bars except
when two curves are overlapping.

t=0.02). Although it is not easy to understand intuitively
how the steady state is reached, it is possible to see how it
is maintained. The sites in an even-numbered plane are
determined by three already occupied nearest-neighbor
sites and the probability of having both Ga and As is
quite strong. When both Ga and As are nearest neigh-
bors, the site is forced to have Ge and the plane gets a big
fraction of Ge. A site in an odd-numbered plane, howev-
er, is restricted by only one nearest neighbor; moreover,
most of the sites have Ge, which does not impose any re-
striction. As a result, the composition of an odd-
numbered plane is largely determined by its unrestricted
probabilities.

When the direction of growth is reversed, the results are
the same, with odd and even reversed. Growth with dif-
ferent initial planes produces the same steady state. Vary-
ing the parameter t does not change the results qualita-
tively. It does change the final composition and the speed
at which the steady state is reached. But no t value pro-
duces a steady state with a long-range zinc-blende order
between the Ga and As atoms. There also is the problem
of not being able to get a low Ge composition. Any finite
t value produces a steady state with a big fraction of Ge
(If the initial plane is ordered, t=0 produces a perfectly
ordered GaAs. ) This model, therefore, predicts that epi-
taxial growth of the system in the [111]direction at low
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Ge vapor pressure is not the dominant one. To develop
the large Ge composition in the alternating planes would
require a long time, and such a growth would occur very
slowly. Other growth morphologies would more probably
dominate, such as growth about nucleation sites, and one
would expect a polycrystalline final state.

C. Spherical growth

Due to computational limitations, the crystals were
grown only to a sphere of radius 20ao which contained
268057 sites. Because of this small radius, the steady
state was not attained for the lower concentration values.
As one "layer" does not have many sites and the statisti-
cal fluctuation is large, the numbers of right and wrong
atoms in several layers were summed to reduce the statis-
tical fluctuations. The results are shown in Fig. 6 for

three different t values as a function of radius.
The Ge concentration reaches its steady-state value be-

fore the order parameter does. Thus at x=0.18 the Ge
concentration has saturated at 18%, but the order param-
eter is still decreasing at the largest calculated radius of
20ao. Only when x ~ 0.28 does the order parameter decay
rapidly enough to reach its steady state, which is zero
(Fig. 6). For x &0.18, even the Ge concentration has not
attained saturation at the radius of 20ao.

In spite of this lack of saturation in the computer simu-
lation, we can still make arguments about x, . As the
computer simulation for the [100] growth showed, and as
shown below in the algebraic approximation, the decay-
length becomes shorter on either side of x, . In the spheri-
cal growth case, the decay length is monotonically in-
creasing as t and thus x decreases down to the smallest
value of t=0.005 employed corresponding to x=0.08 at a
radius of 20ao. For x & 0.18 the Ge concentration has not
saturated at 20ao, and so we do not know its value. How-
ever, we do know that we are above x, since we find the
decay length still increasing. Thus we can conclude that
x, &0.18 for the spherical growth case.

By making a heroic effort it would be possible to in-
crease the maximum radius reached in the simulation, but
since the number of sites increases as the cube of the ra-
dius, the gain would be very slow. %e have already
served our purpose by showing that x, in the spherical

, growth is significantly smaller than in the (100) planar
case. For these reasons we did not pursue the computer
simulation further for the spherical growth case.

Growth with different initial conditions was not tried.
Using As as the center atom is completely equivalent to
using Ga. Using Ge as the center atom may produce in-
teresting results, such as the formation of different
domains of the ordered state, but the program is set up to
study the correlation with the center atom only. %'hen
the center atom is Ge, the correlation around the center
atom is symmetrical between Ga and As as no net order is
present. Even if there are domains with orders within
each domain, there will be no average long-range order.
The study of each domain would be quite similar to the
growth around Ga (or As) as the center atom.

I.O 0.4
IV. ANALYTICAL MODEL
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FIG. 6. The fractions of "right" (dashed line) and "wrong"
(dashed-dotted line) atoms in a spherically grown crystal, - as
functions of the radius, in units of ao. Also plotted by the solid
line is the fraction of Ge atoms: (a) t=0.005, x &0.08; (b)
t=0.03, x=0.18; and (c) t=0.08, x=0.28. Fluctuations have
been smoothed out, and the fluctuation is shown by error bars
except when two curves are overlapping.

It is possible to express the planar growth in recursion
relations analytically if correlation within the planes is ig-
nored. Even though the analytic form does not give ex-
actly the same results as the computer simulation, it does
show similar qualitative behavior. It shows, in the case of
growth in the [100] direction, the existence of a critical
composition x, above which the long-range order disap-
pears. The order parameter as a function of the composi-
tion x as determined by the analytic method has about the
same shape as that obtained by the computer simulation.
The analytic form for the growth in the [111]direction
confirms the results obtained by the computer simulation
i' that direction, namely, that low x values cannot be
reached with any finite t values.

It is rather difficult to study the behavior of the system
by computer simulation when the parameter is close to the
critical value, because the approach to the steady state is
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slow. But the analytic method can be studied easily even
when t is close to t, .

u'= (2u ——u + —
U )+(1—t)(1—u)-1+

(2)
A. Analytical study of growth in the [100] direction

Recursion relations for p and q, the fractions of Ga and
As in a plane, can be derived in the following manner.
The parameter t has the same meaning as in the computer
simulation and correlation within each plane is neglected,
but correlation between planes is included by the nearest-
neighbor condition. Neglecting correlation within the
plane greatly simplifies the problem. To test this state-
ment, the correlation within a (100) plane was calculated
from the computer simulation in the steady-state region.
The values of the algebraic approximation with no corre-
lation are compared in Table I with the actual numbers of
pairs. There are more Ga-Ga and As-As and fewer Ga-
As second-nearest neighbors than were calculated by the
algebraic approximation. The number of pairs with one
or two Cxe atoms is about the same as in the algebraic ap-
proximation. Thus, there exists a correlation within the
plane which is neglected in the algebraic approximation,
but the error does not appear to be large. Note that this
correlation reflects a weaker second-neighbor zinc-blende
order which is 100%%uo in the first neighbors.

Each site in a given plane is determined by two already
occupied sites in the plane below and the probabilities of
having both Ga and As, Ga(As) and possibly Ge, and only
Ge are 2pq, p +2pr (q +2qr), and r, respectively, where
r =1—p —q, the fraction of Ge.

Then the probabilities in the next plane, p' and q', are
given by the following equations:

1 —t
Uf = Uf(2 —Qf ) .1+t

(3)

It is apparent from the second equation of (3) that Uf =0
is one solution. If we assume Uf &0, we get the following
equation by substituting the second part of (3) into the
first:

v = —x —2x+1—2 — 2 2x
2+x (4)

with x = 1 —uf.
Equation (4) has a solution only when the right-hand

side is positive. The zero of the right-hand side is
x =0.395 794. . . . The t corresponding to this x is
0.1652033. . . . %'hen x is smaller than x„ the right-
hand side of (4) is positive and it has a solution. For
x &x„ the order parameter Uf can be determined (Fig. 7)
as a function of x, the Ge fraction. When x &x„uf—0
is the only solution, and the relation between t and x in
this region is given by the following equation:,

1 —tO'= — U(2 —u) .1+t
When a steady state is reached, we will expect to have

u'=u =uf and U'= —U=uf. The equations for the
steady-state values are

1/f —— (2uf 2 Qf+ 2 Uf)+(1 —t)(1—uf)
1 —t 2 & 2 2

1+t

p'= (q +2qr)+ r1+t 2

q'= (p +2pr)+ r1+t 2

Now, we will define new variables u =p +q and
U =p —q. If a steady state is reached, 1 —u is equal to x,
the fraction of Ge, and U is the order parameter. The re-
cursion relations for u and U are given as

TABLE I. The probability of occurrence of a given pair of
atoms as neighbors in the (100) plane, for two x values. The
numbers in the simulation columns are determined by counting
actual occurrences in the computer simulation, and those in the
algebraic columns are the values calculated by the algebraic ap-
proximation used in the text. (Tote: Two significant digits are
shown and, due to roundoff errors, the numbers do not neces-
sarily add up to 1.)

x=0.38, p=0.31, q=0.31 x=0.18, @=0.78, q=0.04
Simulation Algebraic Simulation Algebraic

Ga-Ga
As-As
Ge-Ge
Ga-As
Ga-Ge
As-Ge

0.14
0.14
0.15
0.12
0.23
0.22

0.096
0.096
0.14
0.19
0.24
0.24

0.63
0.011
0.037
0.039
0.26
0.020

0.61
0.0016
0.032
0.062
0.28
0.014

O. I 0.2
X

0.3 0.4

FIG. 7. The order parameter as a function of x, as deter-
mined by the algebraic approximation for growth in the [100]
direction.
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(1—t)(1 2—t)x' 4—x +(1+3t) =0 .

When x &x„vf——0 is also a solution, in addition to the
solution of (4). It is, however, an unstable one. If v is
slightly different from zero initially, vf is again given by
(4). This is what happens in the computer simulation. In
the computer simulation, and in an actual growth, the or-
der parameter will not be exactly equal to zero, due to sta-
tistical fluctuations. As a result, if x &x„ the steady
state will be ordered even if the initial plane is disordered.

Now we examine the behaviors of the order parameter
when x is close to x, . When x &x„we will start from
(4). The right-hand side of (4) is analytic at x =x, and
can be expanded in a series. As it is zero at x =x, and its
derivative is nonzero and negative, we can write it in the
following way:

vf ———c (x —x, )+higher-order terms .

From this we get the following relation, when x &x, :

Uf ~c (x~ —x) 1j'2

(6)

%'hen x )x„ the approach to the steady state, which is
without a long-range order, is expected to be slow. At
x =x, + 0.01, it takes about 57 and 109 planes for the or-
der parameter to change from 1 to 0.1 and 0.1 to 0.01,
respectively. (Four planes are equivalent to the growth of
one conventional cubic lattice constant. ) At x =x,
+ 0.04, it takes only 19 and 27 planes for the same re-

sults. %'hen the order parameter is small and x is close to
x„we can write the order parameter in the following
form:

S(n ) =S(0) exp( n lg) .— (8)

S (n) =aS (n —1)= a "S(0)
with

a = (1+x) .1 —t
1+t

Comparing (8) and (9), we get

—1

Ina

(9)

(10)

The values of g obtained in this manner for x =x, + 0.01
and x, + 0.04 are 48.1 and 11.7, respectively. They are in
good agreement with the ones obtained from the numeri-
cal iteration.

Lastly, we can get the critical index for the order pa-
rameter in the vicinity of the critical point. In the vicinity
of x„a can be expanded in the following form:

daa =a(x, )+(x —x, ) (x, )+higher-order terms,

If we calculated from the number of planes needed for
the order parameter to change from 0.1 to 0.01, we get
/=47. 4 and 11.7 for x =x, + 0.01 and x, + 0.04, respec-
tively.

We can also get an expression for the order parameter
directly from the recursion relation. From the second
equation of (2), we get

TABLE II. Summary of critical behavior for the [100]
growth case. S{x)is the long-range zinc-blende order parame-
ter as a function of concentration x. S{n) is the long-range
zinc-blende order as a function of the number of {100)planes
from the initial ordered plane.

x (xc:
x &xc:

S(x)-(x —x)~ P=-
S(n) =S(0)exp( n—/g)
g(x)-(x —x, ) ": v=1

B. Analytical study of growth in the [111]direction

We will assume that the direction of growth is such
that the sites in the first plane are exactly on top of the
sites in the zeroth plane. If the direction of the growth is
reversed, it is equivalent to having fc and gc as the initial
condition, as defined below, instead of pc and qc. The
steady state is the same regardless of the direction of the
growth.

We will call the fractions of Ga and As in the even-
numbered planes p and q. Those in the odd-numbered
planes will be called f and g. The recursion relations can
be derived in a way similar to the case of the [100] direc-
tion. The results are given below, with r =1—p —q and
h=1 f—g:—

1 —t 1 —tf=l+t'+ 2
"

1 —t 1 —tg= P+ l'
1+t 2

p'= (f +3f h+3gh )+— h1+t 2

q'= (f +3f h +3fh )+ h1+t 2

(12)

It was not possible for us to find the steady state algebrai-
cally. But numerical iterations indicated that the only
steady state for all values of nonzero t is the one with

f=g and p =q, but f+p. This steady state is one with
no long-range zinc-blende order between the Ga and As
atoms, and the structure of even-numbered planes and
odd-numbered planes is different. For t&0, the
minimum value x we can obtain is 0.375. As t increases
from 0+ to 1, af decreases from 0.5 to 0, and pf increases
from 0.125 to about 0.158 and then decreases to 0. The
fact that x ~0.375 is not attainable is in qualitative agree-
rnent with the results of the computer simulation.

with a (x, ) = 1 and ( da /dx )(x, )=—2.06.
Substituting (11) into (10), we get

g(x)=0.485(x —x, )

Therefore, the correlation length g is given by a simple
pole singularity at the critical point; i.e., the critical ex-
ponent is 1. The critical behavior of the (100) growth is
summarized in Table II. The results of the algebraic ap-
proximation are mean free values since no fluctuations are
present.
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V. DISCUSSION AND CONCLUSIONS

%'e have shown through our model that the nonunique-
ness of x, for a metastable alloy of the form
(GaAs)~ „(Ge2)„can be explained in terms of varying
morphologies of kinetic growth. Although the critical
composition x, in a spherical growth was not determined
precisely, an upper bound is set. The value is smaller than
that of a planar growth in the [100]direction.

We investigated the behavior of the long-range order
parameter S as a function of x for a planar growth in the
[100] direction. The critical composition x, obtained in
this way is in reasonable agreement with the experimental
results.

Explanations of the transition from zinc-blende to dia-
mond structure have been presented previously. ' '
However, they do not account for the nonuniqueness of
the critical composition x, . References 2 and 3 based
their discussions on a thermodynamic transition. For the
metastable alloys discussed here a kinetic model as ex-
panded here is more appropriate. Reference 15 identified
the zinc-blende to diamond transition with the percolation
transition of infinite chains of Ga—As —Ga—As. . . bonds.
This predicts a unique value of x, =0.57, in disagreement
with the experimental results. Percolation theory does not
account for different growth conditions.

The model employed in Ref. 4 also assumed perfect
short-range order, but differs from the one employed here
by not allowing variations due to growth morphology and
by requiring the Ga and As atoms always to form Ga—As
bonds. Thus, the possibility of a Ga or an As completely
surrounded by Ge is not allowed for in this model. The
model predicts similar percolation properties to those of

Ref. 15 and, in particular, the zinc-blende to diamond
transition was predicted around x, =0.75 without any
dependence on the method of growth. Thus, this model
shows the same inadequacies as that of Ref. 15.

It is useful to emphasize the distinction between our
model and the percolation theories. In our model the
sample grows layer by layer, and the restrictions imposed
by the short-range-order conditions depend on the orienta-
tion of the layers. In the percolation theories, the sample

, is built up throughout its volume and no possible varia-
tion with growth morphology is allowed for.

We point out that the planar growth in the [100] direc-
tion has the character of a cellular automata problem.
The algorithm of growth x &x, produces an ordered state
regardless of the initial state. The introduction of a prob-
ability in the problem is not new, and has been used be-
fore. '

Finally, algebraic approximations were used to show
the features of the planar growth cases. They show the
general behavior of the computer simulations. The nu-
merical agreement is only approximate, which is expected
because of the neglect of the correlation among sites
within the plane. The counting of the actual number of
pairs shows that there is a correlation among them. The
critical behavior is calculated and the values of critical in-
dices are the mean-field values. This is not surprising, be-
cause our algebraic equation makes no allowance for fluc-
tuation.
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