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The luminescence spectrum of modulation-doped quantum wells is investigated theoretically with regard
to the many-body effects caused by the extra conduction electrons. In the zero-temperature limit vertex
corrections are shown to be unimportant, so that the emission frequencies are determined by the self-
energies of the valence-band holes and the conduction-band electrons. Calculations of the self-energies are
carried out perturbationally, using the plasmon-pole approximation for the dielectric function. The electron-
and hole-energy levels are also calculated self-consistently by local density-functional theory. The results of
both theories agree satisfactorily with each other over a large range of conduction electron densities and ex-
plain recent experiments [Pinczuk et al., Solid State Commun. 50, 735 (1984)].

Modulation-doped GaAs-Ga,_-,Al,As quantum wells are
well suited for the study of electron correlation effects be-
cause of the very high mobility of their conduction-band
carriers.! Recently, optical experiments have revealed a
reduction of the band gap in these systems with respect to
the bulk GaAs,2 which is a nice example of an intrinsic
many-body effect. The related band-gap shrinkage in heavi-
ly doped semiconductors,® is, in contrast, affected signifi-
cantly by the strong perturbation from the ionized
dopants.*® In the present Rapid Communication we will
discuss the theory of the luminescence spectrum of
modulation-doped quantum wells. Numerical results for the
renormalization of the emission frequencies in modulation-
doped GaAs-Ga;_,Al,As quantum wells are compared with
the experiment.?

The cross section for spontaneous light emission do®™/
dwdQ is determined by Fermi’s golden rule, assuming
thermal quasiequilibrium of the excited carriers prior to
recombination. In sufficiently perfect samples the lumines-
cence is dominated by direct electron-hole recombinations
in the quantum well, so that the cross section reads
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where ¥, (w) is the analytic continuation of the Fourier
transform of the electron-hole two-particle Green’s function
. (7) to the real axis. uo, and u, are the chemical poten-
tials of the electron and hole systems relative to the band
edges of the bulk material of the quantum well (GaAs). The
fundamental energy gap of the bulk is denoted by E,. The
matrix element M will not be considered any further, since
we are not interested here in absolute intensities. The ener-
gy dispersion of conduction-band electrons and valence-
band holes is taken to be positive.

Using perturbation theory many-body effects on %, may
be separated into the renormalization of the electron and
hole lines by the self-energies and the so-called vertex part.
A general treatment of the vertex part which describes the
interaction between the electron and hole under considera-
tion is complicated. However, for not too high intensity of

31

the photoexcitation radiation the hole density in
modulation-doped quantum wells is small compared with
the conduction-electron density. In this case the vertex part
may be neglected for the following reason. At zero tem-
perature and for a vanishing number of holes luminescence
originates exclusively from the annihilation of electron-hole
pairs at k=k’'=0. Any scattering of this pair into a higher
momentum state is energetically unfavorable, since by
phase space occupation an energy gap of the order of the
conduction-electron Fermi energy has to be surmounted.

The intuitive result can be verified in the ladder approxi-
mation for the vertex part and the quasiparticle pole approx-
imation for the one-particle Green’s functions. Assuming,
for example, a screened Coulomb interaction (V) indepen-
dent of k and w, we get
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to the lowest order in the number of holes N,. & and E,’:
are the renormalized quasiparticle energies of the electrons
and holes, respectively, and ky is the Fermi wave vector of
the conduction electrons. The shift of the luminescence fre-
quency is thus given simply by the sum of the renormalized
quasiparticle energies at the top of the valence band and the
bottom of the conduction band, as assumed without discus-
sion in previous approaches to the problem in heavily doped
semiconductors.3-? The second factor in Eq. (2) renormal-
izes the emission intensity only. An artifact of the assump-
tion of the 3-function electron-hole interaction is the loga-
rithmic divergence of the sum over the wave vector in Eq.
(2). However, the discussion is readily generalized to the
case of wave-vector-dependent potentials where this prob-
lem does not arise. The above arguments may be extended
to the elastic scattering from impurities, which is of interest
for heavily doped semiconductors. The neglect of the ima-
ginary part of the self-energy might be less justified in this
case, however.

In the following we will discuss the energy shift by two in-
dependent approaches in order to gain some idea of the
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quality of the approximations. On one hand, the self-
energies are calculated explicitly for a two-dimensional sys-
tem. The finite width of the quantum well is taken into ac-
count by weakening the Coulomb interaction by form fac-
tors®? obtained from variational wave functions for the elec-
trons and holes confined to the well. The use of variational
wave functions can be avoided on the other hand by local
density-functional theory!® which allows for a numerically
exact treatment.!! Exchange or correlation is taken care of
in this case by the use of effective one-particle potentials
which are parametrized on the basis of the interacting
three-dimensional electron gas. In both cases the plasmon-
pole approximation!? to the dielectric function has been
chosen to calculate the electron correlation, since it com-
bines computational simplicity with satisfactory accuracy.’
We adopt the values 0.068 and 0.4 for the effective masses
of electrons and holes (in units of the free electron mass)
and 12.9 for the dielectric constant.

The real part of the self-energies for two-dimensional sys-
tems is calculated following Ref. 9. The screening of the
bare Coulomb interaction is described by using a plasmon-
pole approximation to the dielectric function of the two-
dimensional electron gas. The form factors are determined
by the envelope wave functions of the confined electrons
and holes perpendicular to the interface which are
represented here by single Gaussian wave functions. Form
factors and energy expectation values can be. expressed
analytically. The self-consistent model for the electron wave
function is then easily determined variationally in the Har-
tree approximation, while the hole wave function has to be
optimized in the field of the conduction-electron charge
density.

The eigenvalues of the Kohn-Sham self-consistent equa-
tions for the inhomogeneous electron gas'® may be used as
an approximation to the required one-particle excitation en-
ergies.!?> Electron-gas exchange-correlation potentials in
conveniently parametrized forms are abundant in the litera-
ture. Here, the Gunnarson-Lundqvist potential* is used,
which is based on calculations within the plasmon-pole ap-
proximation. The exchange-correlation potential for the
hole system u!; is equal to the self-energy at k=0 of a posi-
tively charged particle in a three-dimensional electron gas.
We have calculated this quantity in the plasmon-pole ap-
proximation recommended in Ref. 12. For equal masses
our results agree with those from the random-phase approx-
imation (RPA) calculations of Ref. 15 within about 3%. In
GaAs the mass ratio is m,/m, =0.068/0.4=0.17 which
modifies the self-energy considerably. With an accuracy of
about 2% over a large range of densities the following for-
mula reproduces the calculations (in effective rydberg
units):

wl(ry) = —2[\/mar,(1+ Ard*+ Br}/8)] -1, 3)

where r, is the electron-gas density parameter,
a=(4/97)3, 4 =126, and B= —0.58. A4 is determined
by the large-r; expansion of the plasmon-pole self-energy
and B is a fitting parameter. Similar calculations for the
self-energies of holes exist for bulk GaAs.” The results are
not strictly comparable, however, since contrary to the bulk
calculations the coupling between heavy and light holes
should be neglected in narrow quantum wells.

The numerical results obtained by both methods are sum-
marized in Figs. 1-3. The calculations have been carried
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FIG. 1. Subband energies of conduction electrons in modu-
lation-doped GaAs-Ga;_,Al,As quantum wells (0—first subband;
1—second subband). The dotted line indicates unoccupied levels.
The curves labeled ‘‘Hartree” represent the results of calculations
in the self-consistent Hartree approximation [continuous curve
—variational (Gaussian) wave function; dashed curve—numerical
wave function]. The Hartree results are modified by exchange
correlation as shown by the curves marked ‘““many body”’ (continu-
ous curve -—self-energy added; dashed curves—self-consistent
results using a local exchange-correlation potential, Ref. 14).

out for a width of 250 A of the GaAs layer and an alloy
parameter x =0.12. Using Dingle’s rule!® this corresponds
to conduction-band (valence-band) potential-barrier heights
of 125 (22) meV. The curves labeled ‘‘Hartree’ show the
energies obtained in the Hartree approximation by both
methods. The density-functional theory may be considered
in this approximation as a numerically exact reference. The
curves labeled ‘“many-body’’ display the results which are
obtained by including the self-energies and exchange-
correlation potentials, respectively.

The agreement of the results of the variational method in
the Hartree approximation with the corresponding ones of
density-functional theory is at low densities a direct measure
of the quality of the model wave function. In this case the
deviations of the electron energy levels (Fig. 1) are solely
due to the lack of flexibility of the single Gaussian-type en-
velope function. The wave function of the hole is well
described by a single Gaussian, as can be judged from Fig.
2. At high densities the second electron subband becomes
occupied, but with a single variational wave function only
one subband can be formed. The lack of occupation of the
second subband in the variational method at high densities
increases the difference between the computed energy levels
of the conduction electrons (Fig. 1). On the other hand the
energy levels of the hole system become too low in the vari-
ational calculation (Fig. 2), because the Hartree potential for
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FIG. 2. Energies of the first subband of valence-band holes in FIG. 3. Energy shifts of the luminescence radiation in

modulation-doped GaAs-Ga;_,Al,As quantum wells. The curves
labeled ‘‘Hartree’’ display the results for a hole in the Hartree po-
tential of the conduction electrons (cf. Fig. 1) [continuous curve
—variational (Gaussian) wave function; dashed—numerical wave
function]. The Hartree results are modified by exchange correlation
as shown by the curves marked ‘‘many-body’’ [continuous curve—
self-energy added; dashed curve—self-consistent results using the
local exchange-correlation potential Eq. (3)].

the holes from the conduction electron density of the
Gaussian wave function is too attractive. In the sum of
electron and hole energies (Fig. 3), which amounts to the
desired line shift, the errors thus cancel to a large extent.
In the Hartree approximation the errors are less than 1 meV
over the whole range of densities considered.

The many-body shifts computed by both methods are re-
markably similar. The lowering of the energy levels is prac-
tically the same for the electrons (Fig. 1), while in case of
the holes density-functional theory predicts slightly higher
subband energies (Fig. 2). If many-body effects are con-
sidered the computed modifications of the energy gap turn
out to be practically identical for both methods.

In Fig. 3 the experimental result is indicated in the form
of dots which correspond to slightly lower energies than the
peak positions of the main emission lines.2 [Note that the
alloy parameter of the low-density sample (x=0.23) differs
somewhat from the others and from the calculations.] In
the present theory the transitions from the second subband
are forbidden. The experimentally observed emissions point

modulation-doped GaAs-Ga; _,Al,As quantum wells relative to the
energy gap in bulk GaAs (0—transitions between the first sub-
bands;, 1—transitions between the second subband of the conduc-
tion electrons and the first subband of the valence-band holes).
The results are obtained by adding those of Figs. 1 and 2. The
second electron subband is not occupied for the densities corre-
sponding to the dotted line. The filled circles indicate the experi-
mental results (Ref. 2) relative to the band gap of bulk GaAs of
1.519 eV.

to unknown imperfections of the quantum wells which add
some uncertainty to the quantitative interpretation of the
data. Still, the agreement between experiment and theory is
rather satisfactory, also for the transitions from the second
subband. It would be desirable to have more experimental
results available to be able to corroborate the trends in the
calculations for a larger spread of sample parameters.

In conclusion, we find a generally good agreement
between the results of the different methods and between
calculations and the available experimental data. It is ex-
pected that by changing the charge density in modulation-
doped quantum wells it is possible to vary the band gap in
these systems over several meV relative to the energy gap
of bulk GaAs.
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