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In order to calculate the electrostatic contributions to the elastic constants of piezoelectric crystals, Fuller
and Naimon /phys. Rev. B 6, 3609 (1972)] used the conventional method of homogeneous deformation by
evaluating the lattice sums using the Ewald transformation and omitting the zero-wave-vector term. This
procedure, however, lacks justification, since it is well known that the conventional homogeneous deforma-
tion theory breaks down for piezoelectric crystals. We develop here the full theory for this case. (The use
of a new technique for performing the Ewald transformation makes the treatment much simpler. ) The
theory verifies that the procedure of Fuller and Naimon will give the correct contribution to the elastic con-
stants. We also explain why the zero-wave-vector term remained absent in their treatment. Moreover, we
derive for an arbitrary crystal structure some relationships between the electrostatic contributions to the dif-
ferent second- and third-order elastic constants. In view of these relationships, one has to calculate a lesser
number of electrostatic contributions for a given crystal structure, and some of the. evaluations of Fuller
and Naimon become redundant.

I. INTRODUCTION

Fuller and Naimon' (abbreviated as FN in this paper) in
their detailed tabulation of electrostatic contributions to
elastic constants, applied the method of homogeneous de-
formation to a number of metallic and ionic crystals. Their
procedure was to use the Ewald theta transformation in the
expression for the electrostatic energy of the deformed crys-
tal, without considering the zero-wave-vector term. But
some of the crystals concerned are piezoelectric in nature
and it is well known that the standard method of homo-
geneous deformation breaks down for piezoelectric crystals
(Ref. 2, Secs. Il and 25). This failure is traced to the fact
that some of the Coulomb sums occurring in the expression
for the strain energy density become indeterminate in the
limit of an infinite crystal, as they involve the macroscopic
electric field which develops as a result of strain. Therefore,
a rigorous demonstration of the logic underlying the pro-
cedure of FN has yet to be performed. For this purpose,
one has to develop the full theory of homogeneous defor-
mation for piezoelectric crystals, since it would not be possi-
ble to discuss the elastic and piezoelectric effects in isolation
(Ref 2, p. 229). Born and Huang were the first to build up
a microscopic theory by going over to the long-wavelength
approach and by separating out the macroscopic electric field
from the indeterminate lattice sum. Recently, it has been
shown'" that the same separation can be achieved in the

homogeneous deformation theory without using the theta
transformation. In the present paper we show that, within
the framework of homogeneous deformation theory, the
separation can be achieved by using the theta transforma-
tion for evaluating the troublesome Coulomb sums. {In-
cidentally, we use a new technique' [see Eq. (9) below] for
performing the theta transformation, which leads to the fi-
nal result more easily than in the conventional approach. }
We shall justify the procedure of FN by showing that the
whole of the zero-wave-vector term is connected to the
macroscopic electric field, as in the long-wavelength theory.
Furthermore, we shall derive for an arbitrary crystal struc-
ture, some relationships between the electrostatic contribu-
tions to the different second- and third-order elastic con-
stants, that were not noticed by FN. These relationships
make some of the calculations of FN redundant.

We shall now present (Sec. II) the homogeneous defor-
mation theory for second- and third-order elastic constants
and then discuss (Sec. III) the relationships between the
electrostatic contributions. In the concluding section, we
explain why the term containing the electric field is absent
in FN's treatment.

II. HOMOGENEOUS DEFORMATION THEORY

We consider a piezoelectric single crystal of finite but
macroscopically large size, which has the shape of a paral-
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u(lk) = r(lk) —rp(ik) = vrp(lk) + u(k) (2)
'l

lelopiped, with each face perpendicular to a primitive
translation vector, and with two parallel faces much larger
than the other faces. This ensures that the macroscopic
electric field and the macroscopic polarization developed in
response to a homogeneous macroscopic strain are also
homogeneous. Furthermore, we shall assume that all
relevant physical properties satisfy periodic boundary condi-
tions so that a quasicontinuous space of allowed wave vec-
tors q exists. These wave vectors satisfy the well-known
equality, '

/exp(iq rI) =W Qg~o, (1)
l G

where rl is the position of the I th lattice site, N the number
of unit cells in the lattice, and 6 denotes a reciprocal lattice
vector.

When the sample is subjected to a homogeneous stress,
the kth particle in the I th lattice cell suffers a displacement

where v is the homogeneous macroscopic strain tensor,
u(k) the internal strain for ions of type k, and r(lk) and
rp(ik) the final and initial equilibrium positions, respective-
ly. This deformation produces a Lagrangian strain

l
S = V+~VV (3)

and a polarization

P= (1/ V)e~u(k) (4)

under the assumption that the ions are rigid, where ek is the
charge of the kth ion and V the volume of a unit cell in the
deformed configuration. (Summation will always be implied
over repeated Cartesian and other indices. )

We expand now the strain energy per unit undeformed
volume about the initial configuration up to terms cubic in
the macroscopic and internal strain as (see Sec. 11 of Ref. 2
and Refs. 4 and 7),

k k' k k k' k"
ig'=~A u (k)u~( k')+A P y u (k)ss„+~A (aPye)s, ps„, +~8 u (k)ua(k')u~(k")

k k' k
+ ~B ~ y e u~(k) u~(k') „s, +~B Pye( u~(k)s~„s,t+ ~B(nPye(q)s~~s~, sr„

j

where n, p, etc. , denote Cartesian components and the coefficients A and 8 are certain lattice sums to be evaluated in the
I r

initial configuration. It can be seen that the Coulomb parts of A ("s~ ) and 8("a"„e), viz. ,

and

k k'
A = (eI,/Vp) 8 „, X — g [eI, (1/rp )(3rp rpa —8 &rp )]

lok0 lo

ko —k
t

k k'
8 y e = (eI,/Vp) 5 „X— X eI, [(3/rp )(5 srp„rp, +~5 „rp&rp, +~8,r&»rp„

i loko lo
Iko=k

+~ha„rp rp, +~ga, rp rp„) —(15/rp )rp rp&rp„rp, ]

(6a)

(6b)

are both indeterminate in the limit of an infinite crystal and are, therefore, surface dependent. [rp= rp(lpkp) —rp(ik) and Vp
is the volume of a unit cell in undeformed configuration. ] To proceed further we have to separate from these coefficients,
the part that involves macroscopic electric field. FN in their treatment overlook this point and hence their subsequent
development lacks justification.

We consider a hypothetical configuration A, ~here the particles have suffered only the macroscopic strain v but no inter-
nal strain,

R(lk) = rp(lk) + urp(lk)

The coefficient of Eq. (6a) evaluated at A can be written as

k k'
=(e /V) 5,„, X—

loko

8 1
eg,

p

ko=k

where R = R(lpkp) —R(lk). To transform this Coulomb sum we start with the Fourier transform relationship
r

1 "1, q2—erf(ro) =
2 J~ 2 exp iq r—,dq .f 27K g 4o.

To prove it, one may calculate the inverse Fourier integral

Ji —erf(ra)exp( —iq r)dr
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by first performing the angular integration and then using a standard formula. Here, erf x is the error function and a. is an
arbitrary real parameter. We write now (1/r) in Eq. (8) as (1/r)erf(ra. ) + (1/r)erfc(ra. ), use Eqs. (9) and (1) in order, and
convert the integration over q to summation, to obtain finally,

k k' k k' k k'
+Ms~ + (4m/V')e„e„, lim(q qp/q') (10)

where
f t

r

= (ek/V) 5„„, X — X ek IR~Rpf(R, a) —~5 pR )f (R, a) —(4a /JmR )exp( —R a )])
lok 0 Io

Iko=k

(10a)

with

k k'
Wa~ = (4n/V')ek X(G Gp/G')f(G, R, a)

G

f (R, a) = (3/R5)erfc(R a)+ (6a/JnR )(1+~R2a.2)exp( —R a.2)

(10b)

and

f(G, R, a-) = e„exp(i G ~ R„)—5„„gek exp(iG RI, k) exp( —G /4a. )
ko

In the above, the summations exclude R = 0 and 6= 0 terms, erfc x is the complementary error function, 6 a reciprocal lat-
tice vector in the configuration A', and R „=R(lk) —R(lk').

To interpret the last term in Eq. (10) which has no unique limit, we note that the macroscopic electric field E in the speci-
men is the field due to a homogeneous polarization P given by Eq. (4). This field may be regarded as the q 0 limit of the
field due to a continuous dipole distribution given by

p(p)=Pexp(iq p)

where p varies continuously over the space occupied by the sample. One obtains therefore,

E = —lim4n (q qp/q )Pp,q~ 0

so that Eq. (10) can be rewritten as

(12)

k k' k k' k k'
A~ up(k') = WD~ + Ws p p

up(k') —(ek/ V)E
t /

(13)

We now expand every term of this equation about the initial configuration in powers of Lagrangian strain, using Eqs. (3),
(6a), (7), (10a), and (10b), and retain terms up to the first power in s. T'his gives

k k' k k' k k' k k'
up(k')+8' y e u, (k' )s„, ~ + W, u, (k')| I

k k' k k'
+ ~D y e + ~R y e up(k')s„, —(ek/Vo)E~ . (14)

r

Here, all the coefficients and summations are to be evaluated in undeformed configuration, B ("
p ys) is as defined in Eq.

(6b), WD(" p ) and Wg ("p ) are given by Eqs. (10a) and (10b) with volume V replaced by Vo, all the R by ro and G by Go
(the reciprocal lattice vectors corresponding to an undeformed lattice), and

k k'
WD ~ y e = (eg/ Vo) 5 i g X ek t(5 pfo&ro + 2 5 &ropro + +5 ropr++ T5p&ro ro + T5p rp ro )f (ro, a )

lok0 lo

ko= k
t

—ro ropro„ro, [(5/ro )f (ro, a ) + (8a. /Jnro2 )exp( —rfa2)]) (15a)

r

y e = (4mek/Vo ) X(GoaGopGoqGo&t(2/Go )+ (1/2a. )]—
5& Go Gop &5aqGopGo —&5 GopGoyA

Go

—~5p~GoaGoe —~5p.Go Gor) (1/Go )f (Go, ro, a) (15b)



8278 COMMENTS 31

It is interesting to recast Eq. (14) in a different form for the special case of bulk strain sy, = Sy,s. Thus, we consider a sam-
ple which has the shape of a sphere in the initial (and hence the final) configuration with center at the site (lk) and radius g,
and denote the corresponding coefficients by A~c and 8~. We note that the lattice sums WD and Wg, being convergent, are
independent of the shape of the sample, but the macroscopic field becomes —(4yr/3)P. This gives an expression for

, k k' k k' k k' k k'
+ Ws up(k')+ g ~o y y + Wtt y y suit(k')

I !

in terms of P, Ate, and Btc, so that Eq. (14) can be written with the help of Eq. (4) as

k
Ac utt(k')+ QB y y sun(k') = At —(4yr/3) (eke, /V02)5 tt utt(k')

y |
k k'

+ g Bt y y + (47r/3)(eke„, /Vo )8 ~ suit(k') —(ek/Vo)E . (16)
y

k k' k k' k k'

p
= ~D

p
+ ~R

p
(17a)

We point out here that FN have also derived expressions
similar to those in Eqs. (10a), (10b), (15a), and (15b), with
the difference that they used in place of internal strain, the
quantity u(k)+vu(k). The present derivation shows how
easily such expressions can be obtained by using Eq. (9) in

lieu of the usual Ewald transformation.
Equations (14) and (16) achieve separation of macroscop-

I

ic electric field from the indeterminate coefficients 2 c(k s )
t

and Bc("&y~). We have shown elsewhere3 that from
these separation equations one may obtain the expressions
for second- arid third-order elastic and other constants, by
minimizing the strain energy density 8' with respect to
internal strain. Closely following that derivation, it is found
that in the expression for elastic constant, - no contribution
comes from the term involving E in Eqs. (14) and (16).
One concludes, therefore, that, although Coulomb contribu-

I I

tions towards the coefficients 2 (" tt ) and 8 ("
& y .) are ac-

tually undefined (for an infinite sample), one can obtain the

Coulomb terms [C("tt ) and C(" s «.) say, ] that arise from
these coefficients in the expression for Brugger second- and
third-order elastic constants, by omitting the term involving
macroscopic electric field, i.e., the q 0 limit, from the
Ewald expansion, Eq. (10). This is exactly the method
which FN have followed and the present theory thus justi-
fies their procedure. We find furthermore that

k k'
gC = —4yr (eke„,/ V02 ) (19)

Similarly, Eq. (6b) gives

k k' k k'
yy = —3Ac

y

so that from Eqs. (17b) and (18b) we have

k k' k k'
gC yy = —3C
y

(20)

Lastly, from Eqs. (17a) and (18a) one can ver'ify, with the
help of Eqs. (10a), (10b), (15a), and (15b), that

k k'
C p p —C

k k'
y k k' k k'

up = —C —C
,u P , 2 ,P P,

(21)

k k' k k'
C

p ye =Cp ye (22)

crystal structure. First, we note from Eq. (6a) that
I

X A c("" ) is zero, whatever the shape of the sample.

Equation (17b), therefore, gives

k k'
(4m/3) (ege„,/ V )5O2tt, (17b) k k' k k'

C u p —C uu u u p

k k'
u =C (23)

k k' k
u p uye =MD

k' k k'

p y e +MR
p y e

k k' k k'
XC p y y = ~t p y y +4m(ee /V02)8 p

(18b)

In view of these hitherto unnoticed interrelationships
[Eqs. (19)—(23)] one now needs to evaluate a lesser
number of Coulomb contributions awhile calculating the elas-
tic constants for a given crystal structure. Thus, in the tab-
ulation by FN for cubic zinc-blende, WC-type (ionic hexag-
onal close packed), and wurtzite structures, a total of 29
evaluations become redundant. For example, for cubic
zinc-blende structure, one obtains by invoking cubic sym-
metry in Eq. (19),

III. INTERRELATIONS BETWEEN ELECTROSTATIC
CONTRIBUTIONS = —(4w/3) (eq/ Vo ), u = 1, 2, 3 (24)

We shall now derive certain relationships among the elec-
t t

trostatic contributions C("tt ) and C("$ y. ) for an arbitrary
and we have evaluated this Coulomb contribution purely
from analytic considerations



31 COMMENTS 8279

Besides, we have verified that the results obtained by FN,
after proper conversion as regards definition, etc. , satisfy
Eqs. (19)—(23), in every case; this, incidentally, serves as a
check for their numerical results.

To conclude, we point out that Eqs. (19) and (20) are
also derivable (by using Ewald transformation), from the
expressions for WD, Wz in Eqs. (10a), (10b), (15a), and
(15b). Hence, Eqs. (19)—(23) can also be obtained from
the expressions given by FN, but that derivation will be
more lengthy.

IV. FULLER AND NAIMON'S PROCEDURE

It is physically obvious that the electrostatic energy of a
strained piezoelectric crystal should involve a macroscopic
electric field. We shall now discuss why such a term did not
appear in the treatment of FN. Their procedure was to
write down the expression for electrostatic energy per unit
initial volume in strained configuration as

1 ekeko
U; =

2 Vox, Xk„(r/z)

[where A. = ( Vo/n)ti3, n being the number of ions per unit
cell] and then substitute in it the definition of the I" func-
tion to obtain

1
reao '

U; = g eke + drt ' exp-
2VO~ I k k0 0

(25)

Then they interchange the order of summation and integra-

tion and this is the step which is objectionable, because the
summand is indeterminate and the lattice periodicity is lost
due to surface sensitivity [see Eqs. (6a) and (6b)]. There-
fore, Ewald transformation is not applicable as such and, in
view of the basic idea involved therein (Ref. 2, p. 250), the
correct procedure would be rather to perform Fourier
transformation of the integral dt r 'i exp( —mr t/A2). It

0
is clear that, in the zero-wave-vector term obtained by this
procedure, the order of the q 0 limit and integration over
t will be the reverse of that in FN's expression. Thus, U;
will now contain the term

r

) 2 2

X ekek lim J dr t exp iq ~ rk k-
k k 0 4mt

0

which becomes, on account of the charge neutrality condi-
tion,

(w/ Vp V) ( lim q qp/q ) g ekekorkok rkokpq-0 k k0

We conclude, therefore, that, to FN's expression for elec-
trostatic energy [Eq. (8) therein], one should add the above
correction term which, as seen from Eq. (12), will involve
macroscopic electric field.

ACKNO%'LEDG MENT

One of the authors (S.D.) acknowledges the financial as-
sistance of the National Council of Educational Research
and Training.

~E. R. Fuller and E. R. Naimon, Phys. Rev. B 6, 3609 (1972), re-
ferred to as FN.

2M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Ox-
ford Univ. Press, London, 1954).

S. ,Dasgupta and S. Sengupta, J. Phys. C (to be published).
4S. Dasgupta and S. Sengupta, Phys. Lett. 107A, 266 (1985).
5For another application of this technique, see S. Dasgupta and

S. Sengupta, J. Phys. C 18, L47 (1985).
See, for example, J. M. Ziman, Principles of the Theory of Solids

(Cambridge Univ. Press, London, 1972), pp. 26 and 57.
7S. Dasgupta, Phys. Rev. B 30, 7250 (1984).
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and

Products (Academic, New York, 1980), formula (6.311).
See Born and Huang, Ref. 2, p. 249. Although their derivation

does not take into account surface charges and therefore breaks
down in general, for q=0, it does hold true in our case, on ac-
count of the chosen shape of our sample.


