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X-ray diffuse scattering by cyclohexanol in the plastic phase:
A theoretical model including orientational and translational molecular correlations

D. Ceccaldi
Laboratoire de Chimie Physique des Matériaux Amorphes, Université Paris-Sud, Batiment 490, 91405 Orsay, France
(Received 19 July 1984) :

X-ray diffuse scattering from the plastic phase of cyclohexanol has been recorded on photograph-
ic films by the Burger precession method. We present a new theoretical model to calculate x-ray dif-
fusion intensity including orientational and translational molecular correlations. We calculate the
dielectric correlation factor g (g =1.176, which agrees with the experimental value g=1.33). We
define an orientational correlation matrix which allows us to calculate g. The computed x-ray dif-
fusion intensity describes qualitatively the experimental intensity variations. In the theoretical
model the strong hard-core repulsions are responsible for the orientational correlations (we neglect
the electric dipole and H-bond interactions, but they may be included in a more general model).
Translational correlations are described by a simple model including phonons and orientational-

translational coupling.

I. INTRODUCTION

Descamps and Coulon'™* have calculated the diffuse
scattering of neutrons and x rays from the plastic phases
. of different compounds by the weak-graph method (which
includes molecular orientational correlations coming from
steric hindrance). Furthermore, they used a closed-form
evaluation of the static susceptibility X(q) with the
Bethe-level approximation.*®> In plastic adamantane
derivatives,® Descamps used a mean-field treatment of the
hard-core repulsions.

In this work we do not discuss the validity of all these
models, but we present a new theory which seems to be
more rigorous for describing molecular orientational
correlations arising from steric hindrance (and including
translational correlations). We calculate molecular orien-
tational correlations using a set of computed microcrys-
tals with random orientational configurations (but steri-
cally compatible). The model is applied to cyclohexanol
in its plastic phase.

X-ray diffusion has been recorded on photographic
films by the Burger precession method. We hoped to test
also the model on succinonitrile which has been studied
by Descamps with the weak-graph method.>’ However,
when we computed our steric hindrance compatibility ma-
trix (described in Sec. II for cyclohexanol) we observed
that the x-ray structure of succinonitrile I3, (Z =2)
seemed to be incorrect. Fontaine® described this structure
used by Descamps,7 but we find that it lead to a steric in-
compatability: There is an overlap of the Van der Waals
envelopes of the molecules located at neighboring origins
always greater than 0.8 A when a nitrogen atom is be-
tween the origins. Note that this structure has also been
applied with the weak-graph method® to determine the
dielectric correlation factor g from Kirkwood theory of
the polar dielectric.!® In our model we also determine the
Kirkwood dielectric correlation factor g.

We are interested in cyclohexanol because we have
shown!!""!? that it is a good model to study the glass tran-

31

sition. The plastic phase I may be easily supercooled and
gives a glassy crystal phase I;. Note that our theory for
the plastic phase may be applied to the glassy crystal to
calculate the x-ray diffusion scattering and the orienta-
tional molecular correlations.

II. THEORY

The theoretical model will be presented for the case of
cyclohexanol in the plastic phase. It may be easily gen-
eralized to all other cases of plastic crystals (and glassy
crystals) where the orientational correlations of the mole-
cules are observed for short distances (for example, one or
two intermolecular distances). In the case of long-range
orientational correlations the model is not valid. We also
include translational correlations associated with phonons.
(It is clear that vibrational states are not described by sim-
ple models because there is orientational disorder.)

We suppose that orientational correlations of molecules
are governed by strong hard-core repulsions. (The van der
Waals envelopes of the molecules must not overlap more
than a short distance.) In the case of cyclohexanol we cal-
culated that electronic energy of molecular dipoles may be
neglected for the orientational correlations. However, in
the cases of other molecules it may be important and the
model may be generalized with electric dipole and H-bond
interactions. The structure of cyclohexanol in its plastic
phase has been determined:'? It is a face-centered-cubic
crystal (Z =4); with orientational disorder, the molecules
are in equatorial or axial configuration (3,%), and for
each molecule on a site there are 48 orientational configu-
rations which may be deduced from the position 1 (or 49)
by the 48 symmetry operations of the crystal F,,;,,. The
rotation center of the molecule is fixed with the structure.

A. General expression for x-ray diffuse scattering

The x-ray diffuse scattering intensity 7(q) may be writ-
ten as the sum of different terms:
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I(q)=Ig(q)+Iwc(q)+Alpc(q)
+AITC(q)+ICompton(q) . (1)

We discuss the different terms in detail.
(a) Iz(q) is the Bragg intensity:

lqR

Iz(q)= | (F)7| 22 2)
p=1

I3(q)=|(F)r|*X8(q—K), 3)
K

where M is the number of molecules in the crystal and K
is any reciprocal-lattice vector. The factor | (F) |7 is the
square of the mean value of the molecular structure factor
at temperature 7. There are 48 X 2=96 states for one site
(the molecule is equatorial or axial):

96
<F>T= E F,,,(q)
m=1

—q2Ar} /2 . @)

F,, is the molecular structure factor of the molecule. Arg
is determined with the structure of the crystal (isotropic
approximation) and

g2 Arg~{(q-Ary,)?) . (5)

The average is taken over atoms i, states m, and thermal
disorder Ar;,.

(b) Iwc(q) is the computed x-ray diffusion intensity
without orientational and translational molecular correla-
tions:

Iwc(Q):<‘F|%">—|<F>T|2, . (6)
96
(|F|3)= 3 FpFpe T 8750 @
m=1
with
q*Ari~{(q-Ary, )(q-Arj,)) . (8)

The average is taken over atoms i and j of the same
molecules (is4j), the states m, and thermal disorder. Arg
is known [see item (a)], and Ar is estimated.

(c) Algc+Altc gives the effect of orientational and
translational correlations: .

M . 2Ar2 2
Aloc+AIrc= 3 (F4Fy ., e Y Ree ™ 48 =% %)
p=2

M.
—(F)p 23S, )
p=2

The average (F,,F,, ,,) is taken over all the configura-
tions in the crystal. For practical reasons we will use a set
of computed microcrystals with random orientational dis-
order (the orientational correlations results in steric hin-
drance). This point is developed in Sec. III. Thermal dis-
order, translational correlations of molecules, and
rotation-translation coupling are simply described by the
factor

—qXArd—e Ar?)
e BTN (10)

where

07297 = ((q'Arip Q- Arj 1)) (11

€,=*1 is the sign of the average and the average is taken
over i,j,m and thermal disorder. The correlations appear
for molecules located at origins separated by a vector R,
of the lattice. (The lattice used is the lattice with one mol-
ecule per cell.)

We may separate orientational correlation effects from
translational correlation effects in the following way:

Aloclq)= Z(F Fpyp e’ Roe "9
p=
| (F)q| Zze’q'RP (12)
p=2
and
Alrc(q)= zequAr,, | (F)p |2 % (13)
P2
This results from the fact that
—q2Ar2
e VB FpFp )= | (F)r|2. (14)
For practical reasons we include in Eq. (13)

orientational-translational coupling. Note that in Eq. (12)
the orientational correlations vanish for |R,| >Ry, a
critical radius. Then the summation over p is limited to
Py <<M. M is the number of molecules in the crystal. P
is also smaller than the number M of molecules in the
computed microcrystals.

(d) Icompton(q) is the well-known Compton incoherent
intensity which is easily computed.

B. Microcrystals computed with random
orientational disorder

In Eq. (12) the average (F,,F,, ,) will be determined
using a set of computed microcrystals with random orien-
tational disorder. Orientational correlations result from
steric hindrance and when the number N, of microcrys-
tals is of the order of 2000 48=96000, we observe a
convergence of the orientational correlations.

1. Steric hindrance compatability matrix

When we determined the structure of cyclohexanol we
used a steric hindrance compatability matrix. To study
intermolecular contacts, every molecular orientation has
to be taken into account. Each lattice site thus corre-
sponds to 96 orientational states (48 for equatorial and 48
for axial) which are the same for every site. Each mole-
cule is surrounded by 12 neighboring ones (lying at the
same distance a(V'2/2). So we have to describe how any
one of the same 96 orientational states of one central site
interacts with any one of the same 96 states of the neigh-
boring site of the (—;—,%,O) type. Obviously, the interac-
tions between a central molecule and any neighboring one
can be deduced through a rotation from the interactions
between other such couple. Then it will be sufficient to
study the contacts between a central molecule and its
neighbors lying at (+,%,0). 96X 96 orientational states
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couples are to be studied.

Instead of describing the detailed intermolecular con-
tacts, which would have been cumbersome, we chose to
build a 96X 96 matrix in which the value of the elements
"A(my,m,) defines steric compatibility between a mole-
cule in orientational state m at (0,0,0) and a molecule in
orientational state m, at (-;—,%,0). A(m,m,)=1 if the
two states are sterically compatible, and O when they are
not. Any two cyclohexanol molecules are considered as
sterically noncompatible when any distance between two
atoms belonging to each molecule is shorter than the sum
of the Van der Waals radii of the two atoms minus a
given distance, which should take intermolecular interac-
tion and motion into account. The van der Waals radii
for carbon, oxygen, and hydrogen were taken as 1-8, 1-4,
and 1-2, respectively. We define a, the radii of the num-
ber of compatible orientational state which couples to the
total number (96X96). a is of the order of 0.7 for
e=0.1 A.

2. Computed microcrystals with random
orientational states of molecules

We compute a set of microcrystals with random orien-
tational states of molecules using the steric hindrance
compatibility matrix. There are M,=55 molecules per
crystal. The central molecule is chosen in state 1 or 49.
The states of the remaining molecules are defined by a
random function but we require the system to be com-
pletely sterically compatible.

Each molecule is taken in a random state n from 1 to
96 and we program the computer to determine if the state
is sterically compatible. If not, we try the state n +1; if
in one site there is not a compatibility state we build
another crystal.

A crystal is composed of molecules at sites of the fol-
lowing type:

(0,0,0) central molecule,

(+,2,0) shell n" 1,

(1,0,0) shell n” 2,

(1,%,%) shell n” 3,

(1,1,0) shell n™ 4.

When a microcrystal is computed, the 48 symmetries of
the crystal give 48 equivalent microcrystals. The number
of computed microcrystals is N,=400048=192000.
When we compute the x-ray diffuse scattering intensity,
the orientational correlations, the orientational correla-
tions appear in Eq. (11), which becomes ‘

48 N P iaR
Aloc(@)= 3 3 3 fimelfp(n,e)r e %

e=ln=1p=2

P
—(F)r 23 e, (15)
p=2 .
where kp is a normalization factor:
1 P
7 == W ‘]‘V. . (16)

N =2000 is the number of initial microcrystals and P is
the number of molecules on the shell corresponding to p.

The summation over e=1 to 48 gives symmetric
equivalent microcrystals for given n.

C. Orientational correlations

1. Convergence of the orientational correlations
in the model of the microcrystals

A simple method to observe the convergence of the
orientational correlations in the microcrystals is to com-
pute Algc(q) in Eq. (15) and to observe that the term
AlIoc(q) is well stabilized for N greater than 2000 or less
for the first and the second shells. This has been verified
for N =2000 to 4000. Another method to observe the
convergence of the orientational correlations is to define
an orientational correlations matrix My, where s is a
shell (1 to 4), c is a conformer coefficient, and N’ is the
number of microcrystals. We consider the central mole-
cule 1 and a molecule 2 on the shell s. If 1 and 2 are
equatorial, then ¢'=1; if 1 is equatorial and 2 axial, then
¢ =2; if 1 is axial and 2 equatorial, then ¢ =3; if 1 and 2
are axial molecules, then ¢ =4. The central molecule is in
state 1 or 49. Consider the central molecule 1 and a mole-
cule 2 of the shell s at position p. If 1% and p are unit
vectors of the molecules, the scalar products are

g p2=p305 p o3 - (17

O is a symmetry matrix which defines the orientational
state of the molecule 2. It is clear that the average
(p1°p2)s,c over all the molecules 2 of the shell s and all
the N’ microcrystals (for given ¢) is an orientational
correlations term:

<I"'i 'I‘Z)s,c =F'(l)'(0s,p,n,c >F'g . (18)
This correlation term shows that
Ms,c,N"‘_“ <0s,p,n,c ) (19)

is effectively an orientational correlation matrix indepen-
dent of the unit vectors p?,,ug. We must now show that
this orientational correlation matrix converges for N’
greater than 1000. This is verified by the following argu-
ments: M - is stabilized for N’ greater than 1000. It is
verified by the fact that for N'=1000 to 2000 the ele-
ments m;; of the matrix are stabilized and the Euclidian
norm is constant. It is difficult to define a rigorous con-
vergence criterion, but the fact that the diffuse x-ray term
Aloc(q) is constant for N =2N'=2000 to 4000 is evi-
dence that for the diffusion model the convergence is veri-
fied to a very good approximation. The convergence has
been verified for the two first shells of the microcrystals.
For the third shell the Euclidean norm of the matrix van-
ishes and the orientational correlations are considered to
be negligible.

2. Kirkwood dielectric correlation factor g

It is well known that in liquid or plastic phases of mole-
cules having a permanent electric dipole the static dielec-
tric constant € may be calculated with the Kirkwood
dielectric correlation factor g:
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TABLE 1. Fractional atomic coordinates (X 10°) for the
structural model of cyclohexanol phase I at 275 K.
Equatorial
C 1064 —742 16227
C 2373 —16803 9447
C 9741 — 15864 —6380
C —138 —5917 —16824
C —1446 10144 —10045
C —~8814 9205 5782
H 8786 —23261 16230
H —7976 —21382 8539
H —20089 —11285 —5471
H 10591 —26292 —10782
H 4645 —5308 —27101
H . — 10487 — 10496 —17733
H 8902 14723 —9136
H — 7860 16 602 —16 827
H —9664 19633 10185
H —19163 4625 4874
H 11413 3837 17135
(0] —5777 —1614 30921
Axial
C —3899 660 18720
C —1900 —13124 8154
C +4444 —7793 —7240
C — 6686 3558 —14513
C — 8685 17 342 —3947
C —15029 12011 11448
H 5326 —20494 12877
H —11948 — 18164 6566
H 14492 —2753 —5653
H 5742 —16742 —14101
H —2567 7019 —24509
H —16734 — 1482 —16101
H 1363 22383 —2359
H —15911 24713 —8670
H —16327 20961 18 308
H —25077 6971 9860
H —8017 —2801 28716
(@] 10469 7867 20990
47 3e €xt2 | Ng , >
T Y ete. | 3 AL 2o

where py is the permanent dipole moment in the molecule
in the gas phase. The Kirkwood dielectric correlation fac-
tor g is defined by
Y opiey
y=1 <,Ll,%/>

(21

The sum is realized for the molecules ¥ around a molecule
1. In the case of cyclohexanol the dipole moment of the
molecule is not completely defined because in the C-O-H
system O-H may take any orientation around C-O. How-
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ever, if we take p)y=1.688 D the projection g of u, on
the direction C-O is pupa=1.588 D. If we neglect the
correlations of position of the O-H around C-O, Eq. (21)
becomes

2
N .
KAar Baj | Ma

g:H—E—ZJ — (22)

y=2 MA My

with

u 2
A1 —0.8854 . (23)
Ky

We have verified that the crystal structure gives relative
positions of neighboring molecules such as
2

Hy

A <kT . | (24)
Ar is the distance between the dipoles of the molecules.
The relation (24) has been verified for more than 98% of
the configurations. This allows us to suppose that strong
hard-core repulsions are predominant for the configura-
tions. However, we are not completely sure that hydrogen
bonds may be neglected for this problem. A more general
model might consider the bimolecular configurations in
order to describe the electric dipole and H-bond interac-
tions (the compatability matrix must be considered with
an energy probability matrix).

The Kirkwood dielectric correlation factor g is calcu-
lated with Egs. (18), (19), (22), and (23). The number of
microcrystals used is N =4000 (N'=2000) which gives
well-defined - correlation matrices M;.y. We find
g =0.619 with two shells of molecules in the microcrys-
tal. This value does not agree with the experimental value
g=1.33 found by Reinisch!® with dielectric measure-
ments. However, when we published our structure of cy-
clohexanol,'? we gave results of one solution but (inside
the precision of the results) there was another solution
which was equivalent in relation with validity criterion.
This indetermination results from the fact that only 10
Braggs spot were taken into account. So in this work we

(200,200,0)

FIG. 1. Diffusion  intensity in the  direction
qg=(2a,2a,0)27/a. ——, experimental, — — —, computed
without orientational and translational molecular correlations.
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f T T T T T
f; (20, 20¢,0)
2 2
1 2 3 4 5
20
q/ 44
FIG. 2. Diffuse intensity in the  directions
q=(2a,2a,0)27/a. , experimental; — — —, computed in-

tensity with orientational and translational molecular correla-
tions.

have computed the two solutions, and the second gives a
computed dielectric correlation factor g=1.176 which
agrees quite well with the experimental value (g =1.33).
Furthermore, when we computed the x-ray diffuse scatter-
ing I(q), only the second nonpublished structure agreed
with experimental I(q). In Table I we give the nonpub-
lished structure of cyclohexanol.

III. COMPUTED X-RAY DIFFUSION INTENSITY

We compute the x-ray diffusion intensity I(q) for dif-
ferent trajectories in reciprocal space:

(a) q=(2,2,0)(27/a),

(b) q=(4,2,0)(27 /a),

(c) q=(4,2,2)(27/a), and

(d) | q| =4w/a circle in (1,0,0) plane.

Experimentally we know that Bragg spot (200) is sur-
rounded by a strong diffusion area. The same strong dif-
fusion appears in the computed trajectory (d). In the cases
(a), (b), and (c), the computed intensity (without Bragg
spots) is not exactly the same as the experimental intensity
but it is a good qualitative description for the experimen-
tal diffusion. For example Fig. (2) gives I(q) for the case
(a). If we neglect the orientational and translational corre-
lations (Fig. 1), the x-ray computed diffusion
Twc(q)+1 compton(q) is completely incorrect (compared to
the experimental diffusion intensity).

The orientational correlation term Alpc(q) is not suffi-
cient to find a good agreement with experimental data and

.g T T
s
0.2 |~ ™ |
"~
-\.
N
.\.
| N
0.1 p=— \ i
\.
\.
oJlllsl'llll1lo
S

FIG. 3. Variation of Ar, with s (number of the shell).

we must include the translational correlation term
AIc(q). In Eq. (13) we consider eI,ArI,Z:e:Arsz, where s
is the shell corresponding to p. We cannot find a model
for e,Ar? because translational correlations come from
unknown vibrational states (orientational disorder gives
not simple phonons). So we choose a simple model of
simple decrease of Ar; with s (Fig. 3) and ¢,=+1. We
find that the computed 7(q) is strongly dependent on the
decrease of Ar;. Ar,=0.25 A and Arp=0.433 A (from
x-ray structure). The fact that x-ray computed diffusion
is not very close to the experimental one (but agree only
qualitatively with it) may arise from the fact that the pa-
rameters Ar,4,Arg,Ar; are introduced in simple isotropic
models which may be developed with more rigorous
methods. But these methods lead to complexity related to
the case of cyclohexanol. In more simple cases we may
introduce librational parameters and other more rigorous
methods.
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