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Resonant neutralization of ions scattered from surfaces
in the intermediate-velocity regime

R. Kawai
Department ofPhysics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan

(Received 7 November 1984)

We report on a theoretical investigation of the resonant neutralization of ions scattered from solid
surfaces in the intermediate-velocity regime (a few tens of keV per nuc1eon). We also propose a gen-
eral formula for the resonant neutralization probability of ions which asymptotically conforms with
the fixed-ion approximation at low velocity and with the first perturbation theory at high velocity.

I. INTRODUCTION

Theoretical studies of the charge-exchange scattering of
an atom or an ion at a solid surface have been going on
for a long time. In early investigations, of which
Hagstrum's work' is the most typical, the ion-surface en-
counter is treated as a quasistatic process and a neutrali-
zati. on rate is calculated on the basis of the so-called
fixed-ion approximation. ' However, there are some
problems. The fixed-ion approximation is not appropriate
for the calculation of the electron-transfer probability in-
volving levels above the Fermi level, for example, ioniza-
tion of the sputtered atoms, or excited-states formation
of the atoms leaving from the solid surface. Because
these are essentially nonadiabatic phenomena, the elec-
tronic system experiences explicitly time-dependent per-
turlbation as a result of the classical motion of the projec-
tile. More precisely, a quantum phase evolution plays an
important role, which has been addressed by Trubnikov
and Yavlinskii. Recently, several authors have calcu-
lated resonant neutralization probabilities of the low-
energy ions as a nonadiabatic process. Their interests,
however, are restricted to the very low-energy case.

On the other hand, electron capture occurs from a core
level of target atoms in the high-velocity regime, where
first perturbation theory may be employed and the in-
cident particle has an equilibrium charge state in the
bul. k. ' Therefore we can compare a charge-exchange
cross section to gas-phase results and also we may calcu-
late it by means of the binary encounter model.

In the intermediate-velocity regime ( u =uz, where u is
the velocity of the incident ion and Uz is the Bohr veloci-
ty), as the ion moves at velocities comparable to electron
velocities, in the solid, the adiabatic picture breaks down
and quantum-mechanical energy uncertainty becomes im-
portant as a result of finite interaction time. However,
the ion captures electrons from the conduction or valence
bands as is the case with the slow ion, in which case the
binary encounter model is not appropriate. Therefore we
can use neither the fixed-ion approximation nor first per-
turbation theory, which complicates calculation of the
neutral fraction in such a velocity regime. But this veloci-
ty regime has become increasingly important in ion-beam
crystallography. " Recently, excellent experimental stud-
ies have been carried out by Haight et al. ' Their results

show that He ions capture electrons from the valence
band of Si at the surface by means of the resonant tunnel-
ing process. But there have been no theoretical studies in
this regime yet.

It is the purpose of the present paper to calculate the
resonant neutralization probabilities of the ions which
cross the solid surface from bulk to vacuum with inter-
mediate velocity and to discuss some dynamical effects
which cannot be found in Hagstrum's formula. And then
we will propose a general formula of the resonant neutral-
ization at the solid surface which asymptotically con-
forms with the fixed ion approximation in the low-
velocity limit and with first perturbation theory in the
high-velocity limit.

The formalism is developed in Sec. II, where a general
formula is proposed, and is compared with the fixed ion
model and with first perturbation theory. In Sec. III,
dynamic effects are discussed in detail using a very simple
model.

II. FORMALISM

The model used here is the same as that of Brako and
Newns. The moving atom is assumed to have a valence
state or a certain excited state 4, of energy e, which lies
near the Fermi level e~ and interacts with the states O'I, of
energy ek in a conduction band or a valence band. The
nuclear motion is treated classically and separated from
any electronic processes, so a Hamiltonian of the electron
system becomes time-dependent parametrically through
the trajectory of the ion. Therefore, we employ the time-
dependent Anderson-Newns Hamiltonian, '

H=a, c,c, +g ekckck+g [Vk(t)c, ck+ Vk(t)ckc, ]j, (1)

where c, and ck are electron creation operators for states
4', and %'k. The energy e, is generally dependent on the
position of the moving ion but I neglect it for simplicity.
If the ion moves linearly with a velocity u, the wave func-
tion 4, (r, t) in the laboratory system of coordinate is
equal to
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4, (r, t)

=@,(r —vt)exp ——cot exp (—m v r . T—mu t)l l

i fib, (t)=g Vk (t)exp — —(ek —e, )(t —to) bk(t),
k

l
iAbk(r) = Vk(r)exp (E'k —E" )(r —ro ) 5 (r)

(4)

where eo is the energy of the state 4, (r) freezed at surface
where electrons experience not only an ion-core potential
but also an image potential and a surface dipole barrier.
It is very difficult to determine eo for each kind of in-
cident particles. So, eo is an unknown parameter in this
paper. But the energy level e, in the'laboratory system
should be written as

where we have defined

b„(t)=c (t)exp e„(—t —to) (v=a, k),

and time to refers to the system before the ion came into
interaction with the solid surface. Equation (5) is solved
to give

6a =60+ 2 P1V (3) b„(t)= —— Vk(r')exp (e„—e, )(t—' t, ) —b. (t')dt'

Consequently, both the transition matrix Vt, and the ener-

gy level e, depend on the velocity of the ion, an idea in-
troduced by Trubnikov and Yavlinskii.

Using this Hamiltonian, the Heisenberg equations of
motion become

+4(ro) .

And then, substituting Eq. (7) into Eq. (4), we can obtain

i', (t}=——f g Vk(t)Vk(t')exp ——(ek —e, )(t t') b, (t')dt'—+g Vl, (t)exp ——(ek —e, ){t—tp) bk(to) .
k /c

It is difficult to solve Eq. (8), so we must employ an approximation at this stage. Brako and Newns solved it approxi-
mately in the case where the energy band is infinitely wide, but their final results were restricted to the low-energy case.
Therefore, we employ another approximation applicable to the higher-energy case and to the narrow-band case. To solve
this integrodifferential equation (8) approximately, we expand the operator b, (t ) around the time r, which leads to

ti', (t)=g Vk(t)exp ——(Ek —6 )(r —tp) bg(to) ——J g Vk(t)Vk(t')exp — (ek —e )—(t t') dt'b —(t)

t
(r' t) g Vk(t—)Vk(t')exp — (eI, ——e )(r r') dt'b (i)+ . —

~o
a a

If the ion moves so fast that the condition,

(t' t) g Vk(r)Vk(—t')exp ——(ek —e, ){t r') dt' —«1,

is valid, we can neglect the expanded terms except the zeroth-order one, which we call the local-time approximation. '3

Accordingly, Eq. (8) becomes

iAb, (t) = I (t)b, (t)+g Vk(t)exp ——(ek —e, )(t —tO} bk(to),
k

where

I (r) = ——f, g Vk(r)Vk(t')exp — (ek E, )(i —r')— — (12)

Equation (12) is the time-dependent self-energy, whose imaginary part gives us the effective transition rate discussed

by Moyer and Orvek, and whose real part is the time-dependent valence energy. This self-energy depends not only on

events occurring at a time r, but also on the motion of the atom; in other words it approximately refiects a quantum

phase evolution which brings about quantum-mechanical energy uncertainty as a result of the finite interaction time.
Equation (11)may be solved to give
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l t t
b, (t)= —— g Vk(t')exp ——(ek —e, )(t' —to) exp ——f I (r)dr dt'bk(to)+exp ——f I (r)dr b, (t 0) .

fi 'o t A 'o

(13)

And then we obtain the occupation numbers of the state +, as follows:

=2 t '2
n, (t) = Re dt2 g nk(ro) Vk(t2) Vk(t, )exp — (e—k —e, )(t& t2) —exp ——f I (r)dr

'o o
a

X exp —f ImI (r)dr dt, +n, (to)exp —f ImI (r)dr
'2 o 'c

With the local-time approximation, the second exponen-
tial function of integrand in Eq. (14) should be taken as

unity. Accordingly, Eq. (14) becomes

n, (t) =n, (to)exp — P(r)dr
to

+ f, Q (t')exp —f P (r)dr dt', (15)

where

P(t) = —ImI (t—), and Q(t) = ——ImI"(t), (16)2 2

and I"'(t) is defined by

I"(t)= ——f y nk(tO) Vk(t) VI, (t')
fi to

&& exp — (ek —e, )(—t t') dt' . (—17)

Looking at the first term of Eq. (15), which gives the sur-

vival probability of the initial state before the atom came
into the interaction with the solid surface, we may con-
clude that Q(t) corresponds to the hopping rate from
solid to atom, and that P (t) —Q (t) may be regarded as the

hopping rate from atom to solid. Indeed, Eq. (15) satisfies
the following rate equation'

fluctuations, therefore they are meaningful only when
they are integrated over the time t. Then why are P(t)
and Q(t) unlike? It is because an electron can hop above
the Fermi level, getting energy from the atomic motion,
which is not possible in Hagstrum's formulation. In other
words, it is possible for the atom to pick up an electron
even though e, is above e~, and also to put it off into an
empty state in the conduction band even if e, is below eF.
Letting t~ co, we obtain a neutral fraction from Eq. (15).
Here we assume that the ion comes from the bulk to the
surface, begins to interact with a surface atom at a time to
and leaves from the surface after the collision. Then we
need the occupation numbers in the bulk as an initial con-
dition. In the high-velocity regime, the initial state n, (to)
may be zero because the electron-loss cross section is very
large. On the other hand, the time integral of P(t) is very
large in the low-velocity regime because the atom interacts
with the surface for a long time. Accordingly, the first
term vanishes in both cases. But in the intermediate velo-
city regime, the initial-state occupation n, (to) is an un-
known factor. Recent experimental data' shows that He
ions are neutralized at the surface by means of resonant
tunneling process and retain no memory within the solid.
So, the first term of Eq. (15) will be hereafter neglected.
Consequently, the neutralization probability becomes as
follows

ri, (t) =Q(t)[l —n, (t)]—[P(t)—Q(t)]n, (t) . (18) n, = f Q (t')exp —f P (r)dr dt' . (19)

A similar but semiclassical rate equation is adopted in the
low-velocity regime. ' But both P(t) and Q(t) have os-
cillatory behavior as a result of the quantum mechanical

l

In the high-velocity case, P(t) may be very small.
Therefore, the exponential function may be taken unity.
Equation (19) becomes

n (t) =f Q (r)dr

l= —Re dt& dt, g nk(to) Vk(ti ) Vk(t2)exp — (ek —e, )(t, —t, )—
'o 'o

k
(2O)

which coincides exactly with the result of the first-order
perturbation theory.

If the ion moves very slowly and eF lies much higher
than e~, the two transition rates P(t) and Q(t) are nearly
equal, so Eq. (19) is approximately written as

+ 00

n, ( oo ) = 1 —exp — P (r)dr (21)

which is the same results of the fixed ion approximation.
But if e, lies near eF, the fixed-ion approximation will not
be valid, because Q(t) is much different from P(t) even
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though the ion moves very slowly. In this way, we can
show that Eq. (15) or Eq. (19) is valid over a wide range
of ion velocities.

III. MODEL CALCULATION AND DISCUSSION

Vg(t)= Vj, u(t) . (22)

The function u (t) gives us the time-variation of the in-
teraction. And the linear Doppler shift, which was intro-
duced by van Wunnik et al. ,

' is generally included in the
transition matrix Vt, . Then Eqs. (16) become

In this section we simplify Eq. (19) using a crude
model. First we assume that the time variation of Vz(t)
does not depend on wave number k, so that V~(t) can be
written as6

f(e, T)= 1

1+exp[(e —p/k~ T)]
(25)

where pe(e) is the projected density of states defined as

(27)

is the Fermi-Dirac function.
In the alkali-metal case we can employ the free-

electron-gas model to calculate the matrix elements, but in
the transition-metal or the covalent-solid cases electron
capture depends on the detailed electron-density distribu-
tion because electron capture will occur closer to the sur-
face atom at high velocity. ' In this case the electronic
states W~ should be projected to a certain atomic orbital
+~ such as a d electronic state and so Eq. (24) is rewritten
as follows

&(e)=—
~

V,
~

'p&(e), (26)

P(t) =—f deb, (e) f u (t)u (t')cos[(e e)(t—t')/&]«—',
fo

(23)

Q(t)= —f deb, (e)f(e, T)
2

&& f u (t)u (t')cos[(e e~ )(t—t')/fi]dt', —

where

in which we are taking account of both the band structure
and the local electronic structure. Using this approxima-
tion, we can employ the binary-collision picture including
the band structure of the solid.

Roughly speaking, the results are characterized by an
interaction time [a width of u (t) in time] and insensitive
to the detailed time variation of u (t) because the time in-
tegrals in Eqs. (23) give us a width of the quantum
mechanical energy uncertainty and nothing more. There-
fore we choose

~(e)=—g I Vt I'&(&—&t )
fi

(24)
u(t)=exp( —y ~

t
~

) (y=U/a), (28)

is the usual transition probability or the hfe-time broaden-
ing, but in our case it generally depends upon the ion velo-

city through the electron translational factor. ' ' And

where a is an interaction length. Equation (28) is not only
«asonable physically but convenient for integration.
ing this time variation, Eqs. (23) become

P(t)=2 f a(e)g(e)dee rl I+4 f &(e)g(e)[cos[(e—e, )t/p] —e r)'l]dee ri& 1(t

Q(t)=2 f ~«)g(e)f(e, T)«e 'r''+4 f b(e)g(e)f(e, T) icos[(e—e, )t/g] —e rl&i )dee
—rial~(t)—

(29)

where 6(t) is the step function, and

g(e)=—1 4'y

~ (e—e. )'+(&y)'

gives us a width of the energy uncertainty. To compare
the present result with the fixed-ion model, we will
neglect the second term of Eq. (29) which has oscillatory
behavior as a result of the quantum-mechanical phase
evolution. However we must give notice that this simpli-
fication will not change the qualitative feature, but the os-
cillation is numerically not so small in the high-energy
case. Consequently, we obtain very simple expressions
for the transition rates which can be compared with the
results of the fixed-ion approximation as follows:

P(t)=Ae &rl& I A 2 f b, (e)g(e)de,
(31)

Q(t)=A'e "i'i, A'=2 f b(e)g(e)f(e, T)de,

and Eq. (19) becomes

n, (oo)= 1 —exp

We now further assume that the density of states in the
solid is independent of energy within the finite-band
width, which leads to

A =26, f g(e)de, A'=26 f g(e)f(e, T)de, (33)

where e, and e~ are the top and the bottom of the conduc-
tion or valence bands, respectively.

In the following we consider some limiting cases at
T =0.

(i) If the ion velocity is so slow that
~
eF —e,

~
&&Ay,

the energy uncertainty function can be regarded as a delta
function. In this case we obtain the usual result of the
fixed ion model (Hagstrum's formula):
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FIG. 1. Neutralization probabilities: solid line, Eq. (29);
0

dashed line, Eq. (31), for 60—6'b =5 eV, t F —eb ——10 eV, +=2 A,
and 6=10 eV.

FIG. 3. Neutralization probabilities for eF —eb ——10 eV,
b =10 eV, a=2 A, and eo —eb ——(a) 5 eV, (b) 7 eV, (e) 9 eV, (d)
11 eV.

n, ( oo ) = 1 —exp[ —2b. /y ]; (34)

but even though the ion velocity is very slow, we cannot
employ this approximation in the

~
eF e,

~

=A—y case, in
which case we should use the next approximation.

(ii) If 2 /y && 1 and
~
e —Eb

~
)&Ay, we obtain the very

simple result

6F
n, ( oo ) = g(co)de, (35)

n, ( oo ) =—
t tan '[(EF—6 )/&y] —tan '[(&y —& )/&y] I,

(36)

which is the same as the empirical formula proposed by
Haight et al. '

(iii) At high velocity, Eq. (33) becomes

which is generally applicable in the very slow case, and
also in the intermediate-velocity regime according to cir-
cumstances. Indeed, substituting Eq. (30) to Eq. (35), we

get

In Figs. 1—3, the calculated curves using Eqs. (32) and
(33) are shown where we assume that b, (e) is independent
of the ion velocity (consequently, the linear Doppler shift
is omitted) and that the bandwidth is infinite like an
electron-gas model. In Fig. 1 the solid curve shows the
present result for the neutralization probability [Eq. (32)]
and the dashed curve shows the fixed-ion model [Eq.
(34)]. The probabilities decreases rapidly with increasing
ion velocity because the energy level t., is shifted up far
above the Fermi energy by the electron translation factor.
And another important parameter is the interaction time
or length in the intermediate-velocity regime as we can see
in Fig. 2. Finally, Fig. 3 shows the neutralization proba-
bilities for the various energy levels ep. If- the energy level
E'p is above the Fermi energy, the calculated curve has a
maximum in the dependence of the ion velocity. An ap-
plication of the present result to the negative hydrogen
formation is shown in Ref. 17. We will report on detailed
numerical 'analyses of Eq. (19) for various situations in fu-
ture.

n, (oo)=A'/y .

1.0

00
v ( 10s cm/sec)

(37)
IV. CONCLUDING REMARKS

In this paper, we have calculated the probability for
resonant neutralization of an ion at surfaces in the
intermediate-velocity regime. The result obtained con-
forms asymptotically with the result of the fixed-ion
model at low velocity and with the result of first-order
perturbation theory at the high velocity. In the
intermediate-velocity regime, energy uncertainty plays an
important role in consequence of the finite time of the in-
teraction which cannot be seen in the fixed-ion approxi-
mation. This energy uncertainty makes it possible for an
ion to pick up an electron inelastically; in other words the
electron hops up above the Fermi level getting some ener-

gy from the kinetic energy of the energetic ion.
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