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Small correction to the quantization of Hall conductance due to
current-current interactions and charge redistribution
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The self-consistent Hall potential, current, charge, and magnetic-field distributions of an interacting elec-
tron gas with filled Landau levels in a thin strip are calculated. A Hartree approximation recently described
by MacDonald, Rice, and Brinkman ]Phys. Rev. 8 28, 3648 (1983)] is extended to include the thickness of
the strip and the effect of current-current interactions. It is found that the weighting of the Hall potential,
current, and charge distributions toward the edges of the strip increases with decreasing thickness. This ef-
fect is due to the magnetic field generated by the current itself. The resulting self-consistent global charge
and magnetic-field inhomogeneities lead to a nonvanishing correction to the quantization of the Hall con-
ductance, which is nonlinear in the total current. For sample parameters corresponding to actual quantum
Hall experiments the calculated correction is extremely small (one part in 10 ).

I. INTRODUCTION

The experimental discovery of the quantum Hall effect'
has stimulated much theoretical work on two-dimensional
electron systems subject to strong magnetic fields. In a re-
cent article' the shape of the Hall potential has been calcu-
lated for an ideal two-dimensional electron gas with com-
pletely filled Landau levels. The result is that the charge,
current, and Hall voltage distributions are weighted toward
the sample edges with a decay length into the bulk which
depends on sample size and magnetic-field strength.

Here, we extend the work of Ref. 3 to a strip with
nonzero depth. We further include the effect of the mag-
netic field S~ which is created by the current distribution it-
self. The numerical solution of the appropriate self-
consistent equation will show that the effect of this addi-
tional small field is not negligible in certain cases. Further-
more, owing to BJ and the redistribution of charge, the Hall
conductance shows a small deviation from the quantized
value, which will be esimated. As in Ref. 3 we shall restrict
ourselves to a system with n fully occupied Landau levels.

We consider a system of electrons confined to the strip

—L„/2 ~x ~ L„/2, —a /2 ~ z ~ a /2 (a && L„),
O~y ~ L„(L„&&L„)

In the presence of a constant magnetic field Bp in the z

direction and an imposed total current I in the y direction
the electron system reacts by a redistribution of charge and
current leading to a Hall field E such that, in classical terms,
the Lorentz force is compensated at each point inside the
strip. We define

t

8= grad( V)/e

where V is the potential energy and —e the charge of an
electron. Our task is to calculate V given Bp and I.

II. SELF-CONSISTENT EQUATION
FOR THE HALL POTENTIAL

In the following we neglect the small z variations of V and

B& inside the strip. These fields will be represented by their
values at z = 0. The total magnetic field is therefore

8(x) = [0,0,8(x)]= [0,0,80+ Bi(x)]

Assuming V(x) slowly varying' then in the neighborhood
of an arbitrary coordinate xp the one-particle Schrodinger
equation locally describes an electron in a homogeneous
electric and magnetic field. Therefore, in the appropriate
gauge, the x-dependent parts of the local solutions are Her-
mite polynomials multiplied by a factor which decreases ex-
ponentially with the distance from their centers xp (with a
decay length of the order of a cyclotron orbit), where3

xp = hcp/[LpeB (xo) ] —rnc V'(xo)/ [e 8 (xo) ] (2)

o. (xp) = n/( xp] +xp)Ly (3)

The three-dimensional electron density will be approximated
by o.(x)/a.

From (2) we obtain an expression for xp+q —xp which we
develop around x~. Keeping the constant and linear terms
and putting the resulting expression for xp+~ —xp into (3),
we obtain

In actual quantum Ha11 experiments about 10 -105 orbital
centers x~ are contained within two cyclotron orbits
X() =100 A « L„). Therefore, for a system with n com-
pletely filled Landau levels one can express the two-
dimensional electron density o.(x) at x =xp by the number
n of occupied Landau orbital centers x~ per unit surface

o (xp) = neB (xp)/(hc) + n8'(xp) (p + I )/[LpB (xp) ] + (nmc/eh) [ V"(xp)/8 (xp) —2 V'(xp)B'(xp)/Bz(xp ) ]

If the current I is zero 8', V', and V" vanish, and o (x) becomes a constant o.o equal to ne80/hc The differe. nce between
o.(x) and oo is denoted by So (x).
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Sa.(x) = (ne/hc)BJ(x) + (ne/hc)xB, '(x)

+ (n'm /h'(r 0) V"(x) (5)

Here, we have neglected terms nonlinear in I.
The three-dimensional current distribution [0,j (x), 0]

across the strip is given by

Approximating p +1 in (4) by p (since p,„)&1), ex-
pressing p in terms of x~ by relation (2), and going over to
continuous x~ we obtain

~x~' x —u)'+z' (7)

Approximating a-(x) by a.o and 8(x) by 80 in relation (6)
one obtains

[An orbital centered at x~ contributes a total current
c V'(x~ )/8 (x~ ) in the y direction. ] The magnetic field
[0, 0,8, (x) ] generated by this current distribution is given
by

.
( )

co.(x) V'(x)
aB (x)

(6)
8, (x) = '" IV(x,L„),

hca
where

(8)

W(xL„)= ~ V(x) —V( —L„/2)arctan[0. 5a/(x +L„/2) ] + V(L„/2)arctan[0. 5a/(x —L„/2) ] —0.5a„y dy .~x~' (x —y)'+ a'/4

(9)

The potential V(x) is generated by the three-dimensional charge density —eSa. (x)/a (the homogeneous part —eo.o/a is
counterbalanced by the positively charged background). The solution of the Poisson equation has the form

u/2 + I2
V(x) = ( —2e'/ae)

~ dz J,ln[(x —u)'+z']' 'Sa. (u)du (10)
X

where e is the dielectric constant in the strip and So. is given as a function of V(x) by (5), (8), and (9). Performing the z
integration and expressing lengths in units of L„/2 we obtain the final equation

4e'n2m
V(x) = "

I F(xy) [W'(y, 2) +yW'(y, 2)]dy —
2 &

F(xy) V"(y)dy
ag 4 —l

where

p'(x y) = 0.5 In[a 2/4+ (x —y)2] —1+ (2/a) lx —y larctan(o. sa/lx -y I) (12)

V(x) = —V( —x) (13)

~hence

S~(x) = —S~( —x), (14)

Equation (11) is linear in V. It has to be solved under the
subsidiary condition of charge neutrality, which can be satis-
fied by imposing

t

However, So.(x) must be positive for positive x in order to
create an electric field, which locally counterbalances the
Lorentz force. Therefore, in order to compensate the. de-
crease of Scr(x) caused by the Bj terms, the V" terms must
increase, i.e., the curvature of V(x) increases if the B&

terms are taken into account.
Equation (11) has been solved numerically using a

method similar to that of Ref. 3 [the double integrals ap-
pearing in (11) due to W'(y, 2) have been reduced to a sin-
gle integral during the numerical process].

BJ(x) = -8, (x) (15)

The normalization of V(x) is obtained by integrating Eq.
(6) whence, using (13)—(15) and neglecting terms nonlinear
in I,

V(L„/2) =
2ne

(16)

The first integral in Eq. (11) is due to the field BJ(x). If
this term is neglected and if in (12) a tends to zero one re-
covers Eq. (15) of Ref. 3 (where e= 1). The numerical
solution of Ref. 3 shows a flattening of V(x) in the middle
of the strip and an increase of its steepness toward the
edges. This behavior is the more pronounced the smaller
the prefactor of the V" term is. The effect on V(x) of the
new terms appearing in (11) [which are due to the field
Bj(x)] can be qualitatively understood as follows: For posi-
tive x the current j(x) generates a field BJ(x), which is op-
posite to the applied field and whose absolute value in-
creases with x. Therefore, the distances between adjacent
orbital centers x~ are increased. This means that the B,
terms alone would give a negative Sa.(x) for positive x.

III. RESULTS AND DISCUSSION

The shape of the V(x) curve depends on the parameters
L„, a, m, o-o, e, n. Figure 1 shows numerical solutions of
Eq. (11) for parameter values L„=0.06 cm,
m/a-0 ——0.615&& 10 39 gcm2 (e.g. , m = 0.0676m„o.o= 10"
cm ), n /e=1. 24 (e.g. , n =4, e=12.9) and n /e-0. 0775
(e.g. , n =1, e=12.9), and different depths a. It illustrates
the importance of the B~(x) terms in Eq. (11). For in-

2
0

stance, for n /e = 1.24 and a = 100 A the 8,. terms give a
lowering of V(x) by a factor of about 10 in the major part
of the interval 0 & x & L„/2. One can also see that the in-
fluence of the BJ terms increases with increasing L„/a and
also with increasing n. The latter is due to the fact that B,
constitutes a higher fraction of the total field if n increases.

In Fig. 2 the behavior of j (x), So.(x), and 8, (x) is.
shown for n /e=0. 0775 and a =100 A. For a current
I = 6 x 10 '0 A (corresponding to 10 A m ') we obtain
here V (L„/2) = 1.2&& 10 ' erg, and Sa.(L„/2) = 10 5a0.
The average potential energy per particle (resulting from the
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FIG. 1. Hall potential V(x) (in units of Ih/2ne) of a strip of
width L„and thickness a. The continuous lines represent solutions
of Eq. (11) for the parameter values n ~/e = 1.24 and
m/pro=0. 615x10 gcm (see text) and a =1000, 300, 100, 50 A
(from top to bottom), The dot and dashed lines represent the cor-
responding solutions of Eq. (11), where the terms due to the mag-
netic field BJ(x) have been 'neglected, for a = 1000 A (upper line),
a =50 A (lower line); the solutions for a =100 A and a =300 A
nearly coincide with the solution for a =50 A in this case. The
dashed lines correspond to n /a=0, 0775 and a =100 A, where in

the upper dashed line the B~ terms in Eq. (11) have been neglected.
Note that V(x) is antisymmetric with respect to x =0.

antisymmetric redistribution of charge) is 1.2x10 27 erg,
and the average kinetic energy is 4 x 10 erg. These
values have to be compared with tee, = 1.1 & 10 ' erg
(n =1).

From (6), using (13)—(15) the total current can be ex-
pressed as

L„/2
I =a,j (x)dx = (ne'/h) (1+4 ) VH,

X

where

VH = 2 V (L„/2)/e

(17)

(18)

5= 5'I (20)

Through the solution of Eq. (11) 6' depends on all the
parameters of the problem except on I. The Hall conduc-
tance o-0 becomes

trH= —I/VH = (ne2/h)(1+5), b, & 0

is the Ha11 voltage across the strip and

L„/2
6 = [ —hc/(ne2VIIBg )]Jl &

5o. (x) V'(x)B, (x)dx . (19)

In Eq. (19) terms cubic in VH are neglected. 5 is quadratic
in VH, since Str(x), V'(x), and B~(x) each are proportional
to V(L„/2), but their shape is independent of the value of
V(L„/2) [see (5), (8), (9), (11)]. Therefore, using (16)
and (18) we can write

0
0.998 0-999 1 1.001

2X/Lx

FIG. 2. Current distribution j{x} tin units of 10 & (ne/ha)
& V(L„/2], inhomogeneous part of the electron density Scr(x) tin
units of 103x(e/2e2)V(L„/2], and inhomogeneous part of the
magnetic field B&(x) [units of 10 3(4en/hca) V(L„/2] for
n /e = 0.0775 and thickness a = 100 A. Figure 2 corresponds to the
lower dashed line in Fig. 1 tj(x) is symmetric, Sa-(x) and BJ(x) are
antisymmetric with respect to x = 0].

As an indication we mention that the values of 4' corre-
sponding to the numerical calculations of Fig. 1 are con-
tained in the range (0.2-4) x10 2' (sec/esu) for o.0=10"
cm '. For I =3x10 ' A (i.e., 0.05 Am ' for L„=0.06
cm) this would give a correction —(ne2/h) (0.16-3.2)
x10 " to the quantized value ne'/h of the Hall conduc-
tance. This is below the limit of accuracy (10 '-10 ) of
actual quantum Hall effect measurements.

In view of applications of the quantum Hall effect all
possible corrections to the quantized value must be known.
The correction discussed here (which is nonlinear in the to-
tal current I) is a consequence of the magnetic field of the
current and of the global self-consistent charge inhomo-
geneity across the sample resulting from the Coulomb in-
teraction among the electrons. It is present even in ideal
systems with fully occupied Landau levels. (If the magnetic
field of the current and the self-consistent redistribution of
charge are neglected, all corrections nonlinear in the electric
field vanish, even in the presence of an aperiodic substrate
potential. )

Finally we should like to give some arguments about how
the inclusion of impurities might modify our results. Con-
sider the case where insulating regions (at least several cy-
clotron radii apart) are regularly distributed in the system,
so that new edges are creat'ed. Equation (11) now applies in
each interval in the x direction between neighboring insula-
tors. Since V(x) has the same value on both sides of an in-
sulating region, V(x) is a succession of ascending ripples
over the sample width L„; i.e., on a macroscopic scale the
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potential is a linear function of x. The current j (x) is com-
posed of curves shaped according to Fig. 2, fit together by
intervals of zero current (due to the insulating regions).
Therefore, on a macroscopic scale, the current distribution
is a constant. If the insulating regions become narrower,
the electrons in the formerly independent conducting inter-
vals will be more and more correlated electrostatically across
the insulators. In the limit of pointlike impurities V(x) and

j(x) should take forms similar to those shown in Figs. I
and 2. In the samples actually used for quantum Hall ex-
periments the range of the impurity potentials is about
50-100 A. ' This should lead to an intermediate behavior.

In summary, we expect that the strong weighting toward
the edges of the ideal V(x) and j(x) curves will be at-
tenuated according to the number and nature of the impuri-
ties.
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