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Ultrasonic attenuation in strongly disordered electronic systems
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The attenuation of long-wavelength phonons due to their interaction with electronic excitations in

disordered systems is investigated here. Lattice strain couples to electronic stress, and thus ultrason-
ic attenuation measures electronic viscosity. The enhancement and critical divergence of electronic
viscosity due to localization effects is calculated for the first time. Experimental consequences for
the anomalous increase of ultrasonic attenuation in disordered metals close to the metal-insulator
transition are discussed. In the localized regime, the appropriate model is one of electronic two-level

systems (TLS's) coupled to phonons. The TLS consists of a pair of states with one localized state
occupied and the other unoccupied. The density of such low-excitation-energy TLS s is nonzero due
to long-range Coulomb interactions. The question of whether these could be significant low-energy
excitations in glasses is touched upon.

I. INTRODUCTION

In this paper we investigate the effects of electronic dis-
order on the propagation of long-wavelength phonons. '

Ultrasonic propagation and attenuation in metallic and in-
sulating glasses have been analyzed in terms of coupling
with low-lying two-level configurational excitations in
such systems (Anderson, Halperin, and Varma" and
Phillips ' '). However, electronic effects on ultrasonic
propagation have not been investigated for such systems
arid others where the nature of electronic states is strongly
affected by disorder.

We discuss this problem here, considering two regimes
in detail, namely the metal with increasing disorder as it
approaches the metal-insulator transition, and the Ander-
son insulator with exponentially localized states near the
Fermi energy. There is a well-developed theory for the
weakly disordered metal regime, due to Pippard, Tsune-
to, Schmid, and others (see Sec. II below). Here we in-
vestigate effects not considered by these authors and con-
nected with quantum interference or localization. Since
sound couples to electronic stress, its attenuation measures
stress-stress correlations or electronic viscosity which
diverges as the electrons localize. This leads to charac-
teristic anomalous enhancement of the attenuation, in par-
ticular to a new critical exponent 5 for its frequency
dependence, i.e., +=co, near the metal-insulator transi-
tion (5=0 in the absence of localization effects). The ex-
ponent 5 is calculated to be (e/2) to lowest order in e for
a system in 2+@dimensions.

There has been no calculation of electronic effects on
ultrasonic attenuation in an Anderson insulator. In Sec.
III we discuss this regime using the idea, due to Mott,
that low-frequency transport and dissipative behavior in
these systems is determined by pairs of states, one occu-
pied and the other unoccupied, with energy difference of
order fico or ktt T, and with spatial separation r »g~„, the

localization length. We calculate the contribution of such
pairs to relaxational absorption of sound, and show that
inclusion of Coulomb or Efros-Shklovskii types of effects
leads to characteristic enhancement of attenuation. The
attenuation depends linearly on frequency in this case. A
physical description of these results is given in terms of.
electronic two-level systems. Upon including Coulomb
interactions, one finds that these have a nonvanishing
density for small energy differences 0 between the two
states. These two-level systems have other properties,
such as saturation effects, which also are similar to the
AHV-Phillips (AHV denotes Anderson, Halperin, and
Varma) configurational two-. level systems.

In the calculation of the ultrasonic attenuation we use
the model Hamiltonian derived by Tsuneto and by
Schmid to describe the long-wavelength properties of the
electron-phonon system. It describes the electron system
in a frame co-moving with the lattice. Since the random
scatterers are embedded in the lattice and move with it,
electron scattering is elastic and the electronic distribution
relaxes to equilibrium in this moving frame. The interac-
tion between electrons and the lattice in this frame is due
to nonuniformity of lattice displacement (lattice strain)
which produces electronic stress. Tsuneto showed that
one can go over to this frame by a canonical transforma-
tion. Physical quantities such as Green s functions, being
traces, are invariant under such a canonical transforma-
tion. Furthermore, this is also the natural framework for
the localized regime, since, to a first approximation, the
localized electronic states follow the long-wavelength lat-
tice wave. Thus, physical effects in both metallic and lo-
calized regimes can be discussed in a single formal frame-
work, described in detail in Ref. 5 for the metallic case.

The Hamiltonian after transformation is given by

~ —~e +~e Ph +IIPII
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where

H, = g fd"r g (r)
p2

, +u(r) 1' (r)
2m

H, ph
——g fd r r~p(V Up),

a, P

with

(2a)

for the noninteracting phonon Green's function. The
symbol b stands for a polarization index (b =l, t for longi-
tudinal and transverse waves respectively) while
cob(q ) =cbq gives the bare phonon dispersion relation.

We calculate the phonon polarization operator
neglecting phonon vertex corrections to second order in
1/kFI. We use the standard diagrammatic technique to
average over the random potential, impurity scattering be-
ing represented by a dotted line as in Fig. 1(a). The
electron-phonon vertex corresponds [taking into account
Eq. (2)] to a/actor

I 0= — P'qeb P .
m v' pen( q)

, g(V V') (—V V')~P—(r)f (r')
4m*

(2b)

and

H„h ——g f e pV Ui3(r)V U~(r)dr . (3)
a, P

In Eqs. (1) and (2b), P (r)P~(r) are electron-field creation
and annihilation operators, respectively, Up(r) is the pho-
non displacement field,

eb (q)
U(r) = y [&b(q)e' '+Iamb(q)e ' '],

qb 2p~b (q)

and u (r) is a random potential, conveniently chosen
Gaussian with short-range correlations,

( u(r)u(r')) = 5(r —r')
2mg(p)r

' (4)

II. METALLIC REGIME

The ultrasonic attenuation is obtained from the imagi-
nary part of the polarization operator of the phonon
Green's function. It is defined by

'(co, q, b) =&p '(co, q, b) —vr(co, q, b) .

We write

where g(p) is the density of states per unit volume at the
Fermi energy and w is the plane-wave lifetime. These as-
sumptions about v(r) are particularly convenient for dis-
cussing the metallic regime. For the insulating regime, we
shall work with the exact (localized) eigenstates and eigen-
values of H, . The term H, ~h describes the interaction be-
tween the elastic strain and the electronic stress or
kinetic-energy fluctuations. The term H„h is the phonon
Hamiltonian in an elastic continuum or Debye approxi-
mation, e p are elastic constants, and p is the mass densi-
ty. The Coulomb interaction is contained in H, . Since
only the long-wavelength part of the interaction is
relevant. , its effect will be treated in the random-phase ap-
proximation on the metallic side. On the insulating side,
the absence of screening of the Coulomb interaction leads
to qualitatively new effects as discussed by Efros and
Shklovskii; the results and ideas relevant to ultrasonic at-
tenuation will be mentioned in Sec. III.

eb(q) is a polarization unit vector. This vertex is
represented in Fig. 1(b). We include the effect of the
Coulomb long-range force by summing density-density in-
sertions (bubble diagrams) to infinite order. This is
graphically represented in Fig. 2. The cross-hatched bub-
ble representing the full phonon polarization (including
Coulomb interaction lines) is expressed in terms of irredu-
cible density-density, stress-stress, and density-stress
correlation functions (parallel-hatched bubbles).

Denoting the irreducible (with respect to the Coulomb
interaction) density-density, stress-density, and stress-
stress correlation functions by Gdd, Gd„and G„, we find
(see Fig. 2)

(Gd, ) (4m. /q )e~=G„+
1 —e (4m/q )Gdd

We now show that this equation simplifies for long wave-
lengths (small q) due to perfect screening in a metal.

On very general grounds„Gd~ assumes the form

dn Dq
dd=

dp —icu+Dq

in the long-wavelength limit, where dn /dp is the
compressibility.

We will be interested in the small-q regime, so that the
factor (4me /q )Gdd has the value K /q for
co=qu, «Dq and equals DK /ice for co»Dq . Here,
K is the inverse screening length squared, i.e.,

4~e =K2 dn

dp

Clearly, both limiting values are much larger than unity
for low frequencies and long wavelengths, i.e., co &coD and

q «K, so that (4~e /q )Gdd && l. At the mobility edge
and for small frequency, i.e., u, q =co &coD/10, we enter
the dynamic regime, i.e., Dq &co and

' —2/3
D (qco) dn

dp

I

I

1

(0) (b)
FIG. 1. (a) Impurity line; (b) electron-phonon vertex.
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+ ~ ~ ~

FIG. 2. Random-phase-appr'oximation resummation of the
Coulomb interaction. The solid lines are Coulomb lines. The
cross-hatched bubble representing the full phonon polarization
operator is expressed in terms of irreducible (in terms of the
Coulomb line) correlation functions (parallel-hatched bubbles).

We have

4' D (co)q

q CO

2/3

This number is again very large. The simple conclusion is
that, at very low phonon frequencies, screening is perfect,
so that one has, to a very good approximation,

gas the latter varies as co/qUF, this being replaced by co~ in
the present case for ql «1. The result (11) leads to the
following expression for attenuation, first obtained by
Pippard using semiclassical arguments:

~ ImlI ~ rg(P)P'~
a, (m) =-

m pc~d(d+2)
2ao, co

d (d +2)

(12a)

(12b)

We notice that the attenuation (i) varies as co, i.e., one
power of frequency higher than the real part so that the
Goldstone mode is well defined, (ii) has a small coefficient
(m/M)', and (iii) is smaller, the smaller the collision
time r, or the conductivity 0 =ne r/m. The first and last
results are true only if quantum-interference or localiza-
tion effects are neglected.

Quantum-interference effects occur to higher order in

(kFl) '. For transverse attenuation, only the single maxi-
mally crossed diagram set, Eq. (3c), contributes. Calcula-
tion of the graphs listed in Fig. 3(c) in the limit of vanish-
ing external momenta but finite frequency (Dq «co)
gives, in the weakly localized regime, the zero temperature

m =G„—( Gg, ) /Ggg . (10) o~~ 1 1
2

1+ ln, d =2 (13a)
We now discuss the polarizability m, based on Eq. (10), for
transverse and longitudinal phonons.

A. Transverse phonons

2
no, co 1

1 —

decor,

d=3
mkF/ (13b)

Owing to the symmetry of the tensor vertex in the shear
case, G~, ——0. This describes the fact that with zero range
scattering shear or transverse fluctuations do not couple
to longitudinal or density fluctuations. Furthermore, to
lowest order in (kFl) ', G» is given by the process shown
in Fig. 3(a) describing short-range shear fluctuations in an
electron gas. The electron and hole lines are propagators
in the presence of random scatterers. Diffusion or ladder
corrections of the sort shown in Fig. 3(b) vanish. Physi-
cally, this has to do with the fact that under collisions
shear stress has no conserved component, unlike longitu-
dinal stress or density fluctuations. We find, in the long-
wavelength limit,

g(p)pF(~r)
ImII =—

m pc, d(d+2)

We note that the condition Dq « co is satisfied if
ql «uqlu~, e g , for .fr.equencies less than AD IEF(kFl).

We notice that localization effects increase the attenua-
tion. Singular backscattering reinforces stress fluctuations
while it reduces current flow. As electron diffusion slows
down, the electron gas becomes more rigid against shear
deformation. This effect is dynamic, i.e., frequency
dependent. The effect of the same backscattering process

, on conductivity is to reduce it in a scale-dependent way.
Formally, the difference is due to the fact that, while
backscattering reverses the current, which is a vector, it
does not change the stress, which is a symmetric tensor.

Repeating the calculation at nonzero temperature, one
finds

where d is the spatial dimensionality, p the mass density,
c, the transverse sound velocity, and pF the Fermi
momentum. The linear dependence on co arises only from
the density of particle-hole excitations. In, a clean electron

2ao, m

8

2ao~~

15

r;„(T)1+ ln
'"

2nkFI
1/2

(14a)

(14b)

(b
+ ~ 0 ~

+ ~ ~ ~

(c)
FIG. 3. (a) Lowest-order contribution to aq,' (b) ladder correc-

tions; (c}maximally crossed diagrams.

Formulas (14a) and (14b) are appropriate when
cur;„(T) «1. The lifetime r~„(T) is the particle-particle
propagator lifetime that scales like r;„(T)—I /T&. In
three-dimensions, p = —, for electron-electron interaction.

The behavior near the mobility edge can be calculated
in an e=d —2 expansion. Assuming that the ultrasonic
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attenuation at the mobility edge scales, one can exponen-
tiate the series in Eq. (13a).

The mobility edge in 2+ e dimension occurs when

the temperature dependence of cL',

a, =ap, ~'[r;„(T)]'.

1/2mkFI =e/2 .

a, = (ao, /8)co

at the mobility edge, with

5=@/2+O(e ) .

(1Sa)

(1Sb)

Explicit calculation shows that the first corrections to ar
due to diffusion-enhanced electron interaction vanish.
Hence, ar is sensitive to localization effects only. This is
to be contrasted with other transport coefficients, such as
the conductivity, that are comparably affected by localiza-
tion and diffusion-enhanced electron-electron interac-
tions.

Therefore, close to the mobility edge, the frequency
dependence of the ultrasonic attenuation will cross over
from an co dependence at high frequencies to an ro

dependence at low frequency with 5&0. This reflects an
enhancement of the absorption due to localization effects.

At nonzero temperatures such that ~;„co&& 1 and
l;„«g„, our theory predicts a characteristic change in

I

B. Longitudinal attenuation

In the calculation of the longitudinal attenuation, Gd, is
nonvanishing. As Schmid has shown, the subtraction of
Gd, /Gdd in Eq. (10) cancels the diffusion enhancement of
the electron-phonon vertex. The graphs entering the cal-
culation are shown in Fig. 4. %'e write

2

G„=ig(p)
PF

711 pCi

2 2
3 3l co7 l c07 3Dq+ + 1+C07-

d (d +2) d (d +2) d2(Dq2 —j~) d +2 (17a)

2
Gds

2
PF=ig(p)

rnid pci

2
1

d (Dq ice)— (17b)

co rg(p)
A'i =

Cp

2
PF

m*v'p(p)cL
2(d —1)

d'(d +2)
(18)

For small m and q (i.e., cow «1 and ql «1), one finds
that the contributions —1/(Dq —iso) in (17a) and (17b)
cancel one another, giving the classical result for the long-
itudinal attenuation,

or~ 1+ ln, d =2
45 2mkF l co~

exp(cp 1+ +co'r ) d =3 ~

22 1

45 ~k, l

(19a)

Thus, as pointed out by Schmid, there is no diffusion
enhancement of the electron-phonon vertex or of the at-
tenuation, a consequence of relaxation in the moving
frame and of perfect screening.

To calculate localization corrections to the longitudinal
attenuation coefficient, one must calculate only diagrams
with tensor vertices. The contribution of these diagrams
to G,~ and Gdd turns out to be nonsingular in the limit
q~0, i.e., of relative order q . The relevant diagrams are
shown in Fig. 5.

The result at zero temperature is

where

api= VF/m v pc, ) .g(p)r 2

CL

At finite temperatures, co should be replaced by r;„as in
Eqs. (14).

Assuming scale in variance at the mobility edge,
I/2mkFl=@/2, one can calculate the scaling of aL as a
function of frequency in a 2+ @ expansion,

+ ~ ~ ~

+%OS (b)

+ ~ ~ ~

(c)

FIG. 4. Graphs contributing, to lowest order in 1/kFI, to the
longitudinal attenuation. (a) Density-density correlations Gdq,
(b) stress-density correlation Gd„(c) stress-stress correlation 6„.

(c)

FIG. 5. (a) Diagrams of order {1/kFl) entering the calcula-
tion of the longitudinal attenuation. The ladder and cross-
ladder resummations are defined in (b) and {c),respectively.
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2—6/2 (20)

at the mobility edge. At finite temperatures, such that
cor)~( T) (( l~

a~ —co (r;„(T))'~ (21)

Thus, within localization theory to leading order in e, o.L
and eT scale with the same exponent, but a calculation
shows that unlike aT, aL is indeed affected by electron-
electron interactions.

C. Experimental consequences

a, (co) . (22a)

=[ao, /d(d+2)]co (1 r/r, )
i for co—&(co, .

(22b)

At nonzero temperatures, inelastic collisions character-
ized by a time r;„(T) or a rate I;„(T) terminate scale-
dependent diffusion, so that, effectively, co, in Eqs. (15)
and (22), is co or I;„(T),whichever is larger. A variety of
behavior is possible as a function of the three frequency
variables co, co„and I;„(T). Experimentally, the directly
accessible quantities are co, the disorder I, and the tem-
perature T. The latter two affect co, and I;„(T), respec-
tively. The natural scales of these frequencies are very
different. Phonon frequencies of interest here are rather
low, ra-coD&rn/M, so that co & Dq . The inelastic width
I;„depends on the dominant scattering mechanism; for
example, for electron-electron collisions, I;„-EF( T/
EF) in three dimensions. At sufficiently low tempera-
tures (e.g., T & 1 K), co can become larger than I;„. Thus,
the cu, l";„crossover is achieved by cooling. The disorder
frequency scale co, —EF(1 r/r, ) is characterized by an-
electronic energy, but close to critical disorder, one can
have ~ & co, . This is the critical regime.

Ultrasonic attenuation has been described above in two
limiting cases, namely at critical disorder and when disor-
der is weak. Using standard scaling ideas, we describe the
expected behavior in the broad, experimentally accessible
intermediate regime. We consider three-dimensional sys-
tems here, extrapolating the (2+@)-expansion results to
a= 1 (d =3). Suppose that deviation from critical disor-
der r, is characterized by (r, r)/r„whe—re r is the actual
disorder. [Experimentally, (r, r)/r, —can be changed in
many ways, e.g., by changing the stoichiometry or elec-
tron density, or even by applying external stress. ] The
system is then characterized by a correlation length
g=l(1 r/r, ) ', —where l is the mean free path. Electron
diffusion is nonclassical for smaller length scales, or,
equivalently, for frequencies

co&co, -D(g)g = (1/kFl)(1 r/r, )—2GF 3

3

The regime of classical diffusion (co &co, ) shrinks rapidly
to zero as r —+r, . Correspondingly, at T =0, ultrasonic
attenuation has the critical form of Eq. (15) for co&co„
and crosses over for ~&co, to a Pippard-like behavior,
1.e.,

=[ao, /d (d +2)]co (co,r) ' for co «co, ,

In the critical regime where max(co, I;„)&co„ the at-
tenuation is strongly enhanced. At very low temperatures
where co& I;„, the attenuation varies as co ~ [Eq. (15)].
Upon increasing the temperature so that co & I;„, the Pip-
pard form co is expected, but with a large temperature-
dependent coefficient I;„(T) '~ . Outside the critical re-
gime, but for strong disorder, i.e., for co & co, « EF, the at-
tenuation varies as co at zero temperature, but with a
large coefficient [Eq. (22)]. As temperature increases, the
attenuation decreases from this value as I;„(T)' . Final-
ly, for weak disorder, one has the forms (13b) and (14b).

There are presently no experiments on ultrasonic at-
tenuation in strongly disordered three-dimensional metal-
lic systems close to critical disorder, and it would there-
fore be of interest to verify the predictions made here of
strong temperature dependence and char'acteristic large
enhancement in the ultrasonic attenuation, particularly
for shear waves (which are unaffected by interaction ef-
fects to leading order).

Sound propagation in two classes of disordered metallic
systems, namely metallic glasses and doped degenerate
semiconductors, has been studied for a long time, and at-
tenuation anomalies are known to exist in them. Howev-
er, for different reasons, neither is a good example of the
type discussed above. Metallic glasses are not sufficiently
disordered to be close to the metal-insulator transition,
and furthermore, effects due to tunneling or two-level
states coupled to phonons and to electron-hole excitations
complicate the picture. In doped semiconductors, e.g., Cre

or Si doped with shallow-level impurities, the most impor-
tant absorption mechanism is due to lifting of valley de-
generacy by applied shear stress. This changes the rela-
tive population of electrons in different valleys. Interval-
ley electron scattering relaxes this disbalance and leads to
sound absorption. This mechanism can be described by a
term coupling external shear strain to the electron-number
difference 6n; —5nj, where i and j are valley indices. The
symmetry dependence of ultrasonic attenuation (e.g., only
c44 is affected by Ge) confirms the dominance of this
mechanism in heavily doped semiconductors. The cou-
pling of external strain and electronic stress fluctuations
discussed in this paper is an additional intravalley term.
It is much smaller than the intervalley term because of its
strong dependence on electron density [from Eq. (12), we
see that it varies as n ~ ], whereas the intervalley term
varies as n '~ . The extra n comes from the electron-
phonon coupling, which varies as pF-n, the attenua-
tion being proportional to the square of this coupling.
Experimentally, Sb-doped Ge shows an anomalous in-
crease in attenuation near the metal-insulator transition,
especially as temperature is lowered. ' This could be due
to localization influencing intervalley relaxation.

III. ATTENUATION IN THE INSULATING
REGIME

A good physical picture of the electronic states on the
insulating side of the mobility edge is provided by Mott s
resonant two-level system. With slight modifications, '"
it can be extended to include the effect of the intersite
long-range Coulomb repulsion responsible for the
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H, ph
——g J dr V~Up(r)~~p . (23)

Coulomb pseudogap. In this section we calculate the con-
tribution of these electronic two-level systems to the ab-
sorption of the ultrasound. The theory is, in many ways,
similar to the standard theory of ultrasonic attenuation in
glasses, ' but we stress the characteristic dependence on
the localization length and the sensitivity to the Coulomb
pseudogap. A similar picture was used by Bhatt and
Ramakrishnan' to analyze the scaling of the frequency-
dependent conductivity on the insulating side near the
mobility edge.

The electron-phonon coupling in the moving frame [Eq.
(2)] can be expressed in terms of creation and annihilation
operators for single-particle energy eigenstates,

The quantity ~ ~ is the electronic stress tensor given by

~ p(r) =, g c c„A, p(r),
m, n

where

A, p(r) = —,
'

( V —V') ( V —V')p[P* (r)P„(r') ],

(24a)

(24b)

In the pair approximation, we consider explicitly only a
pair of states m and n (see Ref. 11 for a discussion of its
validity). To calculate the absorption due to relaxation,
we consider the diagonal part of r p(r):

The P are the eigenstates of the one-particle Hamiltoni-
an

H =( —V /2m'+v) .

~ p(r)=, [X p (r)+A,""p(r)][c c +c„"c„]+,[A, p (r) —A,"p(r)](c c —c„c„).
Zm 2m*

(25)

In the pair approximation, c c +c„c„=1,so that only the second term need be kept. The electronic stress is propor-
tional to the population difference between the pair of states. From Eqs. (23) and (25) we see that an external strain
causes an additional population difference, which, in the Boltzmann transport-equation approximation, is given by

A, p (q) —A, ""p(q) 1(x ) —(w„)= .iq. upm* 1+& ~&~, (k& T)cosh [(E —En )/k& T]
(26)

Here, E —E„ is the energy difference between the two states and ~ „ is the transition rate from one to another. This
population difference leads to a change in the energy of the system. The ultrasonic attenuation can be calculated from
the ratio of the energy absorbed from the field to the energy of the sound wave,

r

t[gmm( ) gnn( )] I
2

pcb (m*) 1+co 2 kgT 4cosh [(E~ En)/k&T)]— (27)

where p is the mass density and cb is the velocity of sound
with polarization b. To obtain the total attenuation, one
must sum over the distribution of electronic two-level sys-
tems.

The two-level systems are characterized by an energy
spl~tt ng Em En and a spatial separation ~mn

both of which are randomly and independently distribut-
ed. The relaxation (i.e., transition from state m to state n)
is due, for example, to phonon-induced electron transfer,
so that

1/r „=vphexp( —r~n/2g),

where v„h is the characteristic phonon frequency and g is
the localization length, the latter assumed to be nearly the
same for both states m and n. The exponentially small
matrix element dominates the rate. However, the prefac-
tor v~h could also be a sensitive function of Q. For exam-
ple, if the decay involves emission of low-frequency pho-
nons (i.e., E E„«ficoD), a p—honon density-of-states
factor 0 =(E E„) will be present in v—zh.

' The distri-
bution function of the electronic two-level systems is
given by

g (p)(Q, +e /~r), for e /~r &&5, (29a)
F(Q, r) =

(0+e /~r) " ', for e /~r &&b, , (29b)
'g (p)

I

where g(p) is the density of electronic states per unit en-

ergy per unit volume, ~ the dielectric constant, and 6 the
Coulomb pseudogap, i.e., b, =[e g(p)/v ]'~. Equation
(29b) is vali'd for long hops such that r~„&e /~h. The
second term in Eq. (29a) is due to the long-range Coulomb
interaction. In its absence, the density of pair states with
one of them occupied and the other unoccupied is propor-
tional to the energy difference 0 as in any noninteracting
Fermi system (i.e., one must have E &p, E„&p, and
E~ E„=Q). How—ever, with Coulomb interactions, since
having both states occupied costs an extra energy e /xr,
the pair is single occupied as long as E and E„are
within e /~r of the Fermi energy. Coulomb interactions
lead to a finite density of two-level systems in the limit of
small energy difference Q. Equation (29b) is the modifi-
cation in the pair density of states due to the Coulomb
pseudogap in the single-particle density of states, i.e., the
fact that for

~

E —p ~
& 6,

g ff(E) =g (P )[(E—P)'/&']

Using Eq. (29) while summing over states in Eq. (27), in-
tegrating over Q and r, and noting that the main contri-
bution to relaxation comes from d'or(r)=1 or from the re-
gion r =r„=2/in(v„hlco), one finds, with logarithmic ac-
curacy, that
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2~(~)=rr, ~ g(p)' (
~

A. —X""
~ b),„1n

vs pvs

efor ln(viz/co) »Q, (30)

i.e., for

egg(p)'~ a '~
In(vugg/co) ((1 .

In the opposite limit, i.e., for

egg(p)'~ a. '~ 1n(v~j, /co) &&1,

one has
—3

a(co)= ~~ (
~

A, —A,
""

~ b ),„gln
vs pvs 67

(31)

Both the results (30) and (31) are for three-dimensional
systems. The matrix elements

~

A, —A,
""

~ b for a strain
component b are averaged over singly occupied pair states
m and n with energy difference -k&T. The most strik-
ing feature of Eqs. (30) and (31) is that the attenuation is
proportional to frequency, so that the sound mode is not
qualitatively well defined. In the absence of Coulomb in-
teractions, the density of pair states goes linearly to zero
with energy f2, so that the factor e /~gin(v~q/co) in Eq.
(30) is replaced by a typical 0-k~ T, and one has

3
kg T

2

'

g(p)
~

A, —A,
""

~b . (32)
vs pvs2 2

a(co) =m

Results similar to Eq. (30) for relaxational sound absorp-
tion from configurational two-level systems (TLS's) can
be obtained for sufficiently low frequencies co, i.e., for
cow-1, where ~ '=AT in the standard TLS-phonon
mode1 at low temperatures. ' At temperatures and fre-
quencies such that Ace/k~T ~~1 and co/AT —1, relaxa-
tional ultrasonic attenuation has the form of Eq. (30).

We now discuss the above results. Clearly, there is a
close functional similarity between electronic and configu-
rational systems. Resonant and relaxational absorption,
saturability, etc. are all similar. The electronic TLS's
have a finite density because of Coulomb effects, this
value [derivable from Eq. (29)] depending on single-
particle density of states g(p), localization length g, and
Coulomb gap 5. Their size is of order the localization
length g times a factor logarithmic in frequency. The
coupling to external strain is described by a poorly known
matrix element

~

A, —A,""~
b which is similar to the

deformation-potential coupling matrix element of the con-
figurational TLS.

The second expression, Eq. (31), is appropriate when
characteristic hopping distances are so large that the pair
states lie in the Coulomb gap,

In this regime, which, according to Eq. (31a) is accessible
if g(p) is not small, a(ar) depends only on the Coulomb
energy content in a hopping volume. Explicit dependence
on g(p) drops out; the density depends mainly on locali-
zation length. For 1~=5, ln(v~q/co)=3, /=10 A, and the
density of electronic two-level systems in this limit, is
1.5 )& 10 states/eV cm The obvious question is wheth-
er the observed characteristic low-temperature effects in
glasses are due to configurational two-level systems, or to
electronic ones, or to both. Simple estimates, e.g., for
As2Se3 and homologous glassy semiconductors where
g(p)-(3 —8)X10' states/eVcm and ~-5—6, with lo-
calization length g-10 A, lead to an effective density of
electronic two-level states which is about a factor of 100
less than no —10 '/eV cm, a typical number for config-
urational two-level systems. However, these estimates are
very unreliable; for example, the states near the Fermi en-
ergy in chalcogenide semiconductors are close pairs (occu-
pied as well as unoccupied). Not much is known about
their density, size, and relaxation. It is however, clear
that when g(p) is sizable, e.g., in the range 10 —10 '

states/eVcm, this mechanism can be very important.
Not far from the mobility edge, even in amorphous semi-
conductors, one has g(p) of this order, so that such sys-
tems and alloys like Nb& Si which have a metal-
insulator transition would be good candidates for looking
at electronic two-level —system effects on attenuation.
The divergence of the ac conductivity prefactor' is a sig-
nature of Coulomb-interaction-dominated, electronic
two-level systems, so that simultaneous measurements of
the ac conductivity and ultrasonic attenuation (frequency
dependence and size) can indicate clearly if this new kind
of two-level system is a significant low-lying excitation in
glassy insulators.
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