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Temperature effects in diffractive atom-surface scattering
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A theory is presented of the diffractive scattering of a light atom by a semi-infinite crystal in
which the atoms are executing thermal vibrations about their equilibrium positions. The intensities
of the diffracted beams can be expressed in terms of the average of the scattered wave function over
the canonical ensemble defined by the vibrational Hamiltonian of the crystal (this is not true for the
inelastic component of the scattered intensity). With the aid of projection operators we obtain the
integral equation satisfied by the averaged atomic wave function. The effective potential entering
this equation is nonlocal in space and time, complex, and temperature dependent. The change in in-
tensity of each diffracted beam due to scattering out of the beam by the thermal vibrations of the
atoms constituting the crystal is related to this effective potential.

I. INTRODUCTION
/

The following problem still hampers our understanding
of the diffracted intensities in atom-surface scattering. If
the scattering were due to an impulsive, two-body col-
lision, the diffracted intensities could be computed by
solving a purely elastic problem, and then multiplying
the results by the usual Debye-Wailer factor,
exp[ —((q u) )][=exp( —g q~(u~)) in situations of
high symmetry], where q is the momentum transferred in
the collision and (ua ) is the mean-square displacement,
in the direction a, of the surface atom involved in the col-
lision. In reality, it is found that this formula applies fair-
ly well (except when resonant scattering is important)
with respect to the functional dependence on scattering
parameters (through q) and on temperature (through
(ua)). However, the effective (u ) is often about one-
half of the expected value, which is that of the topmost
surface atoms for a compact monatomic surface and some
average over the topmost layer in other cases. Coinciden-
tally, the effective (ua) is about equal to the value ex-
pected for bulk atoms.

The origin of the discrepancy is to be found in the facts
that the collision is neither two body nor impulsive. A
thorough discussion of the expected modifications in the
theory of atom-surface scattering required by these facts,
within a semiclassical approximation and with neglect of
resonant scattering, has been given by Meyer. ' He
discusses four effects, which he calls the Beeby effect, the
Armand effect, the Levi effect, and the closed-channel
effect. The Beeby effect amounts to the fact that q is
larger than the momentum transferred in the scattering,
because the effective two-body repulsive collision takes
place after the gas atom has been accelerated by the long-
range attractive atom-surface potential. The Levi correc-
tion has a contrary effect: Because the repulsive collision
is not impulsive, q may be smaller than expected. The
Armand effect is a reduction of the effective (u ~ ), due to
the fact that the effective repulsive interaction is not sim-
ply two body (although it is a sum of two-body interac-
tions). Finally, the closed-channel effect is the major

correction due to the fact that multiple scattering must be
taken into account. A limitation of the Meyer theory, in
addition to the semiclassical approximation, is that the
resonant processes are not included.

In earlier papers ' we addressed the problem of
multiple-scattering corrections (including the closed-
channel effect) by an exact treatment of a simple model:
the vibrating, corrugated hard wall. We found that, in
some cases at least, the entire apparent decrease of (u~ )
could be attributed to multiple scattering. The model we
used is incomplete, however, because in reality the pres-
ence of the attractive potential allows "closed-channel"
transitions to take place through surface-bound states in
the attractive we11. Furthermore, recent work in atom-
surface scattering has shown that the hard-wall model has
only limited validity: Recent comparisons of theory and
experiment for inelastic scattering show that there is a
cutoff in parallel momentum transfer that can be
described as an Armand effect, and is not present in the
hard-wall model. ' As long as inelastic scattering is
weak, it is apparently well described by the distorted-wave
Born approximation, using a sum of repulsive two-body
potentials, and a long-range attraction. Such a description
is certainly more realistic than the vibrating hard-wall
model.

In this paper we extend the earlier formalism to handle
these more realistic potentials. If diffractive scattering
can be neglected, the result of the present treatment is
simply equivalent to saying that the specular intensity is
reduced by the total inelastic scatteri&g, and in fact the
present formulas are obtained, to lowest order, by sum-
ming the inelastic scattering intensity given by 'Manson
and Celli. More generally, the inelastic scattering leads
to a redistribution of the specular and diffracted intensi-
ties. The total e1astic intensity is decreased, but the indi-
vidual intensities are affected differently, and may even
increase at near-resonance conditions.

Although the treatment we give in Sec. II is in principle
general, for practical evaluations it is most appropriate to
the case where the inelastic scattering is we@k and one-
phonon processes dominate. The basic quantity to be
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evaluated is the effective potential (M), which can be
described -as the position-dependent self-energy of the
atom being scattering, or the optical potential for the
scattering. General formulas for (M) are given in Sec.
III; the effect of (M) on the scattered intensities is dis-
cussed in Sec. IV. The explicit evaluation of (M ) and of
the intensity to the lowest order in the phonon displace-
ments is given in Sec. V. It is also shown how the formu-
las of this paper reduce to earlier results for simpler cases,
including the hard wall. A discussion of the results ob-
tained and of the need for further work is given in Sec.
VI.

is that the equilibrium positions of all the atoms in the
semi-infinite crystal be given by the vectors

x(IK) = x))(l)+ x(~) . (2.4)

On the assumption that the crystal occupies the lower
half-space, we take x, (~) & 0.

The atom (la) is now assumed to undergo an arbitrary,
time-dependent displacement from its equilibrium posi-
tion, described by the vector u(la-, t). Then, if we denote
the potential energy of interaction of the incident atom
with an atom of type a in the crystal by U„(p), where p is
the vector joining them, the time-dependent potential of
the incident atom at position r will be written in the form

II. DIFFRACTIVE SCATTERING
FROM A VIBRATING CRYSTAL V(r, t) = g U„[r—x(lz) —u(la;t)] .

lx
(2.5)

In the present work we develop a formalism that is gen-
erally valid, although it is particularly suitable for realistic
calculations when the light incident atom has negligible
effect on the heavier atoms constituting the semi-infinite
crystal. Quite generally the problem becomes that of an
atom moving in a time-dependent potential caused by the
motion of the atoms of the crystal.

To define this potential we begin by defining the posi-
tions of the atoms in a semi-infinite crystal. We 'first in-
troduce a two-dimensional Bravais lattice, parallel to the
surface of the crystal (the plane x3 ——0), that defines the
translational symmetry of the semi-infinite crystal. The
lattice points of this lattice are given by the vectors

x))(l)= l
&
a &+ 12 a2, (2.1)

where a ~ and a2 are the noncollinear primitive translation
vectors of the lattice, lying in the plane x3 ——0. l& and l2

are any two integers, positive, negative, or zero, that we
denote collectively by l. The vectors a~ and a2 define a
surface unit cell, whose area we denote by a, .

Together with the two-dimensional Bravais lattice de-
fined by Eq. (2.1) it is convenient to introduce the two-
dimensional Bravais lattice reciprocal to it. The sites of
this new lattice are given by the vectors

For simplicity, we will treat u(la-, t) as a classical vari-
able in the text of the paper. In the Appendix we show
how the results obtained with these assumptions are still
valid in a quantum-mechanical treatment of the crystal,
and are not modified by the self-consistent inclusion of
recoil due to the collision process. The only change is
that in the final results the quantum-mechanical expres-
sions for the displacement correlation functions must be
used.

The time-dependent Schrodinger equation for the atom
being scattered is

(2.6)

where m is the mass of the atom. With the use of the
Green function Go+ ( r, r ', t t') that s—atisfies the equation

2

i A + V Go (r, r ';t —t') =5(r —r ')5(t t'), —
Bt 2m

(2.7)

subject to outgoing wave or exponentially decaying boun-
dary conditions at infinity, we convert Eq. (2.6) into an in-
tegral equation

G))(h) =h ) b )+h2 12, (2.2) g(r, t)=&0(r, t)+ f d r' f dt'Go+(r, r ';t —t')

where the primitive translation vectors b~ and b2 are de-
fined by the conditions

as' bh 2&~ij ~ l~J =1,2 (2.3) where fo( r, t) is a solution of the homogeneous equation,

In Eq. (2.2) h ~ and hz are any two integers that we denote
collectively by h.

With each lattice point of the Bravais lattice we associ-
ate a basis, the points of which are defined by the vectors

I x(a) I, with a =1,2, . . .. There is considerable arbitrari-
ness in the definition of the basis. The chief requirement

iA + V $0(r t) =0,8
Bt 2m

(2.9)

and represents the incident wave. A convenient represen-
tation for Go+(r, r ';t t')is—

+, , 2m d k)) dc@ exP[ik)) (x))—x 1))+io(k))u) I x3 x3 I ]
Go (r, r ';t —t')= e

fi (2m ) 2n.
(2.7')
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where

a(k))ctt) = 2m'
ll

1/2
2m co

II+

t 1/22PPEco, 2 2PEQ)
(2.7")

and x(( ——xixi+x2X3, k)( ——x,k, +x2k2, with xi and x3
unit vectors along the x& and x2 directions, respectively.

If we denote the scattered wave function by
f,(r, t)=g(r, t) $0(r—, t), the 3 component of the scat-
tered particle flux is given by

the contribution to (J3'(r, t)) from all terms in which at
least one displacement component u~(l, t) appearing in

P,*(r, t) is contracted with a displacement component
uti(l', t') appearing in BP,(r, t)/BX3.

If we confine ourselves to diffractive scattering, we
need to be concerned with only the first term on the
right-hand side of Eq. (2.12). The second term describes
the inelastic scattering This can be seen from the results
of calculations based on simpler models. It also follows
from the fact that the averaging process restores periodici-
ty and time translation invariance to our physical system,
so that (fs( r, t) ) describes scattering from a static period-
ic crystal Su.ch scattering can only be diffractive. For a
surface of area A, taking an integrated incident current

(2.10a)
In fact, since the atom is scattered by a random, time-
dependent potential caused by the vibrations of the atoms
of the crystal, what is of interest is the average of
J3'(r, t), (J3'(x, t) ), over the canonical ensemble defined
by the vibrational Hamiltonian of the crystal.

Similarly, the 3 component of the incident particle flux
1s

[see Eq. (4.1) below], the diffracted beams have an in-
tegrated current of order a(k ~~co)A /m within a solid angle
of order A, /A, where 2n /A=a(k ,

~ ~

co ) In . the limit
A~co, such beams are unambiguously separated from
the diffuse scattering that is described by the term
(g,"Bf,/BX3 )„ in Eq. (2.12).

Thus, in what follows we focus our attention on the
averaged wave function (g(r, t)), from which (f,(r, t))
is obtained according to

BX3 (P,(r, t)) =((r,t)) —Po(r, t) . (2.13)

= f d xiii(J3'(r, t)) i „, (2.11)

The average (J3'(r, t)) can always be written in the

(2.10b)

The number of incident atoms crossing a plane x3 ——const
far above the scattering surface must equal the average
number of scattered particles crossing the same plane:

d X))J3 (r t)
I x&

——const

%'e begin by introducing the operator P that averages
everything that stands to its right over ihe canonical en-
semble defined by the vibrational Hamiltonian of the crys-
tal. We also introduce the complementary ' operator
Q =1—P. Application of the operator P to both sides of
Eq. (2.8) yields the equation

Pt}'j(r,t)=f,(r, t)+ f d3r' f dt'G+(r, r ';t t')—
XPV(r ', t')[Pf(r ', t')

+Qg(r ', t')] .

(2.14)

Bg,(r, t)
+ Ps(~~t) corr

BX3
(2.12)

The second term on the right-hand side of Eq. (2.12) gives

X[ PP( r', t')+Qg(r ', t')] . (2.15)

We now formally solve Eq. (2.15) for Qf(r, t), with the
result that

Similarly, application of the operator Q to both sides of
Eq. (2.8) yields

Qg(r, t)= f d'r' f dt'Go (r, r ', t t')QV(r ',t')—

Q@(r',t')= f d'r" f dt" f d'r"' f dt"'R(r', r",t't")Go+(r ",r"';t" t"')QV(r"', t"')P—g(r '",t"'),
where the function R( r, r ';tt') is the solution of the equation

R(r, r ';tt')=5(r —r ')5(t t')+ f d r" f dt"Go+(—r, r ",t t")QV(r ",t")R(r ",r ';t"t—') .

When the result given by Eq. (2.16) is substituted into Eq. (2.14), we find that (g( r, t) ) satisfies the equation

(f(r, t))=go(r, t)+ f d r ' f dt' f d r" f dt"Go+(r, r ';t t')(M(r ', r ";tt"))(g(—r ",t")),
where the function M( r, r ', tt') satisfies the equation

(2.16)

(2.17)

(2.18)
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M( r, r ', tt')= V(r, t)5(r r—')5(t t'—)+ V(r, t) f d r" f dt"Go+(r, r ";t t—")QM(r ",r ';t"t') . (2.19)

Thus (g(r, t) ) satisfies an integral equation of the same
form as g( r, t), but with a nonlocal potential
(M(r ', r ";t't")) in place of the local one
V(r ', t')5(r ' —r ")5(t'—t").

The straightforward way of obtaining (M(r, r ';tt')) is
to solve Eq. (2.19) by iteration and then to average the
solution term by term. However, by proceeding somewhat
differently we can carry out a partial resummation of the
terms in the straightforward iterative solution.

For this purpose we introduce the Green function
6+( r, r ';tt') as the solution of the equation

6+=Go +Go (Vi+ V2)G+ (2.29)

is equivalent to the pair of equations

Gi+ =Go +Go+ ViGi+

G+ =G+ +G )+ V2 G+ .
(2.30a)

(2.30b)

Thus, if we take Vi ——(M) and V2 ——V—(M), we obtain
from Eqs. (2.30)

6+ =6++6+ (M &6+, (2.31)

G+(r, r ', tt')=Go+(r, r ';t t')— 6+=Gi++Gi+(V —(M))G+ . (2.32)

+f1 r ' f dt" Go (r, r ";t t")—

X V( " t")G+( ", ', t "t')
(2.20) G+=(6+)+(6+)(V—(M))6+ . (2.33)

A comparison of Eqs. (2.28) and (2.31) shows that Gi+ is
(6+). Consequently, Eq. (2.32).can be rewritten in the
form

or, more concisely,

6+=GO++Go+ VG+ . (2.21)
Equation (2.33) is equivalent to

6+=(6+)+G+(V—(M))(G+) . (2.34)
We can rewrite this equation equivalently as

6+ =Go++Go+M(G+) (2.22)
VG+ = V& 6+ &+ VG+( V —&M &)(6+ & . (2.35)

We multiply this equation from the left by V to obtain

and thus M can be defined alternatively by the equation
From Eq. (2.23) this is equivalent to

VG+ =M(6+ ) . (2.23) M(6+) = V(6+)+M(G+){V —(M) )(6+),
To establish this result we rewrite Eq. (2.21) in the form

(2.36)
G+ =Go++ Go+ V(PG++QG+)

and solve it formally to obtain

(2.24)
whence it follows that

M = V+M(6+)(V (M) ) . — (2.37)
6+=(I—Go VQ) '6++(I —6+VQ) '6+VPG+

(2.25)

However, because Go is nonstochastic [i.e., it is indepen-'
dent of the displacements I u(lk;t) I], the following rela-
tions are valid

This is the equation for M we seek. It contains the aver-
aged Green function (6+) instead of the free-particle
Green function Go+.

. To solve Eq. (2.37) we expand M formally in powers of
V,

(I—Go VQ) 'Go =Go (2.26a) M =M) +M2+M3+ . - . (2.38)

M =(I—VGo Q) 'V. (2.27)

Therefore, on substituting Eqs. (2.26) and (2.27) into Eq.
(2.25), we find that the latter becomes Eq. (2.22), which is
what we wanted to prove.

It follows from Eq. (2.22) that

(I—6+VQ)-'6+ VPG+ =6+(I—VG+Q)-'VPG+ .

(2.26b)

From Eq. (2.19) we see that M is given explicitly by

Mi ——V,

M2 ——Mi(6+)(V —(Mi)),
(2.39a)

(2.39b)

M3 — Mf (6+)(M, )+M, (G+ )( V —(Mi ) )

(2.39c)

where the subscript denotes the order of the correspond-
ing term in V. When Eq. (2.38) is substituted into Eq.
(2.37), and terms of the same order in V on both sides are
equated, we obtain the set of equations

&6+&=G.++G.+&M&&6+) . (2.28) If we average each of these equations in turn, we find that
Thus (M) is the self-energy, or effective potential that
determines (6+ ), just as it is the effective potential that
determines (hatt).

We now use the fact that the single equation &M, &=«&6+&V&-&V&&6+&& V&,

g.40a)

(2.40b)
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&M ) = & V&6+) V(6+) V& —( V)(6+) & V&6+ & V&

—
& V&6+ && V&&6+ & V&

—««+&V&«+&«&
+2( V) (6+)( V) (6+)( V)

(2.40c)

We see that the (M„) have the form of cumulant aver-
ages.

It should be noted that Eqs. (2.38) and (2AO) constitute
highly nonlinear integral equations for (M), because ac-
cording to Eq. (2.29) the Green function (6+) that
enters the latter equations is itself a functional of (M ).

We conclude this section by pointing out that either by
studying the first few terms in the iterative solutions of
Eqs. (2.19) and (2.20), or more generally from the periodi-
city properties of the time-averaged crystal, one can estab-
lish the results that (M(r, r ', tt')) and (6+(r, r ', tt'))
can be written in the forms

d k
(M(r, r ';It')) = "))M (k +G k +G (x x')e ' "ll+» (2n. )2 2m.

II' II

(2.41a)

d k(6+(r, r ', tt')) = 6 (k ~G k +G' [x x' )e ))+ ))
'"

))e ir0(r —i ) —(241b)» (2~)2
~ii ~

ii

The integration over k)) in both of these expressions is restricted to the two-dimensional Brillouin zone for the surface we
are considering. It then follows from Eqs. (2.7), (2.28), and (2.41), that 6„(k))+ G)), k))+ G )) ~

x3x 3 ) and
M ( k)) +G)), k)) +G

)) ~

x3x 3 ) are related by the following matrix integral equation:

+ —+ +6~ (k))+G)), k))+G)) ~ x3x3)=6 0„(k))+G)), k))+G)) ~
x3x3)

+ —+fdX3 f dX3 60 (k))+G)), k))+G)) IX3X3)
II III

A II III +&(M~(k))+G)), k))+G)) (x3x3 )6„(k))+G)),k))+G)) J
x3 x3),

where

+ -+6 0„(k))+G)), k))+G

27% e
&&

I
k Ii+ 6

II I
~) I~3 &3

=5-
2ia( [ k))+G)) J

0))
(2.43)

I

while V(r, t) has been defined in Eq. (2.5). We assume
that the potential U„()(3) entering the latter equation can
be Fourier expanded according to

U.(p)= f (2n. )

What remains to be established is the relation between
-+

M~(k))+G)), k))+G)) f x3x3 )

III. EFFECTIVE SCATTERINCi POTENTIAL

In this section we outline the derivation of the equation
satisfied by the effective potential (M(r, r ', tt')) in the
lowest approximation that contributes an imaginary part
to it. Qur starting point is therefore the equation

(M}—= ( V)+[(V(6+) V) —( V)(6+) ( V)],
where the potential V( r, r '; t t') is given by—

V( r, r ', t t') = V(r, t)5—(r —r ')Alt t'), —(3.2)

+ —+

6~ (k))+G)), k))+G)) i
x3x3)

that follows from Eqs. (2.38) and (2.40), and which when
combined with Eqs. (2.42) and (2.43) yields a complete
solution of the problem of the temperature effects in dif-
fractive scattering. It is to the determination of this rela-
tion that Sec. IV is devoted.

Since, as we will presently see, the projection of the three-
dimensional wave vector k onto the plane x3 ——0, kii,
enters the effective scattering potential in a different way
from the normal component k3, we have indicated the
dependence of the Fourier coefficient of U„(p) on both of
these components of k explicitly in writing Eq. (3.3).

It follows therefore that

( V(~r)) y f U (k
~

k )e i k [r —x(l~)]-
(2m. )'

(3.4)

It is a standard result of lattice dynamics that in the har-
monic approximation

—i. k. u(lx;t) i —(&/2)([ k. u (z)] )/=e (3.5)

The expression on the right-hand side of this equation is
independent of the time and, because of the periodicity of
the semi-infinite crystal in directions parallel to the sur-
face, is independent of the cell index l, although it does
depend on the basis index a. To simplify the following re-
sults, we will assume that the symmetry at the site x is
sufficiently high that
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( u (a )up(a. ) ) =5 p(u (a) ),
and that

(ui(a)) =(u2(a)) =—(ull(v)),

(3.6) (u3(a))=(ui(a)) .

(3.7a) Under these assumptions Eq. (3.4) takes the form

(3.7b)

( V(,t))=g U (kii ~
k3)e 'I ii ii exp[ —ikii xll(1) ——,'kii(uii(x))]e ' ' ' e

(2n. )

If, finally, we use the result that

I ac

(3.8)

(3.9)

ave obtain

( V(r t)) ge' ll "IIV(GII
~
x3)

Gii

(3.10a)

2 2 dk3 Ek3IX3 X3(K)] ( 1 /2)k3 (Q ~ (K) )
V(GII ) x3 )= +exp[ —iGll. xII(a) ——,6ii (u

ll
(a) ) ] U„(GII ( k3 )e

&c 2' e

This is clearly a local, periodic, temperature-dependent potential.
Thus the first term on the right-hand side of Eq. (3.1) can be written in the form

(3.10b)

2

(M (r ~. tt~)) y II e' ll+ II "II+ (k +G k +G'-)x x' )e
' ll+ II "lie —two(~ —~'I

Bz (2ir)
Ci ii, Cx

(3.11a)

where
—+

ll+ ll' ll+G II ~
x3

The second-order contribution to (M(r, r ', tt') ) can be written as

(M, (r, r ';tt')) =(6+(r, r ';tt'))[(V(r, t)V(r ', t')) —(V(r, t))( V(r ', t'))] .
I

We consider first the difference in square brackets. With the use of Eqs. (2.5) and (3.3), as well as the result

(e '" "'"'"e '" '"' ""')=expI ——,'([k u(v)] ) ——,'([k' u(v)] ) —(k.u(lx", t)k' u(l'~';t'))}

that is valid in the harmonic approximation, we find that

( V(r, t)V(r ', t')) (V(r, t))(V(r ', t'—))

(3.11b)

(3.12)

(3.13)

d'kii ]=g g f 2 f f 3 f U„(kil I
k3)expIikll. xll(l)+ikil. [xli —xll(v)] —Tkii(ull(~)) I(2n) 2m' (2ir) 2'

XexpIlk3[x3 x3(Ic)] Tk3(u, (~))}U„(k
)I ~

k3 )

&(expIik3[x3 —x3(~')]——,'k3 (uj (a')) }

&& I exp[ —( k u(l.x;t) k. '.u(l'x';t') )]—1} .

The displacement correlation function can be written formally as

( k-u(la-, t)k' u(l'a';t')) =gk kp(u (la;t)up(l'~', t'))
aP

=~~k k' ( ~~ )n P BZ (2&)

(3.14)

(3.15)
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In what follows we will make the approximation of replacing the last factor on the right-hand side of Eq. (3.14) by the
negative of the correlation function (3.15). This is not an essential approximation; it is a reasonable one, but also one that
can be improved systematically; and it simplifies the subsequent results. With this result we find that

{V(r, t)V(r ', t') &
—{V(r, t) &{V(r ', t'))

d2
y y f II f e —~«~ —~'&e '"ll+ II "IIIV~ (- +G [x )C ( II[zz )

«a «'P G
ii

6
ii

where

(qii+ G ii)+ ~ 'P('qll+G II I
x3 )e (3.16a)

IV~a(qll+Gll I
x3)=exp[ —'(qll+Gll)'"ll(~) —

z (qll+Gll} {uIl(a))]

f U«(qll+Gll f $3)exp[iq3[x3 x3(K)] 2 q3 {u J (Ic) ) J [( 1 5~3)(+~ +6(g )+5~3+3]
ac 2m

(3.16b)

If we now combine this result with {G (r, r ';tt')) according to Eq. (3.12), and make use of Eq. (2.41b), we obtain fi-
nally the result that

d k
{M,(r, r ', «')) = II+ II "IIM (k +G k +G'

(
x x' )e

' ll+» (2m) 2m.
Gii ~

ii

(3.17a)

where
—+ —+ —+ —+

Mz„(kll+Gll, kll+Gll ~
x3x3 }

~~f 2f ++ « II+

S S 4 S ~ S

XC~p(pll —kll, co —co'
[
aa') 8'„~(kll+G

II
—

pll
—H

II )
x 3 )

X G„(pll+Hll, pll+Hll jx3x3) . (3.17b)
—+ —+ —+ m —+

The relation between M„(kll+Gll, kll+G II j x3x3 ) and G„(kll+GII, kll+G jl ~
x3x3 ) that we seek is now obtained by

combining Eq. (3.1) with Eqs. (2AOa), (3.11), and (3.17):

M~(kll+Gll, kll+Gll (x3x3)
-+= V(GII —Gjl f

x3)5(x3 —x3 )

+XXf» 2 3 f 2 XXIV"'"ll+Gll
II II

&& C~p( pll
—kll, co —co'

(
aa') W„p( k II+G

II
—p II

—H
II j

x 3 }

+ G ~'( p II+HII' p II+ (3.18)

Together with Eq. (2.41), Eq, (3.18) gives a complete
prescription for the determination of {M( r, r '; tt') ),
within the approximations indicated above.

In practice, the method of solution could proceed in the
following manner. Equation (2A1} is first solved for
A. + M M M -+
G (k+Gll, kll+G

II ~ x3x3) on the basis of the approxi-
mation for {M„(kll+Gll kll+Gjl [x3x3)), given by the
first term on the right-hand side of Eq. (3.18). The result

is then substituted into the second term on the right-hand
side of Eq. (3.18) to yield an improved approximation to

A.
M ( k

II +Gll kll+G jl j x3x 3 ), and the process is contin-
ued until convergence is achieved.

An important result of the discussion in this and the
preceding section is that the effective potential {M) is
complex, i.e., it is an optical potential. ' In what follows
we shall express this result by writing {M) in the form



832 V. CALI AND A. A. MARADUDIN 3j.

(M ) = (M„)+t (M, ), (3.19)

where (M~ ) and (Mt) are real quantities. The existence
of (Mt) ultimately derives from the fact that (G+) is
complex, and it is the existence of (Mt ) that in turn gives
rise to the decrease in the integrated intensity of the dif-
fracted beams.

po(r, t) =exp[ikll xll —ia(kllco)x3 icgt], — (4.1)

where a(kllco) is defined in Eq. (2.7"). Then (f(r, t) has
the form

(@(r,t)) =g@ (kll+Gll, kll I
x3)e

G
I I

IV. THE DEBYE-%'ALLER FACTOR

Given (M), we can, in principle, solve the Lippman-
Schwinger equation (2.18), or the equivalent Schrodinger
equation, and compute the scattered fluxes according to
the first term on the right-hand side of Eq. (2.12). As
usual, gp( r, t) is taken to be a plane wave:

/

A(GJJ, Cxll)=e "i '(' "'"' )A (G G') . (4.6)

By computing the incoming and reflected fluxes accord-
ing to Eq. (2.18), we find that the reflection coefficient for
the diffracted beam Gll is, as usual,

I A(GJI, O)
I

(4.&)
a(0)

One can also solve the scattering problem by using only
(M~ ), instead of (M). The resulting scattering ampli-
tudes will be called A~(GJJ, O), in the compact notation
exemplified by Eq. (4.4a).

More commonly, the scattering problem is solved for
the static potential V„(r), that is obtained by setting
u(lk;t) =0 in V(r, t) [see Eq. (2.5)]; the resulting scatter-
ing amplitudes A„(GII,O) are then temperature indepen-
dent.

The task of this section is to obtain a relation among
the three sets of amplitudes IA I, IARI, and [A„], in a
form that generalizes the Debye-Wailer relation for an im-
pulsive collision:

and for sufficiently large x3 we have

+ —ia(k)l
g„(kll+Gll, kll I

x3)-e 5
II'

(4.2) Here b, k is the momentum transferred in the collision and
u is the phonon-induced displacement of the harmonical-
ly bound scattering center. In atom-surface scattering,
semiclassical arguments suggest that to a first approxima-
tion

+A (kll+Cxll, kll)

Qe
sa(

I
] II+ G

)I t ~)x,
(4.3)

((bk u) ) =(Gll —Gtl) (ull(0))

+[ (G, )+ (G„)]'( (0)) (4.7)

(4.4b)

More generally, if the incident wave vector is

[kll+Gll, —a(
I kll+Gl'I I

to)], the reflected amplitude
will be denoted by A„(kll+Gll, kll+Gtl). In the rest of
this section, kJJ and co are fixed quantities. We can then
simplify the notation by defining

II+ Il' ll+ (4.4a)

II+ Gll' ll+

a(GJJ) =a(
I kll+ GII I

~) (4.4c)

in the notation of Eq. (3.7), where ~=0 labels the surface
atom involved in the collision. The most widely used
corrections to and generalizations of Eq. (4.6) have been
discussed in the Introduction.

We discuss first the relation between A (GJJ, G Il) and

A~(GII, G Il). General formulas can be obtained by using
the two-potential formalism, which we review here in a
form adapted to the diffraction problem. Using Eqs. (4.1)
and (4.2), and proceeding as in the derivation of Eq.
(2.41), we rewrite Eq. (2.18) as the matrix integral equa-
tion

—ia( 0 )x3 I II + I
@(GII,O I

x3)=5- e '+ Q . dx 3 dx 3 Gp (GJJG Jl I
x3x 3 )M(G

Il
G

Il I
x3x 3 )@(Cx II, O

I
x 3 ) .

II II
II II

(4.8)

/=go+Go MP . (4.8')

Next, we set M=Mz+iMI, in an obvious notation,

Here, as in Eq. (4.4), we use the compact notation

Go ( G~ llGIxII3x3 ):—6 p~( kll+Gll~ kll+G II I
x3x3 ) ~ (4.9)

and similarly for M(GII, GI'I'
I
x3x3') and other quantities

of the same kind to be defined below. Symbolically, we
may write Eq. (4.8) in the form

and assume that we are able to solve the equations

0k=Co+Go™zA+
Gz ——Go +Go+MuG~+ .

(4.10)

(4.1 1)

Formally, we have that g~ —(I—6o+Mz ) 'fp and-
Gg+ (I —Go+My ) 'G o+-—.

Equation (4.8') can be rewritten as (I —G p+Mz )P
=go+iGo Mtg, and gives at once Q=QR+iG& MIQ, or
explicitly,
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II

@(Gff 0
I
X3)=A(Gff 0

I
X3)+' 2 fd X3 fdx3Gz+(Gff Gff I

X3X3)M.(G jf Gff I
X3X3 W'(G ff' 0

I
X3 ) .

I II

(4.12)

To proceed, we need to know the asymptotic behavior of G~+(Gff, G
ff I

x3x 3 ) for x3~ co and finite x 3 (we are assuming
that MI has finite range). When written out explicitly, Eq. (4.11) has the form of Eq. (2.42), and Go+ (Gff, G f'f

I
x3x3 ) is

given by Eq. (2.43). We find, then for x3 + 00,

2m e
ia( G )x3

2
2ia(Gff)

6- -, e
II' ll

I(G ll) 3 ' " ' "' 'a(GII)+ dx3 dx3 e
II

XM/(Gff Gfj I
X3X3 )Gg (G fj Gjf I x3 x3 )

(4.13)

The quantity in large parentheses is the Hermitian conjugate of g~ (GffG ff I

x 3 ), which is the eigenfunction of Mz that
satisfies the equation

—+I ia (G )x3
@It (Gff'Gff I

x') =~ 'e +
ll II II III

(4.14a)

Here Go (Gff, Gff I
x3x3 ) comes from a Go ( r, r ';I t'), whic—h is defined by the same equation as Go+ (r, r ', t t'), Eq. —

(2.7a), but is subject to incoming wave or exponentially decaying boundary conditions at infinity. In practice, we use
0

GffG ff I
(4.14b)

witll Go (Gff G
jf I X3X3 ) given by Eq. (2.43). To show explicitly that gz (G jfGff I

x3 )* appears in Eq. (4.13), we must
transform Eqs. (4.14) into the equivalent set of equations:

A =1to+Gz Mezzo

GR =Go +GO~RGR .

(4.15a)

(4.15b)

We then use the fact that GI1 is the Hermitian conjugate of Gz, and we must also remember that Mz is Hermitian.
The two-potential formula follows from Eqs. (4.12) and (4.13), from the asymptotic behavior of P, given by Eq. (4.3),

and from the analogous formula for gz . It is

(Gf, , 0)+ 2 fdx,' fdx,"A(C" „,C"„Ix,)'M, (G, f,
C" „ Ix,x f)@(G„,0 lx, ) .

ie'a(Gff) -, - „
(4.16)

+
@It (kff+Fff, r)= g @I1(kff+F jf, r)AI1(F ff, Fff),

+ IF
II

(4.18)

as can be seen by comparing the coefficients of
exp[i(kff+F jf) xff+ia(F jf)x3] on the two sides of Eq.
(4.17) for X3~ co. The sum over F

ff
is restricted to open

This result can be recast in a form analogous to Eq.
(4.6) by using the fact that @11(Gff'Fff I

X3)
@It (Gff, Fff I

x3) are hnearly related to each other, because
they are expansion coefficients of two sets of solutions of
the same eigenvalue problem. Specifically, let us define

+ + + + i( k II+ G II) x
ll+11(kff+Fff r)= g @g(Gff Fff I

x3)e

11

(4.17)

Then we must have

channels, i.e., those with a (F
ff

) & 0. It follows that

X @11(GffF ff I
X3)

F
ll

(4.19)

It is convenient to introduce the S matrix for the
scattering from Mz. S~(Fff,Fff) is defined for the open
channels only and is given by [see Eq. (4.5)]

1/2

SI1(Fff,F jf)=—
~(F jf)

a(Fff)
(4.20)

or, symbolically, ci SR ———ARu . Bemuse MR is Her-
mitian, Sz is unitary; it follows then that Eq. (4.19),
which is rewritten as 1f'rI1

———gza SR, can be inverted
to give Q cx S = —

1I/J ct US1ng Sg ——cx

X AR+0.', this yields
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a(FII)X @R ll~ II f

I

(4.21)

A(FII, O)= Q AR(FII, Fjl)D(Fjl, O),
I

Fit

(4.22)

Inserting Eq. (4.21) into Eq. (4.16), we obtain where the effective Debye-Wailer matrix D is defined by

Ng I II + I ID(FII,FII)=5, + g dx3 dx3@R(GIIFII fx3)*Mr(GIIGII fx3x3)@(GII,F fx3) .
fPa(F

jl ) p pp

it ii

(4.23)

Here the Debye-Wailer correction factor appears only in the entrance channel, labeled by 0, and not in the exit channel.
It is also possible to obtain a formula where the correction factor appears only in the exit channel. To do so, one starts
from the equivalent expression for A (GII, O) that is obtained from Eq. (4.16) by allowing pR —&p and p~pR. Here p
is related to p in the same way as gR is related to gR . Using Eq. (4.19), one finds

A(FII, Q)= g D (FII,Fjl)AR(Fjl, 0), (4.22')

D (FII,FI'l)=5-„, + 2 g f dx3 f dx3$R(GII, FII fx3)"MI(GII, GII fx3x3)g (Gl'I, FI'I fx3) . (423')
&'a(+II) - -,otto ii

fA(0, 0)
f

= fD(0, 0) f2 (4.24)

because AR(0, 0), describing total reflection, has unit.
modulus. This formula is discussed in detail in the next
section.

More generally, it is always true that SR(FII,F II) [de-
fined in Eq. (4.20)] is.unitary:

Q SR(FII,F ll)SR(FII, F II)=5-, - „, (4.25)
ll il

Fit

and therefore

f A(FII, O)
f

= g f D(FII, O)
f

. (4.24')
a(0)Fii Fii

The decrease in the total diffracted intensity (including
the specular) can then be computed from

f D(FII, O)
f

alone. However, the inelastic scattering also causes a
redistribution of the elastic intensity among the diffracted
beams, and to compute this we need to know how

~R(FII'0) is related to A„(FII 0 or to 4R(FII 0 a some
reference temperature.

The individual diffracted intensities can be obtained as
follows, in the limit where diffraction is weak. It is con-

t

Other formulas are obtained by taking suitable averages of
Eqs. (4.23) and (4.23').

To first order in MI we can replace p by pR in Eq.
(4.16), or in Eq. (4.23). This, of course, is the distorted-
wave Born approximation (DWBA) for MI with (MR ) as
the "large" potential and (Ml ) as the perturbation.

If diffraction is completely negligible, Eq. (4.22) gives
the specular intensity as

venient to regard V(0
f
x3) as the unperturbed potential

and the rest of (M) as the perturbation. Let Ap(FII f Fll)
be the reflection amplitude from the potential V(0

f x3),
and let X+(Fll

f
x3) be the corresponding wave function.

The equation for X+—(Gll f
x3), consistent with the proto-

type equation (4.8), is

X—
(Fll fx3)=e '+ f dx3Gp (Fll fx3x3)

&& V(0
I
X3 )X—+(Fll

I X3 ),
(4.26)

where we have simplified the notation by setting

+ I +
Gp (Gll&G II f

X3X3 ) —5 Gp (Gll f x3x3 )~tt~ it

(4.27)

[see Eq. (2.43) and recall Eq. (4.14)]. It is usually more
+convenient, however, to compute X-(Gll

f
x3) as the solu-

tions of the Schrodinger equation

fg + V(0
f x3) X(GII f

x3)
2m

A a (Gll)
X(GII f x, ), (4.28)

with boundary conditions consistent with Eq. (4.26). This
equation also has bound-state solutions, for negative
values of a (Gll), corresponding to solutions of the homo-
geneous part of Eq. (4.26).

The ~elation between 3 Fll 0) and Ap(FII 0 is given
by the analogs of Eqs. (4.16) and (4.12):

Pl —+ —+
~(FII, O) =~p(FII,FII)5„-+ g dx3X (Fll f

x3)*V(FII—Gll f
X3)g+(GII, O

f x3)
A ia(FII) II

+2 f dx3 f dx'3X (Fll fx3)™2(FIIGIIIX3X3)&+«II o IX3» (4 2»)
6

it
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@+-(G~~,o
I
x, ) =x'-(o

I x, )s
G((0

Q ((~ot(
f dx3I (G([ I

x3x3 )V(G(( —Gj~ I
x3 )@+(Gj(&Q

I x3 )

+ g f dx3 f dx3 I (G/[ I x3x3 )M2(G([yG
f/ I x3x3 )|t (Gl/go I x3 )

t

(4.29b)

+ -+
where I —

(G~~ I x3x3 )5, are the Fourier coefficients of the Green functions for the potential V(0
I
x3), and satisfy

the analog of Eq. (4.11):

I"+(GiiIx3x3)=Go (G~~ Ix3x3)+ 2 f dx3Go (Gii Ix3x3)v(G~~ —
G~~ Ix3)1 (G~~ Ix3x3) .

/

(4.30)

In practice, it is sufficient to find X+ and I + and to use

X (G[[ I
x3 ) =X+(G((

I x3 )

I (G(( I
x3x3)=I'+(G)(

I x3x3)

It should also be noted that the analog of Eq. (4.21) reduces to

(F[) I
x3) =~o(FII~FII)X

Using Eqs. (4.29) and (4.32) we obtain, to leading order in V and in M2.

(4.3 la)

(4.31b)

(4.32)

A(F((, 0) f dx, f dx3 IX+(0Ix3)
I

Mz(0, 0 Ix3 3)
fi a(0)

+(1—5F ) f dx3X+(F(( Ix, )*v(F~~
I
x, )X+(o lx3)

+ fd fd' fd "X+(F((I

x v(F,
~
Ix,")x+(0 Ix,")

+z f dx3 f dx3 f dx3'X+(F() Ix3)'V(F(( Ix3)l +(0 Ix3x3)

)(Mp(0/0 IX3x3 )X (0 IX3 )

+ f dx3 f dx3X (F/) I x3) Mz(F[Jyo Ix3x3 )X+(0
I
x3 ) (4.33)

In the next two sections, we give approximate evaluations
and discussions of these formulas.

V. APPROXIMATE RESULTS

We evaluate the formulas of Sec. IV when diffraction is
completely negligible. In this case, we need only be con-
cerned with the specular intensity, i.e., we can set FI~

——0
in Eq. (4.33) or F~~

——F
j~

——0 in Eqs. (4.22) and (4.23), and
we can compute AR(0, 0), A„(0,0), and Ao(0, 0) as fol-
lows. A„(0,0) is the specular scattering amplitude from
the zero Fourier component of the static potential fk3[x3 —x3(K)]Qe (5.1b)

V„(0 Ix3)= 1 3 U„(o
I k, )e

ik3[X3 X3(K)]

ac 2m'

(5.1a)

Ao(0, 0) is the specular scattering amplitude from the
zero Fourier component of the average potential
( V(r, t) ), as given by Eq (3.10b):.

V(0 Ix3)=
A. 3 ~ ~ ( )y2)k23(g 2~(K)}U„(o I k, )e

Q 2&



V. CEI.LI AND A. A. MARADUDIN

Comparison of Eqs. (5.1a) and (5.1b) shows that, although

V( 0
I
x3 ) is more slowly varying than V«( 0

I
x3 ), both

potentials give total specular reflection, which implies
that both Ao(0, 0) and A«(0, 0) represent simply a phase
factor. Ait(0, 0) is computed using the exact expression
for the real part of M„(kff, k

ff I
x3x 3 ), instead of the lead-

'I

—+

ing approximation V(0 Ix3)5(x3 —x3). It is also simply
a phase factor. The phase of A~(0, 0)/Ao(0, 0) can be
deduced by comparing Eqs. (4.22) and (4.23) with Eq.
(4.32), but it is of no interest here. Therefore, in the ab-
sence of diffraction, the Debye-Wailer factor, to second
order in the phonon-induced disp1acements, is simply

A(0, 0)
A«(0, 0)

—:ID(0, 0)
I
=1 d(kff, kff),

&o(0,0) A~(0, 0)
(5.2)

d(kff, kff)= z f dx3 f dx3X+[a(kffco) Ix3]'MI„(kff, kff ix3x3)++[a(kffoi) Ix3],
vari a(kf Ice)

(5.3)

where we have reverted to the more explicit notation of Sec. III, so that in general L)(FII,F I'I) will now be denoted by
D(kff+Fff, kff+F it&, nd &+(Gff

I
x3) will be denoted by &+[a(

I
k II+ Gff I

~)
I
x3 j.

We can also simplify Eq. (3.18) by neglecting all Fourier components of 8'„(kII+ Gff I x3) except those for Gff ——0 (I
II

is in the first Brillouin zone). According to Eq. (3.16b), this approximation is consistent with the neglect of the Gff&0A
Fourier components of U„(qff+Gff), which in turn is consistent with the replacement of ( V(r, t)) by V(0

I x3), Eq.
(5.1b). We have then

I
~llMI„(kf I, k If I

x3x 3 )= 2 2 ~&~ kll pll I 3 &0 plf
za «'P

)& ImG „+(pfl'p (5.4)

In order to evaluate 1m 6 ~ we start from Eqs. (2.41) and (2.42), and we use the fact that

M2
2 da ( I kff+Gff I

)+ 2 Go~(kff+Gff~kff+Gjf lx3x3)=&- -
~ @x3—x3)

202 dx 3 GllG il

(5 5)

to obtain a set of coupled differential equations for
+ —+ m —+

G (kff+Gff, kff+G If I
x3x3 ). In the approximation

kll+G II'kff+Gfi I x3x3) is replaced by
V ( 0

I
x 3 )5 o 5(x 3 x3 ), these equations decouple if

we set
l'I'

ll

I I
+GI I' k

I I
+G

I I I
x 3x 3 )

+=5- —,6 ~ (kff+Gff, kff+ Gff I x3x3 ), (5.6)

as is to be expected in view of the translational invariance
of V„(0 Ix3). Gnly the Gff ——0 component is now of in-
terest, and it satisfies the equation

2 - 2

a (kffo)+ z V(0
I x3) 6 ~ (kffpkff I x3x3 )

2fll dx 3
J

=5(x3 —x 3 ) (5.7)

with the solution

+ - -, X„(x3)X*„(x3)
6„+(kff,GII I

x3x3)=
[~'a'(kff~)/2m]+i 0+ —E„

(5.8)

where the IX„J are a complete orthonormal set of eigen-
—+

functions of the potential V(0
I x3), with energies E,. As

+usual, the imaginary part of G ~ involves only states on
the energy shell, E„=A' a (kffco)/2m & 0. Since the
scattering states X+(k3

I x3) form a complete set for posi-
tive energies, E„=A' k3/2m, it follows that

dk3
ImG„+(pff pff Ix3x3)= n5 —[a (pffco') —k3] X+(k3 ix3)X (k3 IX3)2& 2'

X [a(pffco')
I
x, ]X+[a(pffco')

I
x3]' .

2A' a(p
I I

co
(5.9)
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We remark that, in this approximation, G ~ (kll+Gll, kll+Gll ~ x3x3) is identical to I'+(Gll
~ x3x3 ) as defined by Eq.

(4.30).
We are now in a position to evaluate d(kll, kll), Eq. (5.3), by using Eqs. (5.4) and (5.9). It is convenient to define the

matrix elements

IV„(qll 1

aa') = f dx3&+(a
I
X3)'IV. (qll I

X3)&+(a'
I X3»

in terms of which we have

(5.10)

m d pll dc@' Rea(p
l l

co')
d(kll, kll)= — f, f X X, , IV. [kll —Ill I

a(kll~»a(pll~')]
fi a(kllco) (2ir) 2~ 'p a (pllro )

&& C p( p ll
—kll, co —co'

[
va') W*„@[4

ll

—p ll f a(kll co),a(plica')] . (5.11)

This is a rather general result of the consistent application
of lowest-order perturbation theory in the DWBA. It can
be obtained by summing all the inelastic transition intensi-
ties as given, for example, by Manson and Celli, and sub-
tracting them from unity, to account for the decrease in
specular intensity due to the opening of the inelastic chan-
nels. To proceed farther, we need to make assumptions
about the atom-surface potential. It is possible, however,
to make the following general statements.

It should be clear from the above discussion and from

t(pll kll a d ~ ~ p
the transfer of lateral momentum and total energy in in-
elastic collisions. In the limit of small qll, it is seen from
Eq. (3.16b) that IV„3(q ll ~

x3) is larger than W„&(qll ~ x 3 )

I

and IV„2(qll
~
x3), and can be approximated by

Wgg3 ( 0
~

x 3 ). Furthermore, if W«( 0
~

x 3 ) decays rapidly
with increasing

~
x3 —x3(~) ~, the major contribution to

the sums in Eqs. (5.2) and (5.4) comes from i~=«'=0, i.e.,
from the top atomic layer on the surface. We can then re-

place C (pll —kll, co —co'
I
ir~') by its value for ir=a'=0,

and the approximation will become exact in the limit

pll kll~0, co —co'~0, because the range of C33, as a
function of

~
X3(a) —.X3(a') I, is of the order of

[ ~ pll
—kll ~

+(co—co') /c ] '~, where c is a typical
sound velocity, and thus much larger than the range of
Wyg3 ( 0

~
x 3 ). With all these approximations Eq. (5.1 1)

reduces to

Pl d pll d~' ~ Rea(pllco )
d(kll, kll)= —

2 C33(pll —
ll, co —co'

~

M) 2 p „3[0
~
a(kilt@), a(pllco')]

2iri a(kllco) (2~) 2ir a (pllco')

(5.12)

Furthermore, comparison of Eqs. (5.1b) and (3.16b) shows
that

i g W„3(0 (X3)= V(0 ~x3),
dx3

(5.13)

so that

i' g W„,(0 ~aa')

f dx3++(a
I
x3) V(0

I
x39 (a

I
x3) ~

dx3

(5.14)

Thus in this limit we recover the commonly made approx-
imation that the effective inelastic potential is

u3d V(0
i
X3)/dx3.

For comparison with earlier results' we consider first
-+

the case when V(0
~
x3) can be approximated by a repul-

sive hard wall. Actually, it is computationally convenient
to work with a finite-step potential

2 2

/X+(a /0) /'=
mao

Therefore,

g IV„3[0 fa(kllco), a(pll~')] =

(5.17)

24 a (k
l l

co )a(p
l l

co
' ),

I

Ho, as long as the height of the step is sufficient to
prevent the atoms from penetrating into the surface A.
hard-wall model for the average atom-surface potential
implies a very short range for the atom-atom potential
U„(p), and is thus consistent with the assumptions made
in deriving Eqs. (5.12)—(5.14) in the long-wavelength lim-
it. It follows that we need only compute the matrix ele-
ments (5.14), which reduce to

—H, f dx,X+(a
~
x, )'S(x, )X+(a'

~
x, )

= —H,X+(a
~

O)*X+(a'
~
0) . (5.16)

1

An easy calculation shows that for Ho & fi a /2m the po-
tential (5.15) gives

V(0
~
X3)—Hoe( X3) ~ (5.15) (5.16')

The results, somewhat surprisingly, are independent of and
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I2— d PJi dN
2(2ir )
2 2m'

(5.18)

U.(q(( I
x3) Uoe

—p(qi)) (x3 (

~(q(() =(~'+q(()'" .

(5.20a)

(5.20b)

It is convenient to define an effective thermally-averaged
potential:

dk3 Jk3x3U„' (q(()x )=
2m.

U.(q((ik, )e ' '

Xexp[ ——,
' k3(ui(a))]

exp[ —P(q(() ~
x3 —x.

3 ~ ]

exp[ ——,'x3 /(ui(a))]
X

[2~( u(~) )]'"
(5.21)

in agreement with the results of the vibrating hard-wall
model, if the integration over p(( is restricted to values of
p((

—k(( that lie in the first Brillouin zone. Such a restric-
tion will appear naturally when V(0

~
x3) is derived from

the interatomic potential, rather than being assumed to be,
a hard wall (see below).

More realistic model potentials can be constructed
starting from a two-body potential of the Yukawa type:

e
—Pr

U„(r)= Uo (5.19)
I'

For the interaction of He with a monatomic solid, p is ap-
proximately given by A p =8m, EI, where EI is the ioni-
zation energy of the atoms in the solid and m, is the elec-
tron mass. The exponential behavior in Eq. (5.19) is dic-
tated by the overlap repulsion between the outer electrons
of the solid and those of the impinging atom. The preex-
ponential factor (1jr) is chosen for mathematical con-
venience and could be replaced by a more general slowly-
varying factor P(r) [for instance, P(r)=1] without alter-
ing the following results in an essential way. The two-
dimensional Fourier transform of U„(r), Eq. (5.19), is

leaving unchanged the exponential dependence on x3. By
using the definition (5.21), Eq. (5.1) gives

V(0 ~x3)= g U„' [0 ix3 —x3(a)]=VO e
~c

(5.23a)

Vofr= g e ' exp[ —,
'
p (ui (ii))],2 Qq

and Eq. (3.16b) gives

(5.23b)

ilV, (q((lx3)= iq. (1—43)+'43
dx3

X U [ql( I x3 x3(a)]e

X exp[ ——,q((( u (((a ) ) ) . (5.24)

g 8'„3(0
~

aa') 2A aa'S(na/P, era'/13), (5.25)

For a monatomic, unreconstructed surface, we can choose
x(((ir) =0. We then see that Eqs. (5.12) and (5.13) are ob-
tained if q((((P for all the values of q(( of interest.
(This approximation is reexamined later on. ) The factor
exp[ ——,

'
(33 ( u i (a) ) ] that appears both in V(0

~
x3) and in

W» ( q l( ~

x 3 ) has no effect, because it corresponds to a
shift of the origin of x3. The factor

exp[ —,'q(([(ui (a)) —(u(((~))]]

in W«(q(( ~
x3) should be set equal to unity in the present

calculation of the Debye-Wailer effect for the specular in-
tensity, because only terms of order u are consistently
kept.

The explicit result for the matrix elements (5.14), with
V(0 ~x3) given by Eq. (5.23a), was given long ago by

Jackson and Mott. " For ease of comparison with the
hard-wall result (5.16b), it can be rewritten

It is legitimate to replace
~
x3 —x3

~
by x3 —x3 in the in-

tegrand, because in reality the distance between the gas
atom and the top surface atom layer is always greater
than the rms amplitude of surface vibrations, at least for a
compact surface. We then obtain

U» (qll Ix3)= e 'exp~ p (q(()(ui(a)) .

where the function S(p,q) is defined by

(p —q)/2 (p +q)/2
sinh[(p —q)/2] sinh[(P +q)/2]

1/2
sinhp sinhq

pq
(5.26)

(5.22)

Comparison of Eqs. (5.20a) and (5.22) shows that, in this
case, the effect of thermal vibrations is simply to change
the strength of the Fourier coinponents of the potential, S [m.a(k(()/P, m.a(pI() /P] (5.27)

Therefore, in this approximation the final result for
D (k((, k(() differs from the vibrating hard-wall result
(5.18) only because of the presence of a "softness cutoff
factor"
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under the integral sign. [For a graph of this fact, see Ref,
12.]

Improvements on these formulas will now be discussed.
First, we note that in Eq. (5.11) it is not necessary to re-

place C33(p)) —k)), co —co'
I
~~') with its value for K=K =0,

because the. sums over Ic and v' can be factored out of the
computation of the matrix elements. The net effect is
that, in Eq. (5.18), C33(p)) —k)),co —co'

I
00) should be re-

placed by

X
+ KK

C33 ( p))
—k)), co —co') =

X f» ll Pll) X f»'
(5.28a)

with

f„(ql) ——e ' exp[ —,'P (uJ (Ic))]e (5.28b)

P(q)) ) —P= z q)) /& (5.29)

This correction may be called a "perpendicular correlation
factor. " For typical values of P and of the interplanar
spacing, over 90%%uo of the contribution to the sums in
(5.28a) comes from Ic=lc'=0, for a compact monatomic
surface (for an open surface, the assumption that specular
reflection is dominant breaks down). Thus we shall
neglect this correction in the rest of the discussion.

More important is the fact that, even if q)) «P, it is
not legitimate to approximate exp[ —p(q)) )x 3 ] with
exp( —px3), unless [p(q)) ) —p]x3 «1 for the relevant
values of x 3. To leading order

and the relevant values of x3 are around the classical
turning point z, . Typical values of the parameters, for
metal surfaces, are z, =4.25, 4.23, and 4.28 A, and
P=2.00, 2.17, and 2.10 A ', for Cu, Ag, and Au, respec-
tively (see Ref. 13 for a table of calculated values and
values referred froin inelastic scattering experiments).
Thus the typical value of the "cutoff parallel momen-
tum, " (P/z, )'~, is 0.7 A ', which is not large compared
to typical values of q)) [the Brillouin-zone boundary,
for Ag(111), is at q))

—2.51 A '). A rough approxima-
tion is to set

e — =exp(——,q))z, /P)e-P~q~ji~, —Px3 (5.30)

With this correction included in Eq. (5.18), »ong with the
"softness cutoff" correction (5.26), the final result for the

, Debye-Wailer factor for specular scattering becomes

2—
A2- ptl

I 2

ID(kll, kll) I
=1—4a(k))co) f, f(2&) 217 P&+( k )

fata(k))co) Ira(p))co )
XR~(p))~ )S' —( k

~I

—I I~)'z, /p
(5.3 la)

with

C(q)), Q)=
2 2 p +qll) 33(ql), Q)+ pq C p(q)) qP

& +q)) ~t3

(5.31b)

where C ( q, Q) is defined by Eq. (5.28a), and C t)( q))Q) for a = 1,2 and p= 1,2 is similarly defined. In practice, as was
pointed out in the discussion of Eq. (5.28a), it is a good approximation to replace C(q)), Q) by C33(q)),Q I

00).
An expression for the Debye-Wailer factor that more closely resembles the temperature factor appearing in theories of

the scattering of x rays, neutrons, or electrons from atomic vibrations can be obtained by regarding the result given by
qs. (5.31) as the first two terms in the expansion of an exponential. The exponentiation of Eq. (5.31a) can be done

djiectly, and justified by cumulant methods, with the result that

I

2= P j( dco
ID(kll kl)) I

—=exp —4«k))~) C(p), —k)),~—~
(2n. ) ~'+("ll —P ll)'

~a(k)) co) ~a(p))co')
)& Rea(p)) co')S (5.32)

Further discussion of the results given by Eqs. (5.31) or
(5.32) is postponed to the next section.

In concluding this section we note that had we restrict-
ed our treatment to a pairwise sum of Yukawa potentials
from the start, we could have made simplifications and

I

avoided certain approximations. For instance, in Eq.
(3.14) the factor

[exp( —k.u(la;t)k 'u(l'Ic';t')) —1]
can be kept exactly by expanding the exponential to all or-
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ders and replacing powers of k3 with powers of id/dx3,
acting on U„' (kii ix3) given by Eq. (5.21). For Yukawa
potentials, the explicit result (5.22) shows that d/dx3 cail
be replaced by —p(kii ). If only the 33 components of the
correlation functions are kept, the expansion can be
resummed, with the result that, in Eq. (3.18) and in the
following, C33( p i i —kii, co —co'

i
aa') should be replaced by

xf dt

momentum transfer, introduces the Armand correction.
To see the last point more clearly, let us assume that all
other factors are slowly varying compared to the correla-
tion function and to the parallel momentum cutoff factor,
which are peaked at p~~

——k~~, co =co'. We obtain then

era(kiico) ~a(kiico)
4a (kii~)~

l (Q7 —CO )t

P(p ii )P(k
ii

)

X [exp[p(pli)p(kll)(u3(la;t)u3(0~';0))] —1]. (5.33)

where

dQ—
Zm

C33( q iiQ) (6.3)

VI. DISCUSSION AND SUMMARY

The main results of this paper include: the formal
developments leading to Eqs. (2.40), the general second-
order formulas for the optical potential, Eqs. (3.17a) and
(3.18), and the corresponding formula for the temperature
effect on the diffracted intensities, Eq. (4.32).

Accurate numerical calculations of diffracted intensi-
ties can now be performed by constructing the Fourier
coefficients of the optical potential M ( k

i
i+ Gii,

+6 ii I x3&3» Eq. (3.18), and then applying the
coupled-chanAel method or other numerical techniques.
It is hoped that such accurate, but difficult, calculations
will be carried out in the near future. Approximate
evaluations of the temperature effects on diffraction, how-
ever, are best obtained from Eq. (4.33). As a first applica-
tion we have explicitly derived the Debye-Wailer factor
for specular reflection from a monatomic surface, in the
limit where diffraction is negligible, under the assumption
that the surface atom-gas atom potential is of the Yukawa
type, Eq. (5.19). The final formula for this Debye-Wailer
factor, Eq. (5.31) or (5.32), is the other major result of this
paper. It should be applicable to the scattering of He
from compact metal surfaces, because it is also approxi-
mately valid in the presence of attractive Van der Waals
forces, provided that the incoming perpendicular energy is
larger than the surface well depth and that surface reso-
nances are avoided. The usual Beeby correction to the
perpendicular energy may be applied to improve the re-
sult.

We have already compared Eq. (5.31) to the result of
the vibrating hard-wall model, Eq. (5.18). We can also
identify in Eq. (5.3la) the various corrections to the sim-
ple result

D (kii, kii)=1 —4a (kiico)(u3(0) ) (6.1)

that are discussed, for instance, by Meyer. ' Basically, the
"closed-channel correction" is due to the fact that the fac-
tor Rea(piico), which appears instead of one of the factors
of a(kiico), restricts the integration to the "open" final
channels (more generally, we are dealing here with a
multiple-scattering effect, as pointed out in Ref. 5); the
softness cutoff factor 5 [era(kiico)/p, rra(pii, co)/p] corre-
sponds to the I.evi correction; and the parallel momentum
cutoff factor, given by exp[ (kll pll z& P] for small

is an equal time correlation function. In the approxima-
tion where the topmost layer (a=0) makes the dominant
contribution to the atom-surface potential, we have sim-
ply

f C33( qii)e " ' = (u3(10)u3(00) )
(2m. )

(6.4)

[recall the definitions (3.15) and (5.28)]. The integral in
Eq. (6.2) is formally extended to ail values of q ii, although
the approximation scheme is consistent only if the major
contribution comes from the first Brillouin zone: Indeed,
the parallel momentum cutoff factor effectively restricts
the integration to a fraction of the Brillouin zone. This is
the Armand effect in momentum space; it can. also be
displayed in coordinate space through the identity

q g/rp

(2~)' C33(qii )e

m.pa, g (u, (/0)u, (00))
4z,

Xexp[ —P[xii(l) —xii(0)] /4z, ] . (6.5)

(6.6)

We can also show the the equivalence of either side of Eq.
(6.5) to an expression that has recently been used by Lapu-
joulade' to justify the original intuitive derivation of the
Armand effect. The essential idea is to use what may be
called the "vibrating turning-point approximation" to ex-
press the Debye-Wailer factor in terms of the correlation
function of the turning point. If the closed-channel
correction is neglected (to be treated separately), Eq. (10)
of Ref. 14 can be written in the form (6.1), but with
(u3(0) ) replaced by the average over the umt cell of the
mean-square vibration amplitude of the turning point,
which, in.our notation is given by

1
d x~~ V,', x~~ z, u3 l0 Q3 l'0

ac c ll'

X U„'[xii —xii(lO) i z, ]

X U~[xii —xii(1 0)
I
z, ],
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where a prime denotes differentiation with respect to x3,
at x 3

——z, . We have kept only the contribution of the top-
most atoms (v=0) to the 33 component of the correlation
function, in order to make a direct comparison with Eq.
(6.5); a more general correspondence with Lapujoulade's
results can also be established. Using Eqs. (5.1a) and
(5.20a), we find

'(
i )

U d ' qII II ~+IIU„xII z, =
(2m)

e e

and we want to solve the Schrodinger equation

=H iq( ))at (A2)

with the initial condition ~%'(to))=
~
@),where

~
@) is

the direct product of a free-particle eigenstate for the in-
cident atom,

~ P;„,), and an eigenstate of H„„~@„,).
By the transformation

~
e(t)) =e - y(t)

~
a ), (A3)

Uo pz
V,', (x,

~
~z, )= e

2ac

and therefore the expression (6.6) becomes

" &(I — —2I:P&qII &
—Pl~,

(2w) , C33(q(()e

(6.8)

(6.9)
.~ BQ(t)

Bt

2

+ V(rs, t) g(t)
Ps
2m

we reduce (A2) to a form similar to Eq. (2.6), with the
only difference that P(t) is still an operator over the space
spanned by rs and us(l~):

I

which is identical to the left-hand side of Eq. (6.5) when

P(q~~) is expanded to lowest order in q~~. It should be not-
ed that the same expansion of 13(q~~ ) was used in obtaining
Eq. (5.31a) [compare Eq. (5.30)], which in fact hinges on
the same turning-point approximation that has been used
by I.apujoulade.

It can then be said that the "quick calculation" of Ref.
14 omits the softness factor S . It is comforting to see
that the calculated value is larger than the experimental
value by a factor of 0.329/0. 251 = 1.31.
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APPENDIX: QUANTUM TREATMENT

Let H„, (where osc denotes oscillation) be the Hamil-
tonian of the crystal in the harmonic approximation. It is
a function of the atomic displacements, I us(lv)J, and
their conjugate momenta. The subscript S, on us(la) and
on other operators in what follows, denotes a Schrodinger
operator. Thus, rz and p~ are the position and momen-
tum operators of the scattering atom.

The total Hamiltonian is then

H =ps/2m + g U„[rs—x(lz) —us(l&)]+Hose i (Al)
lz

where, in analogy to Eq. (2.5),

V(rs t)= g U [rs —x(l~) —uH(lK;t)],
l~

and u~(l, a;t) is the Heisenberg displacement operator

(A6)

We can in fact make Eq. (A4) formally identical to Eq.
(2.6) by taking the matrix element between (r

~

and
~ P;„,), and defining

P(r, t) = ( r
~

g(t) ) P;..)
and also, consistently with (A4),

(A7)

(AS)

It should be noted, however, that g(r, t) is still an operator
acting on the space spanned by us(la). Finally, (f(r, t))
is now the statistical average of (@„,

~
P( r, t)

~
4&„,) over

the occupation numbers of the various states
~

4&„,).
All the formal developments presented in this paper

remain true when g(r, t) is an operator, provided that the
correct order of operator products is preserved, as we have
done. In practice, the only difference of the full quantum
treatment is in the values of the harmonic correlation
functions C ~(q„Q ~

~~').
We note that, formally, the recoil of the lattice is con-

tained in Eq. (2.18) through the self-consistent use of (G)
and (M).
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