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The spin-split hole subband structure for a GaAs p-channel inversion layer is calculated. From it,
density-of-states masses and cyclotron masses as a function of magnetic field are extracted. Results
indicate significant discrepancies between calculated and measured masses. Many-body effects on

the effective mass may be important.

I. INTRODUCTION

p-channel inversion layers have been studied extensively
in Si metal-oxide semiconductor field-effect transistors
(MOSFET’S)."? With the advent of modulation doping,
it has become possible to form p-channel inversion layers
at a GaAs-AlGaAs heterojunction.> Since an inversion
layer is characterized by the motion of carriers parallel to
the interface it is desirable to have a description of the
subband structure. In GaAs, the interaction between the
conduction and valence bands is small because of the large
energy gap, E, (Eg~1.5 eV). As a result, in an n-channel
GaAs inversion layer the motion parallel to the interface
is hardly affected by the quantization of the perpendicular
motion. In a p-channel GaAs inversion layer, however,
this is not the case. The degeneracy of the valence bands
and the surface electric field combine to couple strongly
the parallel and perpendicular motion. The hole subbands
are then highly nonparabolic. '

An additional property predicted theoretically for p-
channel Si inversion layers is the lifting of the twofold
spin degeneracy of the holes produced by the interplay of
the lack of inversion symmetry of the interface potential
and the spin-orbit coupling.’? As a result, the two-
dimensional hole levels consist of two distinct subbands
each characterized by its own effective mass. In GaAs,
which has a larger spin-orbit coupling, this effect is ex-
pected to be more prominent than in Si. Indeed, it has
been observed in recent magnetotransport and cyclotron
resonance measurements on a p-channel inversion layer at
a GaAs-AlGaAs heterojunction which showed the ex-

istence of two cyclotron masses of 0.60m, and 0.38m,.*
This paper addresses the results of Ref. 4.

We present a simple-model calculation of the GaAs
hole subband structure, the density-of-states (DOS)
masses, and the cyclotron masses as a function of magnet-
ic field. Section II lists the approximations made. In Sec.
111, an outline of the calculation and results for the case of
zero magnetic field are given. In Sec. IV, the same is
done for the finite-field case. Section V is devoted to dis-
cussion and conclusions.

II. THEORY

Our calculations are performed for both zero and finite
magnetic field, B, at zero temperature. We make the fol-
lowing simplifying assumptions:

(a) The 4x4 Luttinger kP Hamiltonian® adequately
describes the band structure of the upper four valence
bands around I'g. The split-off bands at I'; lie at an ener-
gy 340 meV below I'g so they are neglected.

(b) The mole fraction of Al in Al,Ga;_,As is large
(x=0.5) so that the energy step, AE,, between the
valence-band edges of GaAs and Al,Ga;_,As is also
large (AE, ~ 100—400 meV).%7 Since the relevant energies
in the problem are about 10 meV, AE, is assumed infinite.
The total wave function then vanishes at the interface.

(c) Linear k terms® caused by the lack of inversion sym-
metry of the zinc-blende structure are neglected. An esti-
mate of the resulting error is given in Sec. V.

(d) The Hartree approximation is used. Many-body ef-
fects such as exchange and correlation are not included.

III. B =0 CASE

For zero magnetic field, the 4 X4 Luttinger Hamiltonian for the light and heavy hole bands around Ty, including the
linear k terms 7T and 77, is (in atomic units with hole energy counted as positive)

1
P R-T" —S+—=T* T
+Q T3
1
R*-T' P — -T S+—=T*
Q tV3
HO(kx;kyakz)z . 1 " » (1)
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1
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where

P=%<k3+k2>, Q=—72i<—2k3+k2),

R=_—‘2—§—7k2_ V3 pk, S=V3ykk_

e I=———‘ k

T=—-Bk_, T \/SB 2 2
ky=k,tik,, k’=kl+k,,

=3(r2+v3), p=73r3—72) .

In T and T, B= —(V'3/2)C where the constant C is de-
fined by Dresselhaus.® We take B=0 for now and discuss
the case 840 in Sec. V.

The Luttinger parameters, y;, ¥,, and 73, are taken
from Ref. 9: y;=6.85, y,=2.1, and y3=2.9. A unitary
transformation block diagonalizes the Hamiltonian H,
into two 2 X2 blocks:

. |HY o
Hy= o HL|’ o (3)
where the upper and lower blocks, HY and HZ, are given
by
P+Q —
H=| _, _ |, R=|R|—-i|S], (4)
R* PFQ

where o0 ="U (L) refers to the upper (lower) + signs. The
double degeneracy of the heavy and light hole bands
without the linear k terms is now apparent. The original
basis set and transformation are given in the Appendix.

We choose the z direction to be perpendicular to the in-
terface. Incorporating the slowly varying interface poten-
tial within the effective-mass approximation (EMA) re-
sults in an effective Hamiltonian for the envelope func-
tions:

H e =H(ky,ky )+ V(2) (5)

where I/c\z stands for the operator (1/i)3/9z. In a first ap-
proximation, we neglect the band warping. This is done
by letting 1 be O in the element R of Eq. (1), a simplifica-
tion which produces only a small change in H for finite
k,,k, and no change for k, =k, =0. Then, H depends
on k, the magnitude of vector (k,,k,). The upper- and
lower-block envelope functions, {{(T)}, satisfy

2 PaN
S |Hj(k, k) + V(208 |95 (D) =€
j=1

YZR(F) . (6)

For the upper (lower) block, i,j =1 refer to the heavy
(light) hole solutions and i,j =2 refer to the light (heavy)
hole solutions.

The potential ¥ (z) in the Hartree approximation is tak-
en to consist of two parts:

V(z)=Vin(2)+ Vyep(2) , (7)

where V,,(z) is the potential produced by the mobile
holes which form the inversion layer and V,(2) is the
potential created by the fixed depletion-layer charges.

The inversion-layer density is taken from Ref. 4 to be
Ry =5X 10! cm~2, while the depletion-layer density is
Ndep=1015 cm~3 from Ref. 3. V(z) is determined self-
consistently from Eq. (6) and Poisson’s equation: "

d*V _ 4we? .
= | 2 O P Naep | 5 (®)
s o,j,k

where 0=U,L, J=1,2, ¢,=13.1.
tric constant for GaAs.)

Our calculation is variational in nature and cons1sts of
a k =0, and a finite-k analysis. We first observe that for
k=0, HY and H* become diagonal with elements.

(€, is the static dielec-

1 d’
Hy= —7(7/1—27’2);;2‘4— Viz),
9)
1 d*
Hi=—5(n1+2v)—5+V(2)
dz
that yield an infinite set of doubly degenerate heavy and

light hole subband energies. We therefore construct the
envelope functions for finite k as

¢hk(r)—e 2 Aj(K)(2) ,

(10)

8

P3 AGkY(2)

j=0

d}zk(?):eik

where j is the subband index, while 4 and [ refer to heavy
and light holes. The z-dependent functions, ¥(z) and
1;)(z), determine the k =0 energies:

€n(0) =Yy | Hy | ¥jn) »
(11)
€j1(0)=<'/’j1 | H, |¢jl>
We take
o (2) = 32/2 ze z/ah Dor(z) = 3/2 e —z/q »
ap aj

for the lowest heavy and light hole levels and construct
higher-level wave functions orthogonal to all lower ones.
€05 (0) and €;;(0) are minimized with respect to a, and g;.
The z-dependent part of the envelope functions is now
completely determined. For finite kX we minimize the sub-
band energy €?(k), of Eq. (6), with respect to the coeffi-
cients in the expansions of Eq. (10). For the additional z
dependence introduced in this case, we define

sij={tn | ) and Kij=<1/!.-h gz‘ ¢jl> :

Solution of the resulting eigenvalue matrix gives the
subband structure. These minimizations are performed on

" each iteration of the potential until self-consistency is

achieved. For small k, only the lowest terms in the
wave-function expansions contribute significantly. We
therefore retain only the first two terms in ¥f x(T), Y7 (T)
(c=U,L) corresponding to the lowest two heavy and
lowest two light hole levels. The resulting self-consistent
potential along with these four levels and the Fermi level
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FIG. 1. Self-consistent potential, lowest two heavy and
lowest two light hole levels, and Fermi level.

are plotted in Fig. 1. Note that for n;,,=5x10!! cm~2,
only the lowest hole level is occupied. Figure 2 shows the
GaAs subband structure for the lowest heavy and light
hole levels. The large subband splitting for finite k is a
consequence of the lifting of the spin degeneracy implicit
in the bulk Hamiltonian, Eq. (3), which arises from the
sign difference of the S terms of matrix equation (1) and
the fact that V(—z)s£V(z). This splitting gives rise to
two distinct DOS effective masses for the u=0 case:

1 déps

k dk

*
myr K

mo mo

(12)

kp,
which yield the values shown in the top line of Table I.
By including the warping term, p540, but keeping the
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FIG. 2. Lowest heavy and lowest light hole subbands.

TABLE I. DOS masses for u=0 and 0.4.

7 m,’," +/mg m;f _/mg
0 0.46 012
04 0.50 0.12
Experiment (Ref. 4) 0.60 0.38

self-consistent potential derived for u=0, we obtain the
energy contours shown in Fig. 3. The Fermi energy is
determined from the requirement that the number of
states available within the areas enclosed by the two sur-
faces, 4 (er) and A _(ef), be equal to the total concen-
tration

1
iw=——7[41(ep)+A4_(ef)] . (13)
n 2 17_2[ +(ep)+ r)]
The classical cyclotron masses derived from
# dAs
L L +
mp+ 2r de e (14)

are given in the bottom line of Table I. They are the same
as DOS masses. The significant warping of the heavier
mass branch produces a noticeable change in the heavier
mass. The lighter mass remains unchanged since its
branch is still virtually isotropic.

IV. B0 CASE

In the presence of an external magnetic field B in the z
direction, the effective Hamiltonian H . neglecting linear
k terms is obtained from Eq. (1) by replacing the com-
ponents of the wave vector by their operator forms,

-24
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FIG. 3.
subbands.

Constant energy contours for the split heavy hole



teraction of the electron’s spin magnetic moment with the
external magnetic field. {A4,} are the components of the
vector potential of the magnetic field. We choose the
Landau gauge K—(—By,o 0). Writing Heff in terms of
the creation and destruction operators,

Rc Rc fic

T:-“k = = —_—
Y e Y B

172

k_, R.= , N=a'a,

(15)

and again making the no-warping approximation, yu—0
leads to solutions which can be written in terms of the
harmonic-oscillator functions, u,(x,y):

¢1 n(z Up -2
Yon(2)  u,
¢'3,n(z) Uy 1 ’
¢4,n(z) Up 41

where the {1, ,} are expanded in terms of the z-dependent
functions in Eq. (10). The wu, satisfy a'u,
=(n+1"%u, ., au,=n'"*u,_;, and Nu,=nu,. The
procedure followed from this point is analogous to that
for the B=0 case. For the four-level model, an 88
determinantal equation is obtained for n >2. For n =1,
we must set 1, , =0 which leaves a 6X6 equation. For
n =0, we choose ¥, , =13 , =0 which gives a 4X4 equa-
tion, while for n = —1, we take ¥ , =%, ,=1v; ,=0 for
which a 2 X2 equation results. The solutions give the Lan-
dau levels as a function of magnetic field plotted in Fig. 4.
The curvature of the levels is caused by the valence-band
coupling and the strong surface electric field. The split-
ting of €, and €,_ levels is primarily due again to the
lack of inversion symmetry and large spin-orbit coupling.
The cyclotron masses are calculated from the energy
difference between the highest occupied and lowest unoc-
cupied levels subject to the conditions An =+1:

(16)
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FIG. 4. Landau levels vs B for lowest heavy hole subbands.
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TABLE II. Cyclotron masses as a function of magnetic field.

B (T) mpy, /mg my_/mg
0 0.46 0.12
2 0.45 0.16
4 0.44 0.18
6 0.35 0.24
8 0.38 0.16
+ n+1 n + eB
ho; (B)=€,{ (B)—€h+(B), w;=—7—". e v
mp+C

The level degeneracy & is approximated by that for para-
bolic band structure: {=eB/hc. The cyclotron masses
are tabulated in Table II. Note that the masses are B-field
dependent, and that they converge to the DOS masses in
the low- B-field limit.

V. DISCUSSION

Comparison of the zero-field masses with the ones mea-
sured by cyclotron resonance* shows reasonable agreement
for the heavier mass but significant disagreement for the
lighter mass. Although our calculation was not carried
out to convergence, we did test the sensitivity of the
masses to the number of terms included in the envelope-
function expansion of Eq. (10). With only the lowest-
order terms for ¢ ; and 97, retained (two-level model),
the u=0 DOS masses were mj, =0.38mg, mj_
=0.11mg; with the lowest two terms in ¥}, and lowest
term in j; (three-level model), the masses were
mjy . =043mg,my _=0.11m,. Inclusion of higher-order
terms, then, produces a much more pronounced increase
in the heavier mass than in its lighter counterpart, sug-
gesting that convergence of the calculation would still
leave the lighter mass far too low.

When the linear k terms, 7 and 7", are included in Eq.
(1), an increase in the splitting of the subbands is induced
with a consequent change in the effective masses. Bril-
louin scattering expenments were unable to detect the
linear k splitting in GaAs,'” but have given a value of
C=20.6 meV-A in CdTe.!'! We take this value as a gen-
erous upper bound for GaAs. This results in changes of
only about 10% in the larger mass and 5% in the smaller
one. Our neglect of T and T’ is therefore justified.

The field dependence of the cyclotron masses in Table
II is a consequence of the nonlinearity of the Landau lev-
els which in turn results from the nonparabolicity of the
subbands. The sharp curvature of the Ej, _ levels of Fig.
4 produce a pronounced field dependence for m,_ while
the more linear E, , levels lead to a less field dependent
my, . The measured cyclotron masses* show far less field
dependence and are larger than the calculated masses.
More recent de Haas—Shubnikov measurements'? did re-
veal a B-dependent lighter mass. However, its magnitude
of about 0.3 below 1 T is larger than ours.

In our calculation, we have neglected many-body effects
beyond the Hartree approximation. We now consider the
importance of these effects on a two-dimensional system
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of holes. Kohn!3 has shown that in a two-dimensional
system with translational symmetry, a perturbing mi-
crowave E field only connects eigenstates of the Hamil-
tonian whose energies are separated by #w.. The cyclo-
tron mass is consequently unaffected by the electron in-
teraction. We carry out a similar analysis using the effec-
tive Hamiltonian of Sec. IV, with the Coulomb interaction
included in the EMA. In this case, the microwave pertur-
bation is not restricted to connect only eigenstates with
energies separated by 7w, because the strong interaction
between bands breaks the translational symmetry. Kohn’s
theorem is then not applicable for holes. This result, cou-
pled with the large-7; value (r,~5) for holes at 5x 10!
cm~?, indicates the strong contribution of the hole-hole
interaction to the effective masses. We intend to investi-
gate this effect.
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APPENDIX

The basis set for the matrix, Eq. (1), is the (J,m; ) basis
for J =2

w=133) =S5 |+,

uy=| %,—%)=“/1—5I(x—iy)T)—I—(%)I/lel) ,
uy= | %,%)=—72I(x+iy)¢)+(%)‘/2|zT> ;
uy= | %,—%)=71—g|(x—iy)l) .

The unitary transformation is

1 i 1

0 —=e i1 ——=¢i1 0
V3 © Ve

U= 0 L-m L 0
V2 V2

—‘/%e—"ﬁ 0 0 ‘/lie’d’

¢ and 7 are chosen so that Hy=UH, U T is block diago-
nalized.
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