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Applicatien of intermediate-coupling scheme to the kd (k =4,5) system
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The generalized intermediate-coupling scheme developed earlier has been applied to the
kd (k =4,5) system to derive expressions for the energy levels and the magnetic susceptibility. The
great simplicity and obvious advantages over the conventional strong-field-coupling scheme have
been clearly demonstrated.

I. INTRODUCTION

A generalized intermediate-coupling scheme (ICS) was
developed' for the many-electron systems of the
transition-metal ions under ligand fields with cubic sym-
metry. In previous publications, ' the scheme was
presented for d, d, d, and d systems. In the present
paper the d system is treated through this, scheme. The
usual advantage (in physical interpretation and in conse-
quent simplicity in calculations) of this scheme over the
conventional strong-field-coupling scheme is clearly
demonstrated in the present context dealing with heavy
transition-metal ions with d configurations. The princi-
ple of "electron-hole complementarity" (with proper
phase relations) between the d and d systems has been
established for the present scheme. However, the truncat-
ed results for the d system do not follow from those for
the d system. Thus, for example, the Hamiltonian ma-
trix for the d system in the ICS (with proper truncation)
breaks into A1, E, T„and T2 blocks of dimensions 2X2,
2X2, 1X I, and 2X2, respectively, whereas, for the d
system, we have A l, A2, E, T~, and T2 blocks of dimen-
sions 2X2, 1X1,2X2, 3X3, and 3&3, respectively. It is
worth noting here that a reasonable truncation of the con-
ventional strong-field-coupling scheme for the d system
produces comparatively large blocks, namely A&, A2, E,
Ti, and T2 of dimensions 8X8, 4X4, 11X11, 12X12,
and 14&14, respectively, which are obviously not con-
venient in practice when we are interested in the group of
low-lying energy levels only, which are associated with the
prominent optical spectral lines. In addition, the
paramagnetic susceptibility can be easily evaluated by
constructing the relevant matrix elements of the
magnetic-moment operator with respect to a few wave
functions in the truncated ICS.

II. SCHEME AND THE PRINCIPLE
OF ELECTRON-HOLE COMPLEMENTARITY

The three single-electron energy levels in the
intermediate-coupling scheme' are y81 (fourfold degen-
erate), y7 (doubly degenerate), and y8„(fourfold degen-
erate) in order of increasing energy values. We accommo-
date the six d electrons in these basic levels in various
ways, and construct the symmetry-adapted wave func-

~ nl n2
tions for each configuration; y8t y7 y8„(ni,n3 &4; n2 (2;

ni+n2+n3 ——6). This task of the construction of deter-
minantal (antisymmetric) wave functions for the different
configurations of the d system follows the procedure
described in Ref. 1. The next step in the scheme is to ex-

nl n2n3
press the y8~ y7 y8„wave functions in terms of the

nl n2n3 1
y8t y7 y8 wave functions. These transformations for all'2

the wave functions of the d system are given in matrix
form in Appendix A (Ref. 4) [Tables I(la), I(lb), . . . ,

I(5b), I(5c)]. The final step is to express the y8,
' y7'y8,'

wave functions in terms of the strong-field-scheme wave
functions symmetry adapted to the irreducible representa-
tions of the octahedral double group Oj, . These transfor-
mations are given in matrix form in Appendix B (Ref. 4)
[Tables II(la), II(lb), . . . , II(5c), II(5d)]. The strong-
field-scheme wave functions used here are the R forms
(for definition, see pp. 250—252 of Ref. 5), so that a direct
complementarity relation exists between a state

t2 (Sl1 1)e (S212)SI MsMr &

of the d system and the corresponding state

I
t2q™(S1I1)e "(S2I 2)SI MsMr &

of the d system. This enables us to employ the same
electrostatic matrices of the d system (Table A29 in Ref.
5) in the present case of the d system by simply adding a
coristant term (9A —148 +7C) to each diagonal element.

In the ICS we find that a state of the y8,'y7'ysb config-.
uration of the d system is related (through the principle
of electron-hole complementarity) to the corresponding

l 2—n2 4 n3state of the y8, 'y7 'ysb ' configuration of the d sys-
tern (a =l, b =u or a =t2, b =e). A change of sign is in-
volved in each of the following complementarity relations:

3 3 ~ 2
I ys. y8b Aiai &~

I Y8ay1y8b—Alai &

3 2 3 ~

I y8. y2y8b, A i a i & ~—
I ysay8b, A ia i &,

3 3 2
I y8a38b A2a2&~

I ysay73 8b A2a2—&

I y 8a Y 7(E)y 8b(E)~A2a2 & ~
I y 8ay7(E)y 8b(E)—iA2a2 & ~

I y 8ay 2«» 8b(A1) Ey &~ I y '8a Y 7(E)—Y 8b(A1) EY &,

I y8ay7y8b& y &~
I y8ay8biEI

3 2 3 ~
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I raarab&&r &~ —
I r7rBb&EY) &

I rs. (A»y7ysb«) ~y &
—

I ra. (A1)rsb«);&r &,
3 3 2

I
'Yaa Ya'bi@y) I yaay7yab&EY ) &

I r Bar 7(T1)y Bb(A 1)iT13 &

—
I r S.r 7(T1)r ab(A1)'»lr &

3 3 . 2
lrBarab 3 Tly&~ I—yaar7rab, 3, Tly&

I rsarab 1 Tl'r &~
I

y—say7yab 1'»'ly&

I raus 7yab&Tlr &~
I YBar7i ll

4 3

I r S.r 7(T2)YBb(T2) Tlr &

~—
I r Ba Y 7(T2)l Bb(T2)i T1r )

I r aay 7(T2)r ab(A1) , T2r '&

—
I r S.r 7(T2)r sb(A1) T2 Y),

3 2 3
I yaa1 7l Bb&2&T2l &~

I yaa1 Bb&2&T2Y) &

4 2 2 2.
I YaaYBb T2Y)~ —

I r7Yab T2Y)

I rs. (T2)y7yab(A»' T2y & ~—
I rs. (T2)ysb(A I )'»2r )

3 3 2
I

'Y Sa'Y Bbi 3i T2'Y )~
I } Ba r7'Yah i 3i T2r )

I raayabi2iT2y &~
I Yaay73 Bbi2iT2r) .

(Here, a=l, b=u; or a=u, b=l; or a=t, b=e; or
a =e, b =t. )

Other complementarity relations do not involve any
change of phase. Thus, for example, we have

I yaay7&A la I & ~
I rab&A 1 a 1 ) &

I rs. r7yab ,Er &
I 'r7rab, Er &,

I
y' ra7(T1)r ab(T2) A2a2)

~
I r B.y 7(T1)r ab(T2)'A2a2&,

Ira. r7(E)ysb(T2) T Y) lra r'7(E)y Bb(T2) Tlr)
I y sa «)r 7r Bb(T2)& T2r & ~ I yaa«)yBb(T2) i T23

A comparison of the transformation matrices (in Appen-
dices A and 8 of Ref. 4) for the d system with those for

the d system given in Ref. 1 reveals these complementar-
ity relations.

III. ENERGY MATRICES

The lowest electronic configuration for the d system in
the ICS is y8I y7, giving the nondegenerate state

I ysl y7; A 1 ) only. Thus we must consider the next-
higher configurations ysly7ya„and yaly7ys„, which give
rise to the following energy levels:

4 4 4
I rail 7rBuiE)& I YSIY73 Su&Tl )& I raly7yau&T2) &

3 2 3 2 3 2
17 BI) 7YBuiA1) I yBIY7YSuiA2) I yaly7Yau E)

3 2 3 2
I rail 7'Yaui3&T2) I yaly7ysui2iT2) &

3 2 3 2
IrBIY7YB 3 Tl) lyaly7rs 1 Tl&.

The determinantal wave functions for these states in the
ICS are given in Ref. 4, Appendix C. These 11 unper-
turbed energy states (coming from the configurations
YBI Y7, YBI Y7YB, and rail 7ra ) ean now be treated4 2 4 3 2

through the perturbation of the electron-electron Coulomb
interaction (in the present scheme, ' the crystal-field poten-
tia1 and the spin-orbit interaction have already been con-
sidered in the unperturbed part of the Hamiltonian). In
our case of a heavy transition metal, ep(ys„) is much
greater than ep(yal ) and eo(y7)', so that the states coming
from the other higher configurations such as yslys„,
ysly7ya„, yalya„, etc. , are situated much higher (in energy
scale) than the 11 states already considered. Then the per-
turbation will be too weak to cause any significant "mix-
ing" of this group of 11 states with the other higher
states. Thus, me truncate our scheme by considering only
this group of 11 states and omitting all the other higher
states. The matrix elements of the Hamiltonian with
respect to these states can be constructed by following the
usual procedure, ' which consists of using the transforma-
tion matrices (in appendices A and 8 of Ref. 4), and then
employing the known electrostatic matrices in the strong-
field scheme (See Tables A28 in Ref. 5).

Since the two A 1 states
I yal y7, A 1 ) and

I ysly7ys„;A, ) are widely separated in energy scale, we
can neglect the interaction (through the perturbation) be-
tween them. Then, the energy values for the two A 1 lev-
els including perturbation wi11 be

&ralr7 Alai
I
~

I
ra'lr7 Alai & =14'&o(yal )+2&o(r7)]+15A +&(—30+6Cp4+8~6C13)+«15 —8Co2+ —"Cp4)

and

(3.1)

( YBI Y7ra Alai I
~

I yaly7ya. , Alai )
3 2 3 2

[3ep( r Bl ) +2EO( Y7 )+&o( y au )1+1 5A +8 ( —30+6Co2 —3Cp4+ 4~6C31 ) +C ( 12+ —', Co2 —
3 Cp4 ) . '

(3.2)

Next, the energy for the only A2 level is

(rBIy 7YS. A2a21~'1 yaly7YB A2a2 &
3 2 3 2

= [3eo(yal )+2eo(y7)+ep(y )s]u1+5A +8 ( —22+ 10Co2 —7Cpa+4W6C31)+C(12+ 3 Co2 —2Co4) .

Here, we use the same notation as in Ref. 1. Thus we have

Cm~ = cos 881n 8,

(3.3)

(3.4)
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with

t 2e=
10Dq + —,

'
g

(3.5)

where Dq is the usual crystal-field parameter; g, g' are the two spin-orbit —interaction parameters (since, as a result of the
covalency effects, the radial part of the wave function for a "rz" electron may be slightly different from that for an "e"
electron, two different spin-orbit —interaction parameters may be involved in general ).

Eo(ral ) eo(r7), and e'p(rau ) are the three one-electron energies in the ICS.' These are expressed in terms of Dq, g, and

eo(ral )=Dq ——,
'

g ——,
' [(10Dq + —,

'
g) +6/']'

eo(ra. )=Dq .' 0—+—'[(1o—Dq +—'0)'+ 4']'"
~0(r7) = —4Dq+0.

(3.6)

Furthermore, A, 8, and C are the usual Racah parameters appearing in the electrostatic matrices.
We must take into account the interaction between the two E states. Then we have a 2X 2 E block for the Hamiltoni-

an matrix. Diagonalization of this block will give the energies of the two perturbed E levels and the corresponding wave
functions. The matrix elements for this block are given below:

&ralr7rau~EY I ~l Y8lr7rsu~E3 &
3 2 3 2

=[360(ral)+260(3 7}+e'0(Y8u }]+152+8( —26+2C02+C04+4W3Cla)+C(12+2Co2 —Y3Co4)

&r Slr7ra Er
I ~l ralr7ra Er&='8( —4CIQ+ —,'Cia ——', Cl )+—,'C(Clz),

&r813 7Y8,Er I ~l ralr7ra Er &'4 4

(3.7b)

[4ep( Y81)+so(3 7)+so( Y8u }]+152 +B(—26 —2Coz+3C04 —4W6C3, )+C(12—2Coz+ 3 C04) . (3.7c)

Here, y =0 or e.
Similarly, the three Tl states give rise to a 3 X 3 Tl block for the Hamiltonian matrix. The associated matrix elements

are as follows:

& Y8lr7rau i Tir I
~

I r81 Y7rau i Tl r &
4 4

[4'(ral)+ (erp)+7(eros )]u+ 152 +8 [—26+ 14Cpz —29C04+ 12CQS —2'(C3, +2C38 )]

+ 3 C(38—12Co2+10C04}

&3 81r7rs Tir I
~

I r81r7ra. , 3,Tir &
4 . 3 2

(3.8a)

=B —W5( 5 Csp+ 2C38+ 9 Cl4) + (3C4l + C23 ) — C(2C10+ 14Cl2) q (3.8b)4 3~6 1

5 3 5

4 3 2
&r81r7rs Tlr I

~
I r81 Y7Y8 1 Tlr &

r

2 2' +2=8 ( —12Clp +23Cl2 —10Cl4 ) + (2Cpl —3Cp3 +2Cll5 ) C (3C10—4Cl2 + 5C14)
3 5 15 3 5

(3.8c)

& rslr7rsui3 Tl'Y
I
~'I r81'Y7'Y8u e3i Tl'Y &

3 2 3 2

=[3@0(YSI)+2'(r7)+eo(rsu)]+153+ —,'8[—146+2C02+.13C04+4W6(2C»+C»)]+ —,', C(182—70Coz+60C04),

(3.8d)

&rslr7rsu~» Tir I ~I ra'lr7rau~ i lTl r& +g+[68c22+2~~(4c31 7cl3)]+ ~g c( 3c20+7c22)

& YSIY7Y8 1 Tlr I
~

I ralr7ra. , 1;Tir &

= [3@0(rsI}+2@0(r7)+e'0(rsu )]+152+B[——,
' (134—22C02 —3C(g)+4M 6( —', C3, +C,3)]

+—„C(198—40C02+ 216C04) .

(3.8e)

(3.8f}

Here, y = 1, or 0, or —1.
Finally, we have three T2 states which give rise to a 3 X 3 T2 block for the Hamiltonian matrix. The associated ma-

trix elements are as fo11ows:
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( Y81r7YSu& T2r I
~

I r81Y7YSu &T2 Y &
4 4

[4&p(rsl )+~p(y7)+ep(ysu )1+15A + 3 B[ 70 14CQ2+9CQ4+4 6( C31+2CI3 }]+ 3 C(38—8Cp2+ 10CQ4)

(3.9a)

(rsly7Y8 T2y I
~

I yslr7r 8„,3;T2y ) = —,8 [10C3o+V 6(4CQI —CQS)l+ 3 C(C3o }

(rsir7rs 'Tzr
I
~

I ySIY7ysu» T2r ) =
3 B [4CIQ —CI2 —6C14+~6( —6CQI+13CQ3 —10Co5}1+ C(C&o —2C14)

(3.9b)

(3.9c)

(r81 Y7Y8u &3& T2r
I
~

I r8ly7r8u &3&I2 Y &
3 2 3 2

= [3'(ysi }+2ep(y7)+s'p(ysu )]+15A + 3 B[—70+ 14Cp2 —5CQ4+4W6(C3I +CIi )]+ 3 C(38—6Cp2+ 16CQ4),

(3 8lr7rsu&3&T2y I ~l r813 73 8u&2&T23 & 3 (C20 CQ2)(4B +C} &

(Y8iy7Y8 2 T2r I ~l rsIY7Y8 2 T2y&
3 2 3 2

(3.9d)

(3.9e)

= [3&o(ysI )+2eo(y7)+ so(ysu }1+15A —,
' B[58+—10Co2—19C~+8~6(C21 —Ci3 }1+—,

' C(38—4CQ2+2CQ4) . (3.9f)

Here, y = 1, or 0, or —1.

IV. MAGNETIC SUSCEPTIBILITY

As we have seen in Sec. III, the ground state transforms
as A I (in the octahedral double group 01', ), so that there is
only a temperature-independent paramagnetic susceptibili-
ty in first-order calculations. The general expression for
this susceptibility is given by '

X=—,'Np' g I @„I (kL, +2S, ) I @p& I
'l(E„—&Q), (4.1)

n

where N is Avogadro's number, P is the Bohr magneton,
I fp) is the wave function for the ground state with the

energy Ep, and
I f„)is the wave function for an excited

state with the energy E„.Because of the cubic symmetry
the three components of the susceptibility will be the

same, and only the z component is expressed in Eq. (4.1)
involving the z component of the magnetic-moment
operator IM =kL+2S, where L is the total orbital angular
momentum, S is the total spin, and k is a suitable orbital
reduction factor' which originates from the covalency
effects.

Since the ground state gp transforms as A„and both
L, and S, transform as

I T,O), the matrix elements in
Eq. (4.1) will be nonvanishing only for those excited states
which transform as

I
T10). There are three such states

with the wave functions which, upon diagonalization of
the TI block (given in Sec. III), are expressed as linear
combinations of the three unperturbed

I
T&0) wave func-

tions:

I
I'Ti0&=I

I ysly7ys. ;Ti0&+1(l
I ysly7ys. '»TI0&+y

I ysiy7ys. 1;T,o&, 1=1,2, 3 (4.2)

where (a;,P;,a;) are the three sets of combining coefficients. The matrix element of the magnetic-moment operator (p, )
between the ground state and each state can now be evaluated:

(4.4a)

(ysly7A I a I I p, I
i;TI0) =a; ( ysly7', A ia I I p, I ysly7ys„', TI0 ) +p; (ysly7', A ia I I p I y81r7Y8 3 T10 &

+ri (ySIY7&A Iai I s .I y8ly7ysu 1 TIo& (4.3)

where the matrix elements with respect to the unperturbed states can be easily obtained by using the determinantal ex-
pressions for the unperturbed wave functions given in Ref. 4, Appendix C. Thus we obtain

4 2. 4, 2 2~2
(rsl 3 7 Alai li . I YSly7YSu T10) 3 (+2+2)Col+ +1ClpV3

(rslr7 Alai I p I ysl3 73 8 3 TI0) (2J&'2 5)C11+ KI(C2Q CQ2}
4 2. 2 . . 4 2~2

3 S 15
(4.4b}

4 2. 32 . --2 2+6
(3 81Y7 Alai 11M. I rsir73 8 1 T10) ~ +2C11+ ~ +1(C20 C02} .v'5 v'5 (4.4c)
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Here, as in Ref. 1, we have used two different orbital
reduction factors to take into account any inequivalence
(resulting from covalency effects) of the dtz and de orbi-
tals: we have set k =k~ when p, has nonvanishing ma-
trix elements between a t2 orbital and an e orbital, and
k =kz when p, has nonvanishing matrix elements be-
tween two t2 orbitals.

symmetry in the ligand field (these are, as usual, Ds, Dt
for D4h symmetry and Do,D~ for D3d symmetry). These
matrix elements can be evaluated by using the deter-
minantal wave functions (given in Ref. 4, Appendix C)
through the general scheme.

VI. CONCLUDING REMARKS

V. EFFECTS OF LOVER-SYMMETRIC FIELDS

.As discussed in Ref. 3, there are complexes which
suffer deviations from perfect cubic symmetries. T' he
cases of tetragonal (D4h} and trigonal (D3d} distortions
are the most common. In such a case, the interelectronic
Coulomb interaction together with the lower-symmetric
part of the ligand field will be treated as a perturbation.
In the absence of distortions, the terins of the d system
correspond to the irreducible representations 3&, Az, E,
Ti, and Tz of the octahedral double group 0/. When a
lower-symmetric ligand field (associated with the distor-
tion) is introduced, these original terms generate new
terms corresponding to the irreducible representations of
the associated lower-symmetry group. The basis func-
tions for the new terms can be given in terms of the origi-
nal basis functions. The general scheme for these
transformations is given in Ref. 3. The perturbation in-
volving the interelectronic Coulomb potential ( V, ) and
the lower-symmetric part ( Vi) of the ligand field potential
causes mixing in each set of levels corresponding to the
same irreducible representation of the associated lower-
symmetry group. Thus there will be a Hamiltonian ma-
trix block for each of these irreducible representations.

According to the general scheme, we have, for the d
system in the presence of a tetragonal distortion, one 3 X 3
B& block, one 4&4 A~ block, one 3)&3 Az block, one
3&3 Bz block, and two conjugate 6&6 E blocks. Simi-
larly, in the presence of a trigonal distortion, there will be
one 5)&5 3 ~ block, one 4&4 Az block, and two conjugate
8 X 8 E' blocks. The matrix elements for these blocks will
involve two additional parameters representing the lower

If we treat the d system through the conventional
strong-field-coupling scheme and truncate by considering
the configurations tz and tze only, we get the unperturbed
terms

I
&2 Al& I tze 'Ti&

I
tee'Tz&

I t,'e Ti), and

I
tze; Tz). These are split by the spin-orbit interaction

and generate the terms

tz 'Ai~Ai)
I
tee' Ti~Ai) I

t2el Tl~E)
I&re 'Ti~Tz& Iree 'Tz~Tz)

Ti ~Ti ) I
rze +z~Az )

I
rze Tz~E)

I tze Tz~+1 ) I tze

Thus, a group of 11 terms is obtained in this case also.
However, for heavy transition metals the spin-orbit in-
teraction is quite urge. Thus the perturbation involving
the spin-orbit energy and the interelectronic Coulomb en-

ergy would cause a considerable mixing of these 11 levels
with the upper levels. If we neglect this mixing altogeth-
er, we are bound to obtain erroneous results. Hence, the
influence of the states coming from at least the next-
higher configuration, tze, should be considered. This
configuration gives six A i states, three Az states, nine E
states, nine T~ states, and eleven T2 states. Then we have
Hamiltonian matrix blocks of large dimensions, namely
Ai, Az, E, Ti, and Tz blocks of dimensions 8X8, 4X4,
11& 11, 12& 12, and 14& 14, respectively. This shows the
advantage of the intermediate-coupling scheme (over the
strong-field-coupling scheme) in the present case of a
heavy transition-metal ion with the d configuration: the
truncation in the intermediate-coupling scheme produces
matrix blocks of much smaller dimensions, giving useful
results very easily and neatly.
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