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The density of tunneling states deduced from the thermal conductivity of vitreous silica is much
smaller than that required to explain the low-temperature specific heat of vitreous silica. We show
that this discrepancy can be reconciled by introducing the cavity —loosely-bound-particle model.
The loosely bound particles contribute part of the specific heat at low temperature, but not to the
phonon scattering anomalies. Numerical calculation of the specific heat and the thermal conductivi-
ty of SiO2-Suprasil glass is given. Our discussion suggests that introduction of inert atoms into a
glass will greatly increase its low-temperature specific heat, but its thermal conductivity may not be
changed significantly.

I. INTRODUCTION

Over the past decade, extensive experimental and
theoretical investigations have been made of the thermal,
acoustic, and dielectric properties of amorphous solids at
low temperature. It has been observed that, for a wide
range of amorphous materials, these properties are
anomalous, in contrast to those of crystalline dielectrics.
Below 1 K, the specific heat has been found to be quasi-
linearly temperature dependent, while the thermal conduc-
tivity has shown roughly a T dependence. ' With de-
creasing temperature, the sound velocity ' of amorphous
dielectrics does not increase monotonically towards its
value at T=O, but reaches a maximum and decreases
steadily at lower temperature. Other anomalies, such as
ultrasonic attenuation ' and phonon echoes have also
been found. Of the many theoretical models ' proposed
to explain these anomalies, the so-called "tunneling
model" proposed by Anderson, Halperin, and Varma, '

and independently by Phillips" has been the most success-
ful. It assumes that the localized excitations in the amor-
phous state are associated with the quantum-mechanical
tunneling of some entity which can sit more or less equal-
ly well in two equilibrium positions. The microscopic ori-
gin of the tunneling state remains an unresolved problem.
This makes the theoretical development more difficult.

A crucial question in the phenomenological develop-
ment of the tunneling model is whether there exists a con-
sistent set of tunneling-model parameters which can ex-
plain both the low-temperature specific heat and the
phonon-scattering anomalies (i.e., thermal conductivi-
ty, ultrasonic attenuation, sound velocity, and phonon
echoes). This issue has been seriously considered by
Black, ' and also by Black and Halperin. ' They conclude
that, if only the "standard tunneling level" (see Sec. II) is
assumed, the density of the tunneling states deduced from
the phonon-scattering data is too small to be consistent
with that deduced from the specific heat. They then dis-
cussed the possibility of the existence of "anomalous" tun-
neling levels, which only contribute to the specific heat,
not to the phonon-scattering anomalies. A similar sugges-
tion is also discussed by Hunklinger et al. ' In the

present work, we suggest a possible mechanism which
may satisfy the requirement of the anomalous level. We
will also give a quantitative calculation of the contribu-
tion of the suggested excitations to the specific heat. The
mechanism is as follows. In an amorphous solid, because
of its disordered nature, there may exist some microscopic
cavities. A particle (single atom or molecule, or a group
of atoms or molecules) trapped in a cavity may be weakly
attached to the rest of the lattices (see Fig. 1). These
loosely bound particles contribute to the specific heat at
low temperatures, but weakly couple with phonons. More
detailed discussions on this model will be given in Sec. III.
We note that this has been discussed to some extent by
Rosenstock. ' '

II. TUNNELING MODEL

We briefly review here the main results of the tunneling
model and also give a quantitative discussion of the diffi-
culties of the model in consistently explaining the large
body of experimental results. When a broad range of re-
laxation time is assumed, ' the long-time-scale specific
heat contributed from the tunneling levels is calculated
b 18 19

Ct ——f dEE [4k~T cosh (E/2k&T)] 'P(E)g(E) .

Here E is the energy splitting, P(E) is the density of the
tunneling states, and ri(E) represents the quantity
—,
' ln(4&,„/r;„), where r is the relaxation time;
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The coupling parameters M reduce to y (b,o/E) on mak-
ing the usual assumption that the dominant coupling of
the phonons with the tunneling levels is through the
modulation of E. o Here Ao is the overlap energy. The
minimum of the relaxation time reaches when Ao ——E. We
get
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The phrase "standard tunneling model" here refers to
the model for which the coupling constants y are the
same for all the tunneling states. In the original tunneling
model, ' '" this is not necessarily the case.

The phonons are scattered by the tunneling levels
through the resonant process and the relaxation process.
The resonant process occurs when a phonon of frequency
cp is absorbed by a state of energy E =fun and later reradi-
ated in a different direction. At low temperature ( T(1
K), the resonant scattering is dominant. The phonon in-
verse mean free path due to the resonant process is given
by

—1
~a, res(~) = coP (iticp )tanh
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By fitting to the experimental data of the thermal con-
ductivity, we are able to get the value of the product
Pay . Since the coupling parameters have been measured
independently for vitreous silica, ' yi ——1.6 eV and
yi=2yc, the density of states Pp is determined. Using the
experimental data from Zeller and Pohl, ' ~=33
erg/cmK at T =0.1 K, and Ui ——5.81X10 cm/sec and
Us =3.73X 10 cm/sec, we get Ppyi 1.73X 10 erg——cm
or Po ——2.64&10 ' erg 'cm . Qn the other hand, if we
assume that all the specific heat at T =0.1 K are con-
tributed from the standard tunneling states, its density of
states can also be determined directly from Eq. (6). From
Zeller and Pohl, ' C=1.0 erg g '/K at T=0. 1 K, we
have Pprl(E =0.24k' ) =3.2X 10 erg 'g '. Assuming
that the time scale in the specific heat measurement is
i. ,„=10 sec, we have, for vitreous silica,

g = —,
' in[6. 19X 10 (E /ks ) coth(E/2k& T)] .

This gives q(E =0.24k& ) =9.2. Therefore, Pp ——7.66
&10 ' erg 'cm . It is almost three times larger than
that calculated from thermal conductivity. We note that
the density of states deduced from other ultrasonic prop-
erties is comparable with that from the thermal conduc-
tivity.

One possible way to go around this difficulty is to as-
surne that the coupling parameter y is energy dependent.
The average of it may give a smaller value and hence
bring Po into consistent with the one calculated from the
specific heat. Since the energy dependence of y is not

The thermal conductivity can be calculated from

~D A cp e l~(cp)
K= 3 dc',

p 2 2 2k +2( X 1)2

where x =fico/k&T. To simplify our numerical calcula-
tion, we assume a constant density of states P(E)=Pp.
At low temperature, we get

Ci ——,' ir kiiPpri(—E =2.4k' T)T,

known yet, the reduction of the coupling parameter can-
not be predicted. Moreover, this assumption suffers the
following challenges.

. First, as is proved in Ref. 2, an energy-dependent densi-
ty of states of the form P(E)=Pp(E/ks) will give a
T'+ term in the specific heat, and a T " term in the
thermal conductivity, at low temperature. The ternpera-
ture dependence of the thermal conductivity in the vitre-
ous silica is T' ', —while that of the specific heat is
T' (Suprasil W). When the energy dependence of the
coupling parameter y is considered, we would have
P(E)y (E)-E '+ 'an—d P(E)-E . This gives

y (E) E-' + '"—. 'This shows that the coupling param-
eter y would increase with decreasing energy. After scal-
ing y(E) and recalculating Pp, we are still not able to
make Pp consistent with the one calculated from the
specific heat and the one calculated from the thermal con-
ductivity.

Second, the specific heat is very sensitive to the exact
nature of the sample (chemical composition, impurity
content, sample preparation), whereas the thermal con-
ductivity is rather independent of these details. For exam-
ple, for As2S3 at 0.1 K, the specific heat increases by a
factor of up to 3 between samples of different purities be-
fore any significant changes appear in the thermal con-
ductivity. If both of the thermal conductivity and the
specific heat are only contributed from the tunneling
states, we would be forced to conclude that Ppy remains
constant, Pp increases by a factor of up to 3, and hence y
is reduced by a factor of up to 1.73, for samples of dif-
ferent purities. Here the overbar means average. Why the
impurities are so weakly coupled with the phonons is to be
explained.

Finally, short-time-scale specific-heat measurement
shows that only part of the total specific heat of glasses
can be ascribed to the tunneling levels. This part has an
extremely wide distribution of the relaxation time and
shows the predicted logarithmic time dependence. The
rest of the specific heat may be contributed from other
sources.

III. CAVITY —LOOSELY-BOUND-PARTICLE
MODEL

With the comments of Sec. II in mind, we now have to
seek other possibilities to remedy the difficulties. Since
the difficulties arise from the density of states deduced
from the specific heat and from the thermal conductivity,
we are led to adopt the following point of view. ' ' Most
of phonon-scattering anomalies are attributed to interac-
tions between phonons and the tunneling levels. The
specific heat, however, is contributed partly from the tun-
neling states, while the rest are from different local excita-
tions.

We notice that there are several requirements that the
unknown excitations have to satisfy. (1) The model
should be general; it should not depend on the details of
structure. (2) The coupling between the phonons and the
unknown excitations should be weak. (3) The energy of
the excitations should be small (low-lying modes), which
then gives large contribution to the specific heat at low
temperature. (4) It should present an explanation of the
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+max Z2(o /ks T)c,=f 3kP2(o)
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where P2(o ) is the density of states, and

z( )=g
n=1

(12)

Z&(x)= g xn e (13)

00
2 2 —X1lZz(x)= g (xn ) e (14)

Assuming P2(o)=n2(olks)", we have

sample dependence of the specific heat. (5) Like the tun-
neling levels, these excitations should also present a quasi-
linearly temperature-dependent specific heat at low tem-
perature. We note that this can be realized by postulating
a weakly energy-dependent density of states. For, as we
proved in the Appendix, any excitation with a constant
density of states, extending from a sufficiently low energy
to a sufficiently high energy, will contribute a linearly
temperature-dependent term in the specific heat. We sug-
gest that the following cavity —loosely-bound-particle
model may satisfy the above requirements.

As is mentioned in the Introduction, cavities are more
likely to occur in disordered solids, in comparison with
crystalline solids (see Fig. 1). We point out that the ex-
istence of the cavities does not contradict either the "con-
tinuous random-network" model or the "random close-
packing" model. The usual justification of these models
is that they yield reasonable agreement with diffraction
studies of the radial distribution function. As can be seen
in the next section, the number of cavities is so small that
it will not affect the measurement of the radial distribu-
tion function.

Consider a 1oosely bound particle in a cavity with linear
size L,. In the limit case, the particle can be considered to
be free. The Schrodinger equation can readily be solved
to yield

E„=o(n~+n'z+n3), n~, nz, n3, ——1,2, 3, . . . ,

2@2

2mI.
0

where m is the mass of the particle. For L =5 A, and m
the mass of an oxygen atom, m =2.66& 10 g, we have
o.=8.2&10 ' erg. This is equivalent to 0.594 K or
7.8/10' Hz. We see that it is smal1'.

For simplicity, we assume that all the loosely bound
particles are the same. From the Appendix, the specific
heat contributed from these particles can be easily com-
puted:

FIG. 1. Schematic representation of a disordered solid, show-
ing a cavity and a loosely bound particle A. The circles
represent the rest of lattices.

ity distribution P (L ) -1/L . This makes the assumption
that the density of states is approximately constant more
reasonable.

Using the parameters given in the next section, we can
estimate C2-3.5&&10 ergg 'K ' at T =0.01 K. Ex-
trapolating the experimental data of vitreous silica to this
temperature gives C-4.5 g 10 erg g 'K '. We see
that the loosely bound particles may give large contribu-
tion to the specific heat at low temperature.

As can be seen in the next section, the average linear
size of the cavities is about 4 A for vitreous silica. Most
phonons at low temperature have wavelengths much
longer than this size. This shows that the cavities have
little effect on the propagation of the phonons. On the
other hand, ' being isolated from the rest of the lattice, a
loosely bound particle in a cavity wi11 weakly couple with
the phonons. In the limit case, where the particle is free,
there is no coupling between the phonons and the particle.

The influence of the sample preparation and the chemi-
cal composition on both the number and the size of the
cavities is readily seen. The way the impurities affect the
low-temperature specific heat can be explained as follows.
For an impurity which weakly interacts with the solid
network under consideration, like most of inert atoms, it
will possibly enter an empty cavity and become a loosely
bound particle. For an impurity which strongly interacts
with the network, like OH in vitreous silica, it may re-
place an atom in the network and the latter may become a
loosely bound particle (in the case of the OH impurity, the
situation may be more complicated, because the OH
group may itself consist of a tunneling state ). This in-
terpretation is consistent with the measurements of the
specific heat of vitreous silica after sorbing helium and
neon atoms. ' Large contribution to the specific heat
from these inert atoms is found. We predict further that
the thermal conductivity will have no significant change.

T

"ma. „Z2(x) Z ) (x)
C2 ——3k' T'+ n2 X

"min Z (x) Z 2(x)
(15)

here x =a/ks T. We note that v=0 corresponds to a cav-

IV. NUMERICAL RESULTS ON Si02-SUPRASIL GLASS

In this section, we will calculate the specific heat and
the thermal conductivity of vitreous silica (Suprasil), by
employing the tunneling model and the cavity —loosely-
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bound-particle model. The specific heat is

C=CD+Ci+C2 . (16)

Here CD is the Debye specific heat, CD ——8.OT
erg g 'K '. Because the Debye temperature of the vitre-

ous silica is about 340 K, and the temperature range
under study is less than 10 K, the above expression of CD
is expected to be satisfactory. C, is the specific heat con-
tributed from the tunneling states. The density of the
tunneling states has been derived by the author, ' which is

0.2 —D(a —~.)' dh
ks dE

—t2
(E/b, ) +(E 5)(I—0.2Ae /b. ' [1+Ah e +erf(to) j I

—1.286 )

A =%coo(28/m )'i

8 =m~oc /2A',

(20)

(21)

The asymmetry 6 and the energy E is related by
2

E =5 I1 +[1 +AdP' e '+erf(to)j e
'

J . (19)

of an oscillator in the double-well potential, D character-
izes the distribution width of the asymmetry, and c is re-
lated to the distribution center of the potential-minima
separation.

Cz is the specific heat contributed from the loosely
bound particles. We assume v=0. 3 in using Eq. (15).

The thermal conductivity is calculated from Eq. (5),
with"

erf(to) = f e ' dt, (22) I (co)=[I,„' (co)+&,,~' (~)j '+&;„. (24)

r, =(~m.A 5") (23)

m is the mass of the tunneling entity, coo is the frequency
I

The inverse of the phonon mean free path due to resonant
scattering by the tunneling levels has been given in Eq. (4).
The mean free path due to relaxation process is
mathematically complicated. ' ' It can be integrated
only for cor~;„&~ 1 and cow;„&&1. We have

for corm;„&& 1,
2 g T (25)

max
1&,~,~(~)=

3 g & ~ I dE2E P(E) sinh
3pU ~ p 21TpA U pkgT 8

for &comm +& 1 (26)

/;„ is some constant. Following Zaitlin and Anderson,
we will use Eqs. (25) and (26) as interpolations.

Figures 2—4 show our fit to the experimental data.
Most of the specific heat at T)2 K is contributed from
the tunneling states, while that at T (0.5 K is from the
loosely bound particles. For example, at T =0.1 K, the
loosely bound particles contribute almost —', of the specific
heat.

By fitting the thermal conductivity to the experimental
value at T =0.1 K, no, the constant in the density of the
tunneling states, is determined to be no

——2.06 && 10
erg 'cm . The other parameters are as follows:
2 =0.6/kg, 8 =0.003/kg, b,, =66k', D = 1.26
X 10-'/k„n, =3 SX 10" . erg-'g-', ~ .„=1.5k, ,
cr;„=0.005k~, I;„=8)&10 cm, and E,„=80k~.

At temperature T &0.3 K, the density of the tunneling
states can be expressed as'

—Dh, 2
P (E)= (noe '/5 )(E/k13 )

=(3.24X10 ' erg 'cm )(E/ks)

The information on the local potential of the tunneling
entity can be obtained from A, B, A„and D. ' Suppose
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FIG. 2. Specific heat of vitreous silica below 1 K. The exper-
imental data ( + ) are from Ref. 2. Below 0.5 K, a major part of
the specific heat is contributed from the loosely bound particles.
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FIG. 3. Specific heat of vitreous silica above 1 K. The exper-
imental data {+)are from Ref. 2). For 1 K& T~15 K; the
tunneling states give major contribution.

FIG. 4. The thermal conductivity of vitreous silica. The ex-
perimental data (+ ) are from Ref. 2l.

that the tunneling entity is the Si02 molecule. Then the
frequency of oscillation of the entity in the harmonic po-
tential is coo ——1.8& 10' Hz. The distribution width of the
asymmetry is 1/D' =2.4&& 10 eV. From c =3/
53.3k&, the distribution center of the potential-minima
separation can be calculated to be 7, =cd,' =2.86 A, and
its distribution width a=c/D =1.03 A'. If the tunnel-
ing entity is the Si04 unit, then X, =2.31 A and +=0.84
A.

The information on the loosely bound particles are in-
cluded in the parameters n2, o. ,„,and o;„.Suppose that
the loosely bound particles are the "nonbridging" oxygens.
Then o,„corresponds to the smallest cavity size of
L;„=3.15 A. The averaged energy of the particles is
calculated to be o =0.85k&, which corresponds to a cavity
with L =4.19 A. The density of the loosely bound parti-
cles is estimated to be 6.5X10' /cm . This shows that as
long as there is one loosely bound oxygen atom out of 10
Si02 molecules, the major part of the specific heat at low
temperature will be contributed from those oxygens.
Furthermore, the OH content in SiO2-Suprasil is 1200
ppm. Suppose the hydroxyl enters the Si02 network
through the replacement of a bridging oxygen atom by
two OH groups. To contribute major part of the specif-
ic heat at T(0.1 K, only, ~ of the replaced oxygen
atoms are required to become loosely bound.

The parameter o;„is not sensitive to the specific heat
for T)0.05 K. o. ;„=0.005 K corresponds to a cavity
size of L -50 A. Cavities of this size might be expected
to have some effects on phonon-scattering properties.
However, the cavities are distributed according to 1/L
for the density of states P2(o) ~ (cr/k) The num. ber of
cavities having L -50 A is about four orders of magni-
tude smaller than that having L-5 A. At T-1 K,
where the cavities having L -5 A give contribution to the
specific heat, the phonon scattering by large-size cavities
(L —50 A) is negligible. At T =0.05 K, the cavities hav-
ing L -20 A give 1arge contributions to the specific heat.
However, at this temperature, most phonons will have
wavelength about 10 A, much larger than the linear size
of any cavity. The effect of large-size cavities on the

V. SUMMARY AND CONCLUSION

The tunneling model successfully explains the major
features of both the specific-heat anomaly and the ul-
trasonic anomalies. However, the density of states de-
duced from thermal conductivity seems too small to ex-
plain the low-temperature specific heat. As is shown in
Sec. II, it seems hard to remove this difficulty by assum-
ing an energy-dependent coupling parameter. That the
specific heat is very sample dependent, while the thermal
conductivity is rather independent of structural details, is
also an issue to be explained. We have shown that it is
possible to settle these problems by introducing the
cavity —loosely-bound-particle model. The influence of
sample preparation, chemical composition, and impurity
content on the specific heat can readily be explained. In
addition, because the loosely bound particles are weakly
coupled with phonons, their influences on the ultrasonic
properties are minor. Numerical calculations on Si02-
Suprasil glass show that a density of 6.5&&10' cm 3 of
the loosely bound particles will contribute about —, of the
specific heat at T =0.1 K. At T) 2 K, the contribution
from these particles is negligible.

I

APPENDIX

In this appendix, we prove a theorem which states that
any excitation with a constant density of states, extending
from a sufficiently low energy to a sufficiently high ener-

gy will contribute a linearly temperature-dependent term
to the specific heat.

Proof The partition func. tion of a single excitation is a
function of the energy and the temperature,

Z =Z(/3E) .

Its thermal averaged energy is then

B lnZ(PE) d lnZ(x)= —kg Tx
8/3 dx

(Al)

(A2)

phonon-scattering properties is therefore negligible even at
very low temperature.
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Here x =PE and JI3=1lkz T. The specific heat contribut-
ed from this excitation is

The specific heat contributed from all the excitations is
then

(E) dE
k 2 d'1~

C = = gX

d 1 zC =f n (E)c (E)dE =k~ Tn f x dx,
dx

where n (E) is the density of states.
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