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New kind of noise in photoconductors
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Transient behavior of the photocurrent near the equilibrium point is examined by considering the
stability criteria of Liapunov. It is found that in the presence of recombination centers the system is
asymptotically stable. This suggests that as the photocurrent reduces below some critical value (in
the decay curve), its trajectory becomes uncertain. Hence, a new type of noise is created, caused by
the behavior of the electrons near the critical point of the set of simultaneous nonlinear differential

equations.

It is well known!? that the forms of the relaxation

curves observed in photoconductivity studies have not
been fully explained. The basic mechanism of the time-
dependent photocurrent is understood.> However, this in-
volves many parameters of the charge carriers and traps,
such as density of traps and their distribution in energy,
capture cross sections for electrons and for holes with cor-
responding temperature dependence, probability of emis-
sion of electrons from traps to the conduction band, densi-
ty of the recombination centers with their efficiencies, and
so on. Unfortunately, it is not easy to estimate these pa-
rameters experimentally and therefore to predict the pre-
cise form of the decay curves.

In addition to the above-mentioned aspects, the com-
plexity is enhanced enormously due to the presence of
several simultaneous and competitive processes that final-
ly turn into a set of simultaneous nonlinear differential
equations.*> To obtain a solution for such a system is
rather difficult, and hence alternative computer-aided
techniques such as Monte Carlo® and numerical integra-
tion’ have been developed. Even though these methods
supply adequate information for specific problems, they
rarely succeed in providing global and meaningful infor-
mation for understanding transient behavior in general.

To extract the maximum possible information from the
model proposed earlier requires a solution of a set of non-
linear differential equations. Such a solution has been ob-
tained® only in a series form for a decay curve. Its success
is limited because it does not give any information about
behavior near the mathematical equilibrium points. Since
the solution of the system of differential equations is not
available in a closed form, some partial aspects of the
solution can be examined by following Liapunov’s direct
method®® 10 near the mathematical equilibrium points.
This will throw light on the stability behavior of the sys-
tem and the trajectory of the excess of charge carriers
(electrons in n-type semiconductors) near the mathemati-
cal equilibrium point. No similar study has been reported
in this system so far. The purpose of the present investi-
gation is, therefore, to exploit this approach and obtain
additional information about the trajectory of the photo-
current in the time domain near the mathematical equili-
brium point (near maximum photocurrent in the rise
curve and minimum in the decay curve).

BACKGROUND

Fundamental mechanisms of the generation and annihi-
lation of the photoexcited charge carriers are well under-
stood* and, hence, the basic theory for time-dependent
photoconductivity is known with reasonable accuracy.

In the presence of traps and recombination centers,
non-steady-state equations governing the photocurrent for
electrons and holes can be written as*

%:G—aln(N,—ncH—rlnc—cln , (1a)
dn,

T =an(N,—n,)—8yn.p—rin, , (1b)
d

d—1:=G—50ncP—"2P , (1¢)

where ¢, and ¢, are the capture cross sections of recom-
bination centers for electrons and holes, and n and p are
the number of excess electrons and holes in the conduc-
tion and valence band, respectively. A number of occu-
pied traps is n, and N, is the total number of traps. «;
and 8, are the rates at which electrons from the conduc-
tion band and holes from the valence band are captured.
When G, the generation rate of electrons and holes pro-
duced by an incident photon flux is zero, this system of
equations represents the dynamical behavior of the elec-
trons in a decay curve.

If one assumes that the major contribution in the decay
process comes from Eq. (la), and the role of traps and
recombination centers is not predominant, then the solu-
tion is given by

R=npae 7, ()

where

T‘_‘[al(Nt—ncmax)]_l .

The time-dependent photocurrent is given by the classical
decay curve

In()=n(tlepr=pn,neTe T =Tpe T, (3)
where p is the mobility of the majority charge carriers
and I, is the steady-state photoconductivity defined as
I’anaxeT'
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It is clear from the above discussion that the classical
decay curve (3) is a solution of only a single differential
equation of the set of simultaneous equations and, hence,
in no case can it represent the trajectory of the photo-
current near the mathematical equilibrium point. Such a
study needs to be understood with the help of a stability
consideration, along with the phase-plane analysis of the
system.

The system of equations (1a) to (lc) is evidently a non-
linear differential equation. Stable points of the system
can. be obtained by considering dn /dt, dn_/dt, and dp /dt,
each equal to zero. It is clear that for the present system
there exists only one critical point, and that is
n=n,=p=0. Therefore, the stability should be exam-
ined by Liapunov’s direct method.?

MATHEMATICAL ANALYSIS AND DISCUSSION

Eigenvalues of the matrix corresponding to the linear
part of the present system of differential equations can be
obtained®® by linearizing about the equilibrium point,
which can be obtained by simply neglecting the quadratic
and product terms like nn., n.p, etc.,

n n
n, |=M |n. |, 4
p p

where

—ath-—Cl ry 0
LZ]N, —r 0
0 0 —Cy

The eigenvalues A of M are given by
|M—AL| =0, My=—c,,
A== —(a\N,+c +7)
- —l@Ny+ey+r)—4re1'?,
A=73{ —(aN;+ei+rp)
+[(@ N+ +r)2—4ric; 1'% .

All three roots are real and negative and, therefore, the
present system is asymptotically stable.

According to the theorem on stability,!” an asymptotic
nature is valid even after including the nonlinear terms.
Physically, this means that when an excess of electrons or
holes falls to some critical value near equilibrium, the
solution goes to the equilibrium point in an undetermined
trajectory. This suggests that the long time limit ap-
proach to the equilibrium part of the relaxation curve is
not reproducible, even though all the experimental param-
eters are kept constant.

On the basis of Liapunov’s stability consideration, it is
not possible to estimate the threshold value of the elec-
trons (or holes) at which such behavior is predominant.

However, it is possible to estimate roughly how the trajec-

tory would look near the mathematical equilibrium point

in terms of relative values of the parameters of the traps
and recombination centers. .

Behavior of the excess of electrons near the mathemati-
cal equilibrium point can be understood by examining the
phase-plane analysis of the system.>!® In fact, a real situ-
ation demands a phase diagram in three dimensions.
However, analyses of these diagrams are not mathemati-
cally developed to the extent required for a complicated
system such as this. We, therefore, consider a phase dia-
gram for n and n.. This is a realistic approach since the
photocurrent in n-type semiconductors reflects the
behavior of excess electrons and traps that are closely re-
lated to the conduction band.

Equations (1a) and (1b) for phase-plane analysis can be
written as

dn —n[cl+al(Nt*nc)]+rlnc

dn, —  nlasN—nl—rime ©)

The major interest in the present work is the analysis of
the independence of n and n. near the critical point
(n=n,=0). First, let us suppose that n, is sufficiently
small so that

rin, <<nlc;+a;(N,—n.)] .
In this region, the equation then becomes

dn ~ 1+A4WN,—n.)

dn,  AN,—n,)

) (6)

where 4 =a,/c,. The solution of the equation is
n=(N,—n.)+A In(N,—n,) . 7

The value of the constant of integration is not evaluated
since the value of n corresponding to the value of n, is
not known at any point in the phase diagram. Moreover,
the constant of integration just shifts the trajectory in
phase space and does not modify any argument in the dis-
cussion. Since N, is a constant, n, increases as n reduces.
This behavior can be understood with the help of Fig. 1.
The conclusion obtained is against normal expectation,
namely, that the number of electrons in the traps and in
the conduction band should both be reduced as time ad-
vances. This apparent paradox can be explained easily.
As n., the number of occupied traps, is reduced, the prob-
ability of occupation of electrons from the conduction
band increases. As expected, the form of the curve of the
phase diagram depends on the ratio of ¢, /r;.

After a certain time, the value of »n decreases and n, in-
creases so that

rine>na (N, —n.) .

The equation controlling the trajectory in the phase plane
then becomes
dn n

_—_B— _
dn, ne L, ®

where B is the numerical quantity ¢, /r;. The solution of
this equation is given by
_nl+n,

= K,
S HK, o)
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ELECTRONS IN THE CONDUCTION BAND

Ng ————>
OCUPIED TRAPS

FIG. 1. Phase-plane diagram for free electrons and occupied
traps. Parts P;, P,, and P; are simulated with the help of Eq.
(11) for B =0.1, 0.25, and 0.5, respectively. The values of An
and n.o are chosen arbitrarily.

where K is a constant of integration. The value of K is
calculated from the initial condition of the process and
found to be

K =An— (o +nc0) , (10)

1
B—1
where n.( is the number of occupied traps for which Eq.
(9) is valid and An is the number of electrons in the con-
duction band at that time; we have

1
B—1

In order to simplify a visualization of the variation of n
with respect to n., trajectories in phase space are simulat-
ed with the help of a computer (TRS model III) for a few
representative values of B (B < 1) and are shown in Fig. 1.

It is clear from this figure that as time advances, the
number of electrons in the conduction band again in-
creases and the number of occupied traps decreases. This
can be repeated several times, depending upon the relative
values of ¢, and r; as compared to the value a;(N, —n,).
It is worth pointing out that the system approaches the
critical value (n=n,=0) since it is an asymptotically
stable system.

This process causes a type of noise in photoconductive
and photovoltaic cells, whose physical origin is the conse-
quence of the asymptotical stability of the nonlinear set of
differential equations involved in the process. It is dif-
ferent from all kinds of noise mentioned earlier in photo-

n=An+ [(rE+n.)—(nZ +neo)] . (11)
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detectors, at a very low injection level.!! Moreover, the
transference of electrons from the conduction band to the
traps, and vice versa, suggests that long time is needed to
reach an equilibrium value.

A slow component observed in the relaxation curves is
considered as a photomemory effect or persistent photo-
conductivity (PPC). Experimental detection of PPC is ac-
tually quite old and several aspects of it have already been
summarized.!? Because of its technological importance in
radiation detection and its appearance in two-dimensional
electron gas,!? interest has been renewed.!*

On the basis of complex empirical evidence, three major
types of models have been proposed to explain persistent
photoconductivity. All of the models essentially consider
the existence of a potential barrier which separates elec-
trons from holes either in real space or in momentum
space. This ultimately reduces the velocity of the recom-
bination, or in terms of the parameters ¢, and c¢, dis-
cussed above, results in both having a very small value.

It is worth pointing out that exactly the same con-
clusion has been obtained with the help of the present
mathematical approach. When ¢, /r; <1 the electrons are
injected into the conduction band (see Fig. 1) and PPC is
expected. Careful observation!® shows that in most of the
cases, PPC drives the system to the saturation value of the
photocurrent and always possesses fluctuations, which are
difficult to avoid. All these aspects can be summarized
merely by stating that the system is asymptotically stable.

It is true that in Volterra’s nonlinear equations, some
fluctuations or noise also appear at the stable value, ori-
ginating from the simultaneous nature of the nonlinear

photocurrent ——»

Time —

FIG. 2. One form of the relaxation curve in a photoconduc-
tor. Fluctuations about the equilibrium value may be a conse-
quence of Volterra’s equation.
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Photocurrenf——————-;

Time——————>
FIG. 3. A typical form of the relaxation curve expected from

the present theory. Fluctuations start before reaching the equili-
brium value.

15 The origin of the noise mentioned in the

equations.
11

present case is different from that obtained in Volterra’s
system. Firstly, the two systems are different. Volterra’s
system can be written as'®

dN;

n
— =KiN, +B7' 3 a;NiN; ' (12)
j=1

while there is an additional term, namely, 2}’=1ch i» in
the present system. Moreover, Volterra’s equation sug-
gests that there exist fluctuations at the equilibrium value,
whereas the present analysis shows that these fluctuations,
caused by the different trajectories (originating from the
same point in phase space), appear near the equilibrium
value. The difference between both types could be ex-
plained with the help of Figs. 2 and 3. Further study is
needed to improve an understanding of the treatment of
the equilibrium noise near and at the mathematical equili-
brium point.
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