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The phonon modes for polyacetylene are calculated in the framework of the continuum model.
Included are the lattice vibrations in polyacetylene containing the low-lying topological excitations
corresponding to a soliton or a polaron, as well as those for the perfectly dimerized chain. Numeri-
cal solutions are obtained for the chain containing these topological excitations. The phonon modes
for the chain with a soliton are compared to the domain-wall P" solutions, and it is shown that the
translational or Cxoldstone mode for the P model is an "exact" solution with co=0. The chain con-
taining a polaron is found to have four localized vibrational modes, one of which is a translational
mode where the frequency is numerically determined to be near zero. Excitation energies including
lattice vibrations for a chain containing a soliton or a polaron are also calculated.

I. INTRODUCTION

The soliton model' for trans-polyacetylene, (CH)„,
has stimulated a large amount of interest in this material.
The charge conjugation symmetry of the models in-
volved' and the presence of the well-known midgap state
in the vicinity of the domain wall leads directly to the
unusual charge-spin relations for a soliton in (CH) .
These charge-spin relations and the presence of a midgap
state have enabled the soliton model to explain many of
the optical, ' magnetic, and electrical properties of this
polymer. Moreover, a second type of excitation, a pola-
ron, ' has been recognized as occurring in ihe same
models which predict a soliton or kink solution. For
topological reasons a dimerized chain doped with a single
charge cannot exhibit a solitonlike excitation. A polaron,
which is very similar to a soliton-antisoliton pair, is ener-
getically favored over charge transfer into the conduction
band, and is the appropriate excitation for single-charge
transfer. The polaron is significant in that with some pos-
sible minqr modifications it describes excitations relevant
to many conjugated polymers which do not exhibit degen-
erate ground states (e.g., polypyrrole and polypara-
phenylene). Consequently, this excitation also merits
study.

The object of this paper is to consider the lattice fluc-
tuations of (CH)„within the framework of the
Takayama —Lin-Liu —Maki (TLM) continuum model.
The chain will be considered for the three order parame-
ters of the model that are found to satisfy the self-
consistent gap equation. These correspond to a dimerized
chain with b.(x)=A, a chain containing a soliton with
b,(x)=htanh(b, x/U&), and a singly-charged chain con-
taining a polaron with h(x) =b.—U&ko Itanh[ko(x +xo)]
—tanh[ko(x —xo ) ] ], where UIko/b, = tanh(2kQx0 )

=1/~2, and UI is used to denote the Fermi velocity of
the m-electron gas. Single-electron-loop corrections wi11

be included for' all three cases. Exact analytical solutions
are obtained for the dimerized chain and the translational
or "Goldstone"" mode for the chain with a soliton. An
approximate analytical solution is also obtained for the

II. PHONON DISPERSION RELATION

Before considering a chain of polyacetylene with an ex-
citation corresponding to a soliton or a polaron it is
worthwhile to consider a perfectly dimerized chain. The
excitations to be considered later are localized and will not
affect the continuum dispersion relation obtained for a
dimerized chain. The continuum model Hamiltonian
that allows for lattice vibrations is given by

t'

H —g I dx Q|.(x) lUf 03+6( ptx)O ] l/Jg(x)
X

I dx[b, (x, t)+cogb. (x,t)],
2g

(2.1)

where c4 4'/M and g=——4av a /M. K, M, a, and a
are the spring constant, effective CH mass, electron-
phonon coupling constant, and the lattice spacing of the
Su-Schrieffer-Heeger (SSH) model. ' For a dimerized
chain h(x, t) =h(x) +5b, (x, t) with A(x) =b, . The phonon
Careen's function is defined as

D(x,x', ~) = —( T,M {x,r) 5b(x', 0)), (2 2)

where T, is the imaginary time-temperature ordering
operator. Expanding in Matsubara frequencies,
co„=2nn/P, the resulting D. yson equation including one-
electron-loop corrections is

second bound state on the chain with a soliton. These
solutions will be compared with those obtained by
Nakahara and Maki' in a similar calculation. The
remaining phonon modes (as well as the two bound states)
for a chain with a kink are obtained numerically and com-
pared to the domain-wall P" solutions. ' The phonon
modes for a chain with a polaron will only be obtained
numerically and the four resulting localized modes dis-
cussed. The excitation energies including lattice vibra-
tions for a chain containing a soliton or a polaron are also
calculated.
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D(x x, lcu„) =d (x,x, tcu„)

+2d(icu„) f dy II(x,y, icu„)D(y,x', icu„) .

—2k„~x —y i

II (x,y)= ——' g ', , (ufk 6 ),
p ufk~

(2.8)

(2.3)

The zeroth-order phonon correlation function
represented by d(x, x', icu„) is the .appropriate Green's
function, ignoring any contribution from the electron-
phonon interaction. At this level of approximation only
Einstein modes appear at a frequency of co& and

d (X,X', icu„)= 2 2
d——(i cu„)5(x —x') . (2.4)g 5(x —x')

(Ecu+ ) —cug

The kernel in the integraI in Eq. (2.3) is due to the po-
larization of an electron-hole pair and is given by

II(x,y) =—g Tr[o.1g (x,y, i v„)o,g (y, x,i v„)], (2.S)
1

4k«)4k«')
D (X,X',i co„)=g g 2 2

k (Ecun ) ~k
(2.6)

Substituting expressions (2.4) and (2.6) into the Dyson
equation yields the following integral equation for the
phonon eigenfunctions:

where the g's are the appropriate electronic Green's func-
tions. Since the phonon frequencies are substantially less
than the electronic gap, 2A, the adiabatic approximation
has been used and the polarization kernel is taken to be
frequency independent. The Matsubara sum in Eq. (2.S)
is over odd integers, v„=(2n + I )Er/P.

An eigenfunction expansion of D (x,x', icu„) is

where vfk„=h —(iv„+1M', and for the dimerized chain

p is set equal to 0. Since the kernel only depends on the
difference between x and y the eigenfunctions are

ikx

g(x) =
L

(2.9)

and the resulting coordinate integration in Eq. (2.7) can be
performed in a straightforward manner. From self-
consistency considerations (I/p)g(1/vf)k„=l/mA, (see

Appendix) and in the notation of Nakahara and Maki, '

( I + 2)1/2
cuk Acu~—— ln[(1+212)'/2+21]

'9

(1+ 2)1/2
sinh (2.10)

'9

where coo ——kcu~ and 2) =ufk/2b, . Therefore the optical-
mode frequency is proportional to the square root of the
coupling constant, A, . At first glance this is soinewhat
surprising. However, due to the nature of the continuum
model this dispersion relation should only be considered
valid for small 21. Since the phonon for small k (or 2)) is
sensitive to the curvature of the adiabatic potential of the
electron-hole polarization, and this curvature goes to zero
as A, goes to zero, the above result is reasonable. ' This
point is discussed in some detail in this reference.

The zero-point oscillations can easily be determined
from these results. Since

cukctEk(x) =cu~pk(x)+ i1vrvfcug f dy II(x,y)pk(y), (2.7) (5b, (x)) = D(x, x,
—r=O)= —g —g 2

cu (E~n ) cuk

where A, is the dimensionless electron-phonon constant,
2g /m. ufcu~, and is assumed to be 0.378 for this calcula-
tion.

It is interesting to note that the effect of the localized
excitations of a soliton or polaron on the phonon spectra
only appear via the electron-phonon interaction in the ker-
nel, II(x,y). This can be most easily understood by exam-
ining the SSH model' and including lattice fluctuations.
This model has only one spring constant, E, which re-
flects the harmonic nature of the sigma bond over the
range of dimerization (uo/a &&1) in polyacetylene. Con-
sequently there is no gap in the dispersion relation for the
bare phonons at the edge of the Brillouin zone, reflecting
the fact that the bare phonons do not see the dimerization.
If the electron-phonon interaction is included then the
dispersion relation for the dressed (with electron-loop
corrections) phonons exhibits a gap at k =m/2a. '" This
can be effectively modeled with two spring constants, one
for the double bond and one for the single bond. Thus
any changes in the dimerization pattern through a local
excitation can only be seen through the electron-phonon
interaction.

For simplicity the electron Careen's functioris are ex-
pressed in the coordinate representation and the kernel for
the dimerized chain is then

(5b, (x))=2. 12coub, . (2.12)

Using the experimentally determined parameters
coo——1460 cm ' (Ref. 16) and 6=0.7 eV yields

(2.13)

These fluctuations are of the same order as the dimeriza-
tion parameter which is consistent with earlier results. '

These fluctuations should contribute substantial shape
changes to the observed optical-absorption spectra, and it
would be of interest to calculate the optical-absorption
coefficient including lattice vibrations.

III. SOLITON

As discussed in Sec. II the only change in the Dyson
equation is through the electronic Cireen's functions used
in the expression for the kernel, Eq. (2.S). Again this ker-
nel is most easily expressed in the coordinate representa-
tion. Using the electronic Green s functions for a soliton,

(2.11)

and at room temperature pcuo~&1, the sums over co„and
k can be performed in a straightforward way, yielding
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5(x)=htanhbx/uf, obtained earlier, ' the kernel is ex-
pressed as

—2k ~x —y~

[Ufk„sg11(x —y) +5(x)]

solution of $1(x)=a1sech' bx/uf with ru1 —0 0.67roo .
Using the kernel shown above and integration techniques
discussed in one of the authors' earlier works' it is rela-
tively straightforward to show

f II,(x,y)sech (hy/uf)dy = —(Arruf) 'sech (M/ uf) .

Q [Uf k„Sgrl(X —y) —5(y)], (3.1) (3.2)

where with no loss in generality p is again set equal to
zero.

Since the continuum model in the absence of a soliton is
translationally invariant and the soliton breaks this sym-
metry, there must be a mode associated with the transla-
tion of the soliton domain wall. This translational or
Goldstone" mode must occur at co& ——0. For small dis-
placements of the soliton from its original position this
mode is proportional to the derivative of b,(x), or
t))1(x)=a1sech Mluf. This was recognized in the earlier
work by Nakahara and Maki' who found an approximate

Substituting this result into Eq. (2.7) yields co~ ——0. The
obvious benefit of expressing the kernel in the coordinate
representation is the straightforward manner in which the
translational mode or Goldstone mode is shown to be an
"exact" solution with co~ ——0. Since this is also the exact
ground-state solution to the domain-wall P model it is
tempting to try the other solutions to the P model for the
integral equation in (2.7). The P mode corresponding to
oscillations of the soliton width is

$2(x) =a2sinhhx luf sech Ax luf .

Integrating this function with the kernel in (3.1) yields

f II,(x,y)$2(y)dy =—
r

1 1 uf Q cos (qx )secll( Iruf q /2b, )
Pz(x)+ b, (x)— dq

A, 'll Uf p Uf k» 2 BX vf g +4vf k+
(3.3)

f 11,(x,y)gz(y)dy= ( —I+3k, /4)$2(x) .1

A,7TVf
(3.5)

The resulting eigenvalue for this domain-wall rocking
mode or width oscillation is co&——

4 A,~~ ——4coo, which is
the same energy as predicted by the P model. However,
this solution is not exact but merely a good approxima-
tion. The continuum band solutions for the P model are
given by

pk(x) =3k t b. [3 tanh (bx /uf ) —1]

3iuf k 6 tan—h( hx /vf ) —uf k I e ' (3.6a)

Due to the envelope provided by sech(nvfq/2b, ), the in-
tegral over q above can be approximated as

1 b, sech(M /uf )f dq cos(qx)sech(m. uf q/2b, ) =
4Uf k» 2vf k~

(3.4)
Substituting this result into expression (3.3) above yields

These solutions are somewhat unwieldy to consider
analytically, but will be compared to numerical solutions
for the integral equation (2.7).

Implicit in deriving the kernel in the coordinate repre-
sentation is that L &~vf jA. However, to solve the in-
tegral equation numerically it is necessary to consider a
chain of finite length. Therefore, for the purposes of nu-
merical solutions, the Green's functions, which have been
used, were expanded in the appropriate eigenfunctions and
sums rather than integrals were performed by taking into
account the correct boundary conditions for a chain with
a soliton' or a polaron. ' Once the kernel was deter-
mined numerically the integral equation (2.7) was first
w'ritten in the form of an eigenvalue problem as follows:

f H (x y)4'k(y)dy Ykek(x) (3.7)

where yk ——(cok lrog —I )/k1ruf. Following the Nystrom
method, the integral in Eq. (3.7) is approximated by a
sum

where f II,(x,y)pk(y)dy =g aJII, (x,yj )pk(yj), (3.8)

and

kL =(2n +1)~+Ok, Ok
—2 tan

I~k I'
(4b, +uf k )(b, +uf k )

dok
I
&k I'= I—

dk

3vf kh
2Q —Vfk

(3.6b)

(3.6c)

where o.j are the weights and yj. are the grid coordinates
used in an integration scheme. Replacing the integral
with the sum and evaluating the integral equation at the
points x; gives a linear algebraic eigenvalue problem. The
kernel II(x,y) is real and symmetric so that the eigenfunc-
tions of the integral equation, Eq. (3.7), are real and ortho-
normal. In order to ensure that the numerical solutions
are orthogonal a slight transformation is made. Let
gk(yf) =(aj )' Pk(yj ) and AJ. —(aj )' II(x;,yj )(a;)—'
Then by multiplying the linear algebraic equation by
(a;)' one obtains
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(3.9)

is a real, symmetric matrix so eigenvectors corre-
sponding to different eigenvalues are orthonormal, that is

Qk(y. j.)f&(yj. ) =5kI. The use of the transformation then
ensures that the eigenfunctions are orthonormal with good
numerical accuracy since

(3.10)

(a) x(vf/h)

The eigenfunctions pl, (yJ)=1(tk(yj)/(aj)' were found by
solving the linear eigenvalue problem, Eq. (3.9), using a
routine from the Internation Mathematical 8c Statistical
Libraries (IMSL).

For the calculations presented here, Simpson's rule with
a nonuniform grid spacing was used as the integration
scheme. A nonuniform grid was used in order to reduce
the number of grid points and hence the size of the matrix
A,J. A higher density of grid points was used in the
neighborhood where the dimerization pattern changed.

The numerical solutions for these bound-state modes
for a chain containing a soliton of length 18$, g=vf/6,
are shown with solid lines in Figs. 1(a) and 1(b). The cor-
responding solutions to the P model are shown with
dashed lines in the same figures. It can be seen that these
solutions are in good agreement with one another. The
second bound state is a rocking mode in the domain wall,
or equivalently a width oscillation. The numerically
determined eigenvalue for this mode is co2=0.76ci)0 which
is in excellent agreement with the analytical approxima-
tion of ~coo.

Three continuum, mode solutions are shown in Figs.
2(a), 2(b), and 2(c) with the corresponding solutions of the

model. These are three of the lowest-energy continuum
solutions and they do not exhibit as good a fit as the
bound-state solutions. In general as the continuum energy
increases the numerical solutions show better agreement
with the P model solutions which, as can be seen in Eqs.
(3.6), become more sinusoidal in nature. The numerically
determined eigenvalue for the two lowest-energy continu-
um modes shown in Figs. 2(a) and 2(b) is cok=0. 99coo,
which is in good agreement with expression (2.10).

A k =0 mode is of interest since Levinson's theorem
implies that the number of nodes in this mode is equal to
the number of bound states. As seen in Fig. 2 and in ex-
pression (3.6b) there is no k =0 mode for a single soliton.
The phonon modes for a soliton-antisoliton (SS) pair do
contain a k =0 mode which is of the form
3tanh b,x/vf —1 for both solitons. ' Consequently this
mode has -four nodes implying two bound states per soli-
ton.

A more detailed comparison of the extended modes
with the P model involves a comparison of the phase
shift, 8k, for these modes with the phase shift of the P
model. A numerical determination of the phase shifts for
low-lying states in the band is shown in Fig. 3. For

y, (X)

Cl
I

x(v, fa)

Cl

FIG. 1. Bound-state phonon modes for (CH)„with a soliton,
numerical solutions are given by the solid line and the corre-
sponding P solutions are shown with the dashed line.

reasons of numerical accuracy only the phase shifts for
the low-lying states were considered reliable. Figure 3
also contains the phase shift of the P model for compar-
ison. With the exception of the phase shift for the
lowest-lying state these values are in reasonable agreement
with those for the P model. The poor agreement of this
first phase shift is thought to be predominantly a result of
considering only a single soliton as opposed to a SS pair
on the chain. ' A least-squares fit (excluding the first ex-
tended state) of the phase shifts shown in Fig. 3 was per-
formed using the functional form 8k =2 tan 'ak /
(b —k ). This resulted in values of a =3.0 and b =3.4
with a correlation coefficient of better than 0.999. These
values are listed in Table I and compared to those for the

model and those calculated by Nakahara and Maki. '

The vibrational energy for a polyacetylene chain con-
taining a soliton was calculated assuming a soliton-
antisoliton pair. The energy due to zero-point oscillations
of a dimerized chain was subtracted from the equivalent
value for a chain with a SS pair and the result divided by
2. Assuming the phase shifts for SS to be
kL =2nn +28k, where 8k —2tan ~3.0k/(3. 4—k2),
yields
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FIG. 3. Phase shifts of the low-lying extended mod fmo es or
)„with a soliton, , and one-half of the phase shifts for

(CH)„with a polaron, ~. The solid line is the phase shift for
the 4 model.

CP1,{X)

I

x(vflb)

This excitation energy is virtually identical to that ob-
tained by Nakahara and Maki. ' To some-extent this is
coincidental since the energy they obtain for the second
bound state is different from ours, they modulate cok with
a coska/2 term, and their phase shifts are also somewhat
different. It should also be noted that just as in the case
for the electronic excitations it is important to consider a
soliton-antisoliton pair and then divide the result by Z.

his is because there is no k =0 mode in the continuum
band for a single soliton. However, there is a k =0 mode
or the dimerized chain and the chai t

' 'c ain contacnsng a
soliton-antisoliton pair. These excitation energies are sub-
stantial, —

4 E„and will be compared to those for a pola-
ron in the next section.

I ~ 1.
2 ~ cok —

2 g Cps =—1.21Cpp .
k q

(3.11a)

FIG. 2. Continuum phonon modes for (CH)„with a soliton,
numerical solutions are given by the solid line and the corre-
sponding P4 solutions are shown with the dashed line.

IV. PDLARDN

Once again, the only change in the integral equation
2.7) is through the electronic Careen's functions used in

t e kernel. With the gap parameter for the polaron,

b x =b.—ufkp[tanhkp(x+xp) —tanhkp(x —xp)]
Consequently the excitation energy per soliton is

E(b,(x))—E(h) = —0.61rpp ——0.75
2h (3.11b}

with sinh2kpx p = 1 alld uf kp/6 = I /V 2 tile kerIlel 111 tile
coordinate representation is

—2k. I
—~I

II~(x,y) = ——gP ~

P 4k2: 2k2 2 2

n f n f n Uf ko

X [uf k„sgn x y)+uf kp—tanh[kp(x +xp)] I I uf k„sgn(x —y)+uf kptanh[kp{x —xp

X Uf & sgxn—y }—Uf kptallh[kp(y +xp )] J I Uf k~sgn(x —y) —fk Uf pha[nk (y p—xp (4.1)
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CI

O

x(v, /4}

CI
Ol

I

—yk{x}

I

x{v,/n}

FIG. 5. Numerical solutions for the continuum phonon

modes in {CH)„with a polaron. The eigenstate shown in (a) is

the k =0 mode.

Fig. 3 are one-half of the actual phase shift. A least-
squares fit was again performed with the functional form
Ok =4 tan 'ak/(b —k ). This resulted in values of
a =2.7 and b =1.9 with a correlation coefficient in ex-
cess of 0.999. These values are also listed in Table I.

The vibrational energy for a chain with a polaron was
calculated with this phase shift and

(4.3)

This result, as expected, is approximately midway between
the decrease in vibrational energy for a single-soliton and
a soliton-antisoliton pair. The excitation energy for a po-
laron is then

E(h(x)) —E(6)= —0.88coo——0.75
2v 2S 2v2S

(4 4)

It is interesting that the change in excitation energy is al-
most in exact proportion to the electronic excitation ener-
gy. The energetics for a doubly charged chain still favor
an SS pair over a doubly charged polaron (bipolaron) or
two polarons. Thus the energy required to create an SS
pair or a polaron is substantially reduced, but the relative
effects are still consistent with those for a rigid lattice.

V. CONCLUSION

The phonon modes for polyacetylene have been calcu-
lated using the continuum version of the SSH model in-
cluding lattice fluctuations. The dispersion relation for
the optical band is in agreement with that of an earlier
calculation by Nakahara and Maki. ' Analytical and nu-
merical solutions were obtained for the localized modes
that occur in the presence of a soliton. The analytical
solutions are essentially those of the P model and are in
excellent agreement, both eigenfunctions and eigenvalues,
with the numerical solution. Only numerical solutions
were obtained for the normal modes in the continuum
band and these solutions with their phase shifts show
good agreement with the continuum eigenfunctions of the

model.
A one-component model is not general enough to make

any realistic predictions of the Raman and infrared modes
observed in (CH)„; however, some of the experimentally
observed Raman modes may be attributed to the rocking
modes. From calculations involving the discrete lattice
and recent experimental observation of resonant Raman
scattering, ' the optical band edge, coo, for (CH)„ is as-
sumed to be 1460 cm '. From the numerical solution for
the Raman-active localized mode, co&

——&0.76coo and
~2 ——1273 cm ', which is in good agreement with the ob-
served value of 1291 cm '. ' For (CD)„ the agreement is
equally as good. Assuming a band edge of 1355 cm
(Ref. 16) for (CD)„, then co2 ——1181 cm ' as compared to
the measured value of 1197 cm '. ' However, these ex-
perimentally observed frequencies may be the band edge
of different modes. Since the problem considered in this
work does not include any pinning, the translationa1, or
Goldstone, mode occurs at co~ ——0. Inclusion of a pinning
parameter could adjust this mode up to the accepted value
for (CH)„of 900 cm '. In fact a normal mode analysis
within the framework of the continuum model does give
good agreement with all of the Raman-active and
infrared-active modes of (CH)„and (CD)„. This calcu-
lation also yields some very interesting product rules in-
volving the ratios of the infrared and Raman-active
modes; however, this calculation does require a si.x-
parameter fit.

The phonon modes for polyacetylene with a singly-
charged polaron were also calculated within the frame-
work of the continuum model. A translational mode was
also found at co~ ——0, and as expected, is given by the
derivative of the order parameter. However, a trans-
polyacetylene sample must be lightly doped to observe
these infrared-active modes as heavy doping gives rise to
SS pairs. The frequency for the infrared-active pinned
translational mode should be given by the frequency for
the pinned mode for a soliton multiplied by the square
root of the ratio of the effective masses of the soliton and
the polaron. Due to the small effective mass of the pola-
ron, ' this frequency is above the band edge, making it
difficult to observe.

There is one very interesting point to be made concern-
ing the infrared-active localized modes associated with a
polaron. Simply, there are two of them, the Cxoldstone
mode and the highest-energy localized mode. This is in
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contrast to the normal mode analysis mentioned above
in which there is a one-to-one correspondence between
infrared-active modes and the electron-phonon-coupled
Raman bands. In the normal mode analysis the difference
between any configuration is contained in an effective-
mass parameter, but does not affect the one-to-one
correspondence between the Raman modes and the in-
frared modes. Therefore this model should be reexamined
at least for configurations other than a single soliton.

Finally, due to similar symmetries the phonon modes
for the P model are in good agreement with those for
polyacetylene with a soliton, Further analytical calcula-
tions within the framework of the continuum model,
which involve the inclusion of lattice fluctuations, would
be justified in using the P solutions as a good approxima-
tion to the correct phonon modes.
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APPENDIX: SELF-CONSISTENCY

The expectation value of this relation at finite temperature
1S

2
COg

o )G(x,x,r=O) = —
2

b, (x) .
2g

(A2)

After expanding in Matsubara frequencies,

COg
h(x) .

2g
(A3)

1 ~ 1 toy

P v Ufk» 2g
(A4)

In terms of the dimensionless electron-phonon coupling
constant

Since the resulting cutoff in the Matsubara sum is in-
dependent of the order parameter (for the gap parameters
that satisfy self-consistency) the simple case of a dimer-
ized chain, b, (x)=b„will be considered. The required
Green's functions can be deduced from one of the author' s
earlier works, ' and for the chemical potential p set equal
to zero, Eq. (A3) becomes

The self-consistency relation is given by
2

g g, (x)o )f,(x)+ &(x)=O (A 1)

2
COg Uf

2g '7' (A5)
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