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Pulsed ion-beam melting of silicon
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Pulsed ion beams have been used to melt and regrow single-crystal silicon. By using the technique
of transient conductivity, the effects of ion species and pulse duration have been determined. For
heavier ions, with shorter pulses (70 ns), melt is initiated at lower energy densities. The regrowth
velocity is also greater. For lighter ions (H+) with longer pulses (140 ns), computer simulations
show that the temperature gradient is uniform over the top 1.5 pm of silicon. Melt depths of up to
1.7 pm, and regrowth velocities as low as 1.2 m/s, are obtainable. For both types of pulses, the ion
energies were distributed between 0 and 400 keV. The total energy density was varied between 0.76
and 2.0 J/cm .

INTRODUCTION

One possible application of pulsed ion beams is for sur-
face modification of materials. Pulsed ion beams provide
a unique alternative to laser or electron-beam annealing.
An important parameter in pulsed ion-beam annealing is
the ion species. By choosing a particular element, it is
possible to control the penetration depth, and hence the
resulting temperature profile in the substrate. For in-
stance, protons deposit their energy nearly uniformly
along their path (which for 300-keV protons into Si is 3
pm). 300-keV Ba ions, on the other hand, deposit most of
their energy in the top 1000 A of silicon. In certain appli-
cations, a small temperature gradient is desirable. Using
protons, it is possible to anneal deeply implanted layers, or
thick metallic contacts (5000 A), without vaporizing the
surface 'It ha. s also been shown that metals can be heated
uniformly to depths of 1 pm without destroying the sur-
face. An advantage of ion beams is that there is practi-
cally no reflection of energy. Thus the amount of energy
deposited is independent of the phase material (the stop-
ping cross section of silicon in the molten state is the
same as that of silicon in the crystalline or amorphous
state). More useful, however, may be the fact the Si02 ab-
sorbs roughly the same amount of energy as Si per unit of
depth. The stopping power of Si02 for protons is 110
keV/pm, and the stopping power of Si is 95 keV/pm (at
200 keV). Another interest in pulsed ion beams is the
simultaneous implantation and annealing of dopants. '

Since the total fluency of ions is of the order of 5&&10'
ions/cm, a relatively high doping density between 10'
and 10' atoms/cm can be achieved with a single pulse of
As ions, for instance. At 300 keV, arsenic penetrates 1700
A into silicon. This yields a doping density of 3&10'
atoms/cm in the top 1700 A.

EXPERIMENT

Electrical circuit used for
transient conduction measurements
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function of time were measured by the technique of tran-
sient conductivity. This technique has been used exten-
sively in measuring the melt depth induced by laser irradi-
ation of silicon. ' It relies on the change in electrical

The purpose of this experiment was to observe the ef-
fects of ion species and pulse duration on pulsed ion-beam
melted silicon. The melt depth and regrowth velocity as a

FIG. I. Electrical circuit used for transient conduction mea-
surements: (a) actual circuit; (b) electrically equivalent circuit.
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tive monitor, and was corrected for inductive effects. The
composition of this beam was approximately 40% hydro-
gen, 60% carbon and aluminum (the three elements com-
posing the diode). Traces of nitrogen and oxygen from
the gas ambient may also have been present. The impuri-
ty concentration was determined by placing a 2-pm
polyethylene foil in front of the Faraday cup during the
pulse. The foil stopped the heavier ions, while letting
through protons having an energy greater than 180 keV.
Figure 4 shows the current traces with and without the
polyethylene foil (for the same shot). The time of flight
of the protons, a few tens of nanoseconds, was accounted
for in the analysis. Integrating the current in both cases
from 560 to 180 keV (corresponding to r =0 to t =130
ns) showed that the number of ions passing through the
polyethylene foil was at most 40% of the total number of
ions reaching the Faraday cup. Because of the longer
time of flight of the heavy ions, a small percentage may
not have been included in the integration. It was assumed
that the same percentage of impurities was present in the
second half of the pulse. No analysis was done on the re-
flected pulse (r & 130 ns) because the trace was not repro-
ducible. This behavior was attributed to ion-beam-
induced plasmas in the Faraday cup.

The second machine (long pulse) produced an ion pulse
of 140 ns in duration (FWHM). Figure 5 shows the calcu-
lated power versus time curve, as well as the digitized
voltage versus time and current versus time traces. Ex-
periments with polyethylene foil showed that the compo-
sition of the beam was 80% protons, 20% carbon and
aluminum. Thus, the two machines could be character-
ized in the following manner. The first machine produced
a short (70-ns) pulse of mostly heavy ions. While the
second machine produced a long (140-ns) pulse of mostly
protons.

Figure 6 shows the experimentally determined energy
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current and voltage scales for the insets are 10 amps/cm /div
and 50 keV/div, respectively.
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FIG. 6. Graph of ion-energy distribution for the 140-ns
pulse: (a) 140-ns pulse; (b) 70-ns pulse.

distribution for both the long and the short pulses. These
distributions were determined by using the current and
voltage data in Figs. 3 and 5. As can be seen, ions pro-
duced by the long pulse are fairly evenly distributed in en-

ergy between 0 and 300 keV. The average occurs at 150
keV. For the short pulse, however, the distribution is best
described by two peaks. The one occurring at 350—400
keV corresponds to the primary pulse, and the one at
150—200 keV corresponds to the reflection in the
transmission line. The reflection was caused by an im-
pedance mismatch; 25 0 for the diode and 10 0 for the
water line. Here, the average ion energy was 280 keV.
Figure 7 shows deposited energy as a function of depth
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The photopeak lasted approximately 600 ns. The re-
growth velocities were nearly the same for all incident en-
ergy densities (i.e., 1.2 m/s, at half the maximum melt
depth) Figu. re 9 shows the melt depth versus time curves
for the 70-ns pulse (short pulse). It is seen that for the
highest incident energy density (2.0 J/cm ) the maximum
melt depth was only 1.0 pm; for 1.6 J/cm the depth was
0.72 pm, for 1.0 J/cm, the depth was 0.45 pm, and for
0.8 J/cm, the depth was 0.2 pm. For the short pulse, the
regrowth velocity decreased as the total beam energy in-
creased. At 2.0 J/cm, the regrowth velocity was 1.1 m/s,
whereas at 1.0 J/cm, the regrowth velocity was 2.4 m/s.
In both cases (short and long pulse) these velocities were
less than those obtained for laser-melted silicon. The
measured regrowth velocity for silicon melted with a 30-
ns ruby laser at 1 J/cm was 2.8 m/s.

Figure 10 shows a plot of the maximum me1t depth as a
function of total energy density for both pulses. In both
cases the data points lie along straight lines. The slopes
are 1,93 pm/J/cm and 0.79 pm/J/cm, for the long and
short pulses, respectively. The smaller value for the slope

for the two machines. This 'graph was produced using the
data in Fig. 6, as well as the known ranges of ions into sil-
icon. l 500—

70 ns pulse ———8 irnulotion

Experiment

The melt depth versus time curves for the 140-ns pulse
(long pulse) are given in Fig. 8. Data for 2.0, 1.8, and 1.5
J/cm pulses are shown. These curves were generated by
applying formula 1 to the conductivity data, after the con-
tribution due to photoconduction had been subtracted out.
The increase in conductivity due to photoconduction was
estimated by analyzing the conductivity versus time traces
for low-energy pulses. It was found that these-traces
showed the same conductivity over the energy range of
0.7 to 0.95 J/cm; so they were taken as the photopeak.
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FIG. 9. Melt depth vs time curves for the 70-ns ion pulse.
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TABLE I. Regrowth velocity versus melt depth.

BT k BT
az aa az

(K/cm) (p/sec)

Melt Depth

(A)

Vr~gr0~ (IQ/sec)

(computer generated)

3000
4500
7000

2.82 ~ 10
3.21 X 10
3.88 ~10'

1.48
1.68
2.03

1.40
1.60
1.96

where k is the thermal conductivity, 4H is the latent heat
of fusion, and BT/Bz is the thermal gradient in the crys-
talline silicon. Equation (2) is a statement of the conser-
vation of energy at the solid-liquid interface. The heat
released during solidification, UAH, must be conducted
away by thermal diffusion, k(BT/Bz). According to this
formula, as the temperature gradient becomes less, the re-
growth velocity decreases.

There was excellent agreement between the regrowth
velocity predicted by this formula, and the computer-
calculated regrowth velocity. Equation (2) was applied to
computer-calculated temperature profiles of pulsed ion-
beam melted silicon. The values used for k and b,H were
0.221 w/cm K and 4206 J/cm, respectively. "' At dif-
ferent melt depthsth, e temperature profiles were dif-

ferent. Table I shows the calculated regrowth velocities at
three different depths, produced by a 70-ns, 1.6-J/cm ion
pulse. These values were very close to the cornputer-
generated regrowth velocities, which were calculated 'by

b (depth of Si melt)/ht (Table 1).

SUMMARY

Pulsed ion-beam melting of silicon has been shown to
be largely influenced by the ion species. For heavier ions,
the penetration depth is less. This results in higher sur-
face temperatures and steeper temperature gradients. For
light ions (mostly H+), the temperature is uniform over
the top 1.5 pm of silicon. This results in lower regrowth
velocities. In addition, a higher-energy density is needed
to initiate melt. For both types of pulses, melt depths
greater than 1 pm, and regrowth velocities as low as 1.2
m/s have been obtained.
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