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We study the coupled modes of plasmons and optical phonons' near a surface accumulation layer
on an ionic semiconductor. Using a. simple model geometry the number, dispersion, and external
electronic coupling of surface collective modes are described. Several model calculations are
presented to illustrate these properties. Various limiting cases allow comparison with earlier work.
We identify the analogs within our model of plasmarons and subband excitations. A new set of sur-
face modes is described, whose frequencies lie in the phonon range but whose existence requires spa-
tial dispersion in the plasmon response. Their observation in electron-energy-loss spectra should be
possible.

I. INTRODUCTION

In a recent paper' one of us presented a hydrodynamic
model calculation of electron-energy-loss spectra (EELS)
which agreed reasonably well with experimental data from
a doped GaAs surface. ' In this analysis the approxima-
tion of a uniform density of charge carriers was used since
band bending is not thought to be significant over the
probing depth of the electron beam. " Qne can imagine,
however, systems in which the opposite limit is more ap-
propriate, i.e., that the charge carriers are localized much
closer to the surface than the probing depth. We have in
mind particularly an electron accumulation layer on ZnO,
for which EELS data already exist.

In this paper we examine the qualitative effects of such
a confined carrier density on the existence, dispersion, and
external electronic coupling of surface collective modes
involving plasmons and optical phonons. There has been
a large amount of previous theoretical work in this gen-
eral area involving models both more and less sophisticat-
ed than the ones we shall treat. ' One of our goals in
fact is to study a tractable model in which by varying pa-
rameters different physical effects can be exhibited and
various theories compared. We shall emphasize compar-
isons with the theoretical approach of Gersten, "' which
is quite different from ours but which has been successful
in interpreting the EELS data from ZnQ.

All of the calculations contain both electrons and pho-
nons. Our focus wi11 be on the effects of changes in the
electronic properties, specifically in their distribution and
spatial dispersion. The geometry of the system is chosen
to be simply three homogeneous regions: vacuum on one
side, an ionic semiconductor on the other, and in between
a layer of width d of the same semiconductor containing a
uniform, equilibrium density of electrons, no

The response of the system will be determined from
various postulated dielectric constants and hydrodynamic
equations. The effect of the optical phonons will always
be treated via a local dielectric constant, which at frequen-
cy 67 Is
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where co~ (coz ) is the longitudinal (transverse) optical-
phonon frequency and y is a decay rate. The electrons'
response will be computed from a hydrodynamic equa-
tion:

2
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where E is the total electric field, j (5p) is the induced
electron current (charge) density, co~ is the (unscreened)
plasma frequency, p is the spatial dispersion parameter,
and 1/w is another decay rate. Combining the above con-
stitutive relations with Maxwell's equations leads to the
dispersion relations of various surface excitations. Note
that our approach takes no account of the possible size
quantization of the carriers in the middle layer. The re-
sulting theory is easy to develop and interpret, and can be
readily applied to the existing EELS data. Limiting our-
selves to this particular application, we can omit retarda-
tion effects.

When P is zero, one has a completely local theory. This
case is treated in Sec. II, where both the surface mode
dispersion relations and their external electronic coupling
are determined. The plasmarons studied by Gersten"'
are present already at this level. In Sec.' III we allow p to
be finite which makes the response spatially nonlocal.
The dispersion and coupling constants of the modes found
earlier are in general only slightly changed but a host of
new surface modes appear due to longitudinal waves
trapped in the accumulation layer. The trapped modes
that lie near plasma frequencies may be interpreted as the
analogs in our classical model of subband excitations.
There are also trapped modes near the phonon frequen-
cies, which is a new feature that we have discovered. The
influence of these modes on the EELS spectral function is
illustrated. Finally, in an appendix we discuss how the
parameters of our model may be estimated.

II. LOCAL THEORY

Neglecting retardation reduces Maxwell's electro-
aynamic equations to those of electrostatics. We may
then describe the electric field E solely in terms of a sca-
lar potential @ as E=—V4. We denote the variable
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along the interface normal x, with x =0 at the vacuurn-
layer interface and x =d at the layer-semiconductor inter-
face. In the local limit the response is fully determined by
the dielectric function

E'p= 1~ x (0
2

COp
e( co &

x ) = ' e ) =each( co ) —2, 0 &x (d
co +Eco/'r

e2=Eph(c'o), d (x
(3)

(4)

The e Q" represents the (unit) external perturbation and
the other partial waves describe the system's linear
response. The matching coefficients A, , a+, and a are to
be determined by requiring at each interface continuity of
both the parallel components of E and the normal com-
ponent of D=eE.

Consider in particular A, (Q, co), which controls the
response produced in the vacuum. For electron loss spec-
troscopy the differential scattering probability can with
the neglect of impact scattering and the use of semiclassi-
cal arguments be written as'

22 '2

P(Q, CO) = 2 Im[ —A(Q, CO)],
m fiQ Q v +(Q.V—co)

where Im denotes "imaginary part of" and the velocity
(normal component v, parallel component V} describes the
incoming external electron which will lose energy Am and
parallel momentum A'Q in scattering (nearly) specularly
from the surface. The coefficient A, diverges at the sur-
face modes, ' which in the absence of damping,
y. =0= 1/~, occur at real Q and co. The locations of these
divergences follow from the four matching equations,
which reduce to the requirement

~&+~2 ~&+~o 2&&e —2gd

E) —E2 E( —EP
(6)

With the e of (3), there are at each Q four solutions of (6)
fora) .

where the subscripts 0, 1, and 2, refer to the vacuum,
layer, and semiconductor media, respectively; E'ph is given
by (1); and co& 4m——noe . Im*, with m* the effective mass
of an electron and e its charge. Since by assumption the
media have translational invariance parallel to the inter-
face, the system's linear response preserves from any ap-
plied perturbation both Q, the two-dimensional wave vec-
tor parallel to the surface, and co, the frequency. Assum-
ing that the only induced charge resides at the interfaces,
we can write the space-time variation of 4 in the presence
of an external perturbation as a sum of partial waves, each
with the good quantum numbers Q and co

e-'+Xe&", x(O
@(x t) e&~g x—co&)~ .a eQ(x —d)+a e

—Qx

ae Q'"-", d &x.

Before presenting a numerical calculation of these roots
we examine several limiting cases where the physics is
more transparent.

A. Qd~co

B. Qd ~0
There are several ways to interpret this limit and hence

several subcases to consider. For the easiest we imagine
that d~0 at fixed Q and no This .amounts to removing
the accumulation layer completely and leaving only the
single surface mode of a vacuum-semiconductor system:
eo+e2 ——0. An alternate viewpoint that preserves four
solutions allows Q~O at fixed d. Now it is physically
appropriate to use as ways of satisfying (6), when Qd =0,
any of the following:

EP+ E2=0,

e) ——0,
eI ——~, but e2 and ep finite .

(Sa)

(Sb)

(Sc)

We have already interpreted the single solution of Eq.
(Sa), which we call co&(0). Equation (Sb) has two roots,
one associated with "bulk" plasmons and one with bulk
phonons within an isolated accumulation layer. We call
them co~(0) and co3(0). Lastly Eq. (Sc) has for our choice
of e one solution: co4(0)=0. Again our labeling scheme
yields co~ &co2&co3&co4, but now only co is in the plasmon
frequency range.

A third way to consider Qd~0 is to imagine at fixed
Q, d~O while no~oo with N=dno fixed. In this pro-
cess the accumulation layer is shrunk to a charge sheet
and (6) becomes

Mp8
eo+ep= Q,

CO

where co~d +4m.Ne Im', a constant. —This equation has
two solutions for co at each Q, one of which for small Q
has co o: V Q, the signature of the two-dimensional sur-
face plasmon. '

Now we turn to a numerical solution of (6), using the
model parameters employed by Gersten in his study of
ZnO i.e., AcoT ——50.7 meV, %col ——71.7 meV, e =4.0,

We view this case as the limit of a very thick accumula-
tion layer. Equation (6) reduces to

(e]+ep)(e$+eo) =0 .

We interpret the solution of e~+eo Oas ——the surface
modes for an isolated vacuum —accumulation-layer sys-
tem. For our choice of e there are two such modes, called
co&( co ) and co3( oo ), associated with plasmons and pho-
nons. Similarly we interpret the solution of e&+e2 ——0 as
the interface modes for an isolated accumulation-
layer —semiconductor system. Again there are two such
modes, now called co2( oo ) and co4(00 ). For our choice of
parameters, which has the plasma frequency larger than
phonon frequencies, co

& & co2 & co3 & co4, and for large Qd,
co~ and co@ have plasmon frequencies while co3 and co4 have
phonon frequencies.
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and m*/m =0.25. We show in Fig. 1(a) the surface mode
dispersion relations for one cho' f iY = '

0.
prescription for separating K into d do an no is outlined in
the Appendix. It yields for %=4&(10' /
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ing behavior discussed above helps one sort out the nature
of the branches. When a de /dg~0 1

that co.t at co;(Q) has become to;(ee). The co o: v Q behavior is
. exhibited (partially) by both branch 2 and 4, the former

above co& and the latter below ~T.
In Gersten's analysis of this same system a rather dif-

is used. The electronic motion in the x
direction is considered in the extreme quantum limit and
essentially frozen out. Instead of d

' f
, at x w

o a riving orce due to E
e average over thex, w at appears in his equations is the

ground-state electronic wave function of the parallel com-
ponents Of E. Since the electrons are not all d
out of this

a owe to come
is ground state for motion normal to th 1 h
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o e ayer, e

s o our mode thissubband excitations. In terms of d
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means that branch 1, the nearly pure, bulk plasmon of the
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er mo es appear quite similar
o is, although it is worth remarking that our modes 3

y e ow coT, while his lowest two modes do
rise to d'or for large Q.

find the analo
To make further comparisons with Gwi ersten we need to

in e analog of the coupling constants that he plots. '
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ei'e Q — 0—ere ag,. a&,. ) is a creation (annihilation) operator of the
collective surface mode labeled b d

'
e y an i and the I &,.

are coupling constants to external electrons Alth h
q. ( ) may be derived by standard methods from our

eigenmodes and equations of moti th 1
'

on, e resu ting expres-
sions are not very revealing so we present here only a nu-
merical evaluation of the I g ..Q, s

This is accomplished by comparing two alternate ex-
pressions for the differential scattering probability of (5).
First note that in the absence of damping (5) becomes

2
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where the R —. are easily calculated once we locate the
poles o A, on the real axis. A result form 11orma y equiva ent

may be found by using an external electron on a
specular scattering trajectory to drive the Boson Hamil-
tonian (10) into excited states ' Th'es. is yie s

(2m') fi Q v2+(Q V—ai)2

O
O
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FIG. 1. Surface-wa-wave dispersion and external cou lin f '-up ing coe fi-
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where A is the quantization area of the surface. Com ar-
ing (11) and (12) reveals that

~
~

I g, I'=2Rg, . /Q

and we show in Fi .g. 1(b) our numerical results for the A
independent quantities plotted b Ginde
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III. NONLGCAL THEORY
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external cou lin
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a coup mg oi surface modes, but now with P finite
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in Eq. (2). Note that this procedure places spatial disper-
sion into only the electronic response in the accumulation
layer. Most of the modes we shall find would be unstable
due to nonradiative decay into the semiconductor sub-
strate if we were to include a low density of electrons with
spatial dispersion there. This constraint has been noted by
Crowne and avoided by Das Sarma et QI. , ' 4 who. :con-
sider the surface to have a depressed electron density com-
pared to that in the bulk (i.e., a surface depletion layer
rather than accumulation layer). Most other' theories of
surface modes associated with surface layers of electrons
have either allowed no electrons in the substrate, which
we as well as Refs. 5—8, 11, 12, and 16—20 do; or have al-
lowed no spatial dispersion there, as in Refs. 2S—27.

When p is finite in the accumulation layer we must in-
clude in the partial wave expansion of N waves that are
nonzero throughout 0&x &d under the operation V .
This changes the middle line of Eq. (4) to

%(s)
(rneV)

65—
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75—
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' iuuuuuuuuuzrbFFFZr7.
n=4

70- n=3

n=2

(y(~x r) ei(Q x tot)[—~ eg(x —d)+~ e
—gx 0 2

Q &i04 cm-~)

+a, sin(ptx ) +a, cos(plx )],
0&x &d (14)

where (with l for "longitudinal" )

pt —— Q+—(co +i tolr pro/ep—h)/P (15)

and pi is chosen to lie in the first quadrant of the complex
plane. The two extra matching coefficients in (14) may be
determined by imposing the additional boundary condi-
tions (ABC), that the normal component of the electron
current vanishes at x=0 and d. This is a common, but
not unique, choice. It forbids any induced charge on the
interfaces. An alternate ABC choice that we have advo-
cated" ' ' produces in the present simple configuration
no change from the p=0 results. The two matching
equations from the ABC are to be combined with the four
previous conditions for continuity at each interface of
parallel E and normal 0, where now in the layer

D=ephE+4m j /( ito) . — (16)

As in Sec. II we initially set the damping rates to zero and
numerically'locate the poles (and residues) of )(,(Q, to) for
real Q and ro.

Our results 'for the same parameter choices (except
P&0) as in Figs. 1(a) and 1(b) are shown in Figs. 1(c) and
1(d). The prescription for p is given in the Appendix; its
value is fixed once m* and no are specified. The effect of
finite p on the modes already present in Fig. 1(a) is not
great. As Q ~ oo, co3 and to4 now tend to coL while to( and
to2 tend to infinity (as to-pQ). These. changes bring the
mode dispersions into good qualitative agreement with
Gersten's results. '

However, the most striking change in the surface mode
spectrum is not really apparent in Fig. 1(c). The system
develops an infinity of bound modes both for co& & co & op

[off the scale in Fig. 1(c)] and for co3&to&rol [in the
shaded region of Fig. 1(c)]. The first few of the latter set
of modes are shown in the expanded Fig. 2. Such a spec-
trurn does not occur in Gersten's model.

The physical origin of these additional bands of surface

FIG. 2. Surface-wave dispersion for P+0. The same param-
eters are used as in Fig. 1(c) but both the to and Q scales have.
been expanded so the first four of the standing-wave modes can
be seen. The vacuum light line is shown by the dotted line. Re-
tardation effects, which have been neglected here, become im-
portant near it.

modes is the possibility of trapped longitudinal waves in
the accumulation layer. They occur in regions where
p~ & 0 and are well described by the condition

pid =nm, n =1,2, . . . ,

which allows us to label them as successive standing
waves. For frequencies above ~& they may also be simply
interpreted as plasmons of ever-decreasing wavelength.
However, between coT and su~ their interpretation is more
subtle since the spatial dispersion responsible for the
standing wave is an electronic effect while the mode fre-
quency is that of phonons. Hence one might say that the
electronic contribution comes from a virtual polarization
of the plasmon fields, to which the phonons respond with
negative screening (e&h&0). The point we emphasize is
that these additional modes in the phonon range have a
one-to-one correspondence with the discrete electronic ex-
cited states of the accumulation layer. Thus even when
one uses better models of the accumulation layer, e.g., in-
cluding single-particle as well as collective excitations,
this correspondence should remain. For instance, subband
excitations, which have been studied within the random-
phase approximation, should, when optical phonons
are included, produce extra surface modes between coT
and tol . These modes are in addition to the section of the
two-dimensional plasrnon that extends into the phonon
band (i.e., co2 as Q —+0). This last point is illustrated in
Fig. 2 where we show how co2 goes through a series of
avoided crossings with the additional modes.

While on the subject of additional modes we mention
that we did consider the suggestion that an anisotropic,
but local, dielectric function can allow one to directly in-
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elude subband excitations in the model. In our notation,
one would replace e& in Eq. (3) (after setting 1/&=O=y)
with

(16')

for the ratio between normal D and normal E and with

2
COp

e~
~

—e~h(co )—
CO

(16")

4(x, t)=e'(~' ""(a'+e~'" "'+a' e ~"), 0&x &d

for the ratio of parallel D to parallel E. Here coo is the
frequency of a single (bare) subband excitation. With
such a dielectric function the form of the scalar potential
within the layer is modified in the local limit from Eq. (4)
to

evidence yet for subband excitations or our co& bulk
plasmon mode. Such excitations will. probably be detected
eventually, but the present theoretical description of their
energy and coupling (both in this work and in the Appen-
dix of Ref. 8) are only rough estimates. We are also hope-
ful that losses to distinct trapped waves near co3 may some
day be resolved. However, the energy resolution of the
ZnQ experiments is presently 15 meV, which must (and
probably can ) be improved by an order of magnitude.

Since the detection of these trapped modes would be an
important confirmation of our theory we conclude by
summarizing their parameter dependence. They lie above
coT, just below col . They owe their existence in our model
to the finite layer of carriers, but neither their location nor
external coupling depend sensitively on the key parameter
X, the number of electrons per area in the surface layer.
This point is illustrated in Fig. 3 where we show the spec-
tral function

(18) 8 =1m[ —A,(Q,co)] (20)

where the choice Q'=Q(e~ /e~)'~ insures that V D=O
inside the layer. This modi ication has little effect on the
modes co2, co3, and cu4 provided coo& u~, but two infinities
of extra modes appear. These lie either below coT or above
co~, i.e., in frequency regions where e~t/e~ &0 so in turn
Q' is imaginary and standing waves can be established in
the accumulation layer. %"e do not believe that these solu-
tions have physical significance since they can have arbi-,
trarily small wavelengths at no energy cost due to a lack
of spatial dispersion in the model. Hence we pursue them
no further.

Returning to our model with spatial dispersion we next
discuss the coupling constants for the modes of Fig. 1(c).
These are shown in Fig. 1(d) and were calculated from the
prescription (13). The y& is the coupling constant for the
(lowest) n = 1 standing plasmon wave; while (for
Q&4X10 cm ')

1/2

along the line

Q =(k;sin8;) @co

2' (21)

where k;, E;, and 0; are the incident wave vector, energy,
and angle of 10-V electrons specularly scattering at
55 =8; from the surface. Note that since these Q's are
well beyond co/c, where c is the speed of light, retardation
effects should not affect the modes seen in EELS; see also
Fig. 2. The use of Eq. (21) partially accounts for the ef-
fect of the kinematic factor in (5). A complete calculation
for EELS would average (5) over the experimental angle
and energy resolution functions. This would enhance the
low-co structure in Fig. 3, since the kinematic factor varies
roughly as ~, but would also, with present resolution
limits, wash out the individual peaks near coL. Hence to

2 (19)

which describes the net effect of the whole band of extra
modes between c03 and coL. The sum in (19) converges to
three-digit accuracy after 10—20 terms. Compared to
Fig. 1(b), for which p=O, the most significant change is
that y3 now has a comparable magnitude to the other y s.
Mathematically this occurs since the trapped modes are
not too close to coT. In the same vein note that y4 van-
ishes when c04 crosses coT, it recovers to finite values at
larger Q. This behavior is also evident in Gersten s fig-
ures. Indeed the qualitative agreement between our p+0
dispersion curves and coupling constants and those of
Czersten imply that our theory could be equally well fit to
present experimental data.

The differences between our surface mode spectra and
those of Gersten have been purposely suppressed by the
plotting scheme of Fig. I which, however, is appropriate
at the current stage of experimental and theoretical
knowledge. For ZnO there has been no report of addi-
tional losses just above the co2 mode, which produces the
dominant peak in EELS. Thus there is no experimental

l00 200
%~ (meV)

300

FIG. 3. Spectral weight function S of Eqs. (20) and (21}
versus energy. Results for three separate choices of N are
shown, each separated vertically by one unit for clarity.
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show what one is seeking we have plotted just 8, which
includes only the broadening due to the decay rates Ay = 1

meV and Air=40 meV, as estimated in the Appendix.
The n=1 and 2 modes are resolved and the remainder
produce a third peak. Although the co2 loss moves
dramatically with N (and hence is a sensitive measure of
N), the losses near coL, are scarcely affected. Moving into
off-specular directions should also not shift the extra
mode locations since they have little dependence on Q.
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APPENDIX

Here we describe the choice of parameter values used in
our models. Some are taken as fixed, in particular those
adopted from Gersten " m'/tn =0.25, ficoT 50 7—— .
meV, Acoi ——71.7 meV, and e =4.0. Others are estimat-
ed from different experiments: ' ' fiy= 1 meV and
R/~=40 meV. The latter comes from a mobility estimate
of p-100 cm /Vsec for electrons in the accumulation
layer. We note in passing that Gersten's method of in-
serting damping is rather different from ours since it is
appended after the modes have been found, whereas ours
enters at the first stages, (1) and (2).

The remaining parameters all depend on N =dno. %'e
view N as experimentally set, although it has not yet been
simultaneously measured with EELS—only pX is report-
ed. This is no problem since the sensitive dependence
of to2 on N (see Fig. 3) makes it simple to fit. We still
need to separate N into d and no, which we accomplish
by the variational calculation outlined below. Given no,
the spatial dispersion parameter is calculated from
P=kk~/(~3m') where kz=(3~ no)'

Our variational calculation of d is analogous to
Gersten's estimate' of his parameter a ', except we do
not acknowledge size quantization. The electronic energy
of the layer is written for a given N as E(d)=Etc+Ep.
Here the kinetic energy Ez is approximated by the free-
electron energy of a uniform slab of area A and thickness
de

Eir NA( ——
s eF)=, (3~ N/d) NA,

10m*
(Al)

while the potential energy FI is represented by the elec-
trostatic energy

E~ ———J dx p(x )@o(x), (A2)

where

4m7 @o——— p
Ep

(A3)

with eo/e =d'or /coT ——2.0 for ZnO. ' The charge density
in equilibrium is assumed to be

p(x)=N
~

e
~
[5(x)—e(x)e(d —x)/d], (A4)

~2 2+d
3E'p

(A5)

Then we find that the value of d that minimizes E(d) is

10' /cm
d =(82.1 A) (A6)

Hence given N we can easily calculate d and no ——N ld.

which represents a localized layer of ions and a (uniform)
diffuse layer of electrons. With (A4), one can easily solve
(A3) and evaluate the integral (A2) to obtain
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