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A detailed theory is developed for the dephasing relaxation of the excitonic polariton which was
measured recently by Masumoto, Shiouoya, and Takagahara [Phys. Rev. Lett. 51, 923 (1983)] in

samples of CuC1 crystal by means of nondegenerate four-wave mixing. The concept of dephasing
(transverse) relaxation of the excitonic polariton is clarified for the first time and the conceptual
difference between the dephasing relaxation of the localized excitation and of the excitonic polariton
is emphasized. A method of analysis of the experimental data of the nondegenerate four-wave mix-

ing is presented in detail. The various mechanisms of dephasing relaxation of the excitonic polari-
ton are discussed and examined quantitatively. It is found that the mutual collision among excitonic
polaritons is the most probable mechanism that gives the correct order of magnitude of the dephas-
ing relaxation rate and leads to reasonable energy dependence of the relaxation rate in agreement
with the experimental results.

I. INTRODUCTION

Recently the dephasing relaxation constant of the exci-
tonic polariton in CuC1 was measured by Masumoto,
Shionoya, and Takagahara' by means of nondegenerate
four-wave mixing. The relaxation constant was found to
be on the order of 0.01 meV and to increase as the polari-
ton energy approached the exciton resonance from below.
Before details are given, it is important to note that there
is a conceptual difference between the dephasing relaxa-
tion of the localized excitation and of the propagating ele-
mentary excitation. In the former case the excitation is
localized on an atom or a molecule under consideration.
The dephasing relaxation of the localized excitation is re-
lated to the decay of the coherence of the relevant optical
or nonoptical transition or, in other words, the decay of
the off-diagonal component of the density matrix associ-
ated with the transition. This dephasing relaxation con-
stant can be directly measured in the time domain by
means of time-resolved, degenerate four-wave mixing,
which is a generalized version of the photon echo. Under
irradiation by two light pulses with wave vector and fre-
quency denoted by (kt;cot) and (kz, to&), respectively,
which are resonant with some material excitation, the in-
tensity of the output pulse with (2k2 —k &,co&) is measured
as a function of the time separation between the two
pulses. This tneasurement is based on the principle that
the third-order nonlinear polarization which generates the
signal pulse is proportional to the nondephased part of the
excitation due to the first pulse at the time when the
second delayed pulse reaches the excitation. Thus, the de-
cay of the coherence of the localized excitation can be
probed by means of time-resolved, degenerate four-wave
mixing.

On the other hand, the proper elementary excitation in
solids propagates throughout the crystal with a definite
wave vector. Furthermore, it should be noted that the ex-
citonic polariton is a composite particle of exciton and.
photon. Thus, there arises a conceptual question: What is

the dephasing relaxation of the excitonic polariton? The
interpretation is not so straightforward as in the case of
the localized excitation. The definiteness of the wave vec-
tor is one of the salient features of the excitonic polariton
which make a remarkable contrast with the case of the lo-
calized excitation. The wave vector of the excitonic polar-
iton is primarily determined by the incident light pulse.
This wave vector is disturbed by any scattering process,
such as impurity scattering, phonon scattering, and
polariton-polariton collision. A change of wave vector
will lead to the decay of the polarization wave with a de-
finite wave vector. In addition, the electron-hole relative
motion of the exciton is also one of the degrees of free-
dom of the excitonic polariton. The electron-hole relative
motion of the exciton may be changed in the scattering
processes. This change of the internal degree of freedom
leads to the fluctuation and relaxation of the polarization
wave, since the oscillator strength of the exciton depends
on the exciton internal state. Thus, the concept of de-
phasing or transverse relaxation of the excitonic polariton
is quite different from that of the localized excitation. As
a consequence of the definiteness of the wave vector, the
wave packet of excitonic polaritons propagates in the
crystal with a definite group velocity and there arises an
interesting situation from the experimental point of view.
The incident photons (kt, co&) and (kz, cot) are converted
to the excitonic polaritons (kt, co&) and (kz, to&) inside the
crystal. The incident photons with the same energy prop-
agate in the crystal with the same group velocity. Thus,
in degenerate four-wave mixing, the second delayed polar-
iton pulse (k2, to~) cannot catch up with the first polariton
pulse (k~, co&). In order to make the spatial overlap be-
tween the two pulses as large as possible, it is essential to
make use of nondegenerate four-wave mixing in which the
energy of the delayed probe pulse (k2, co2) is suitably
chosen so that its group velocity is larger than that of the
first pulse (k~, co~). Then the third-order nonlinear polari-
zation will be generated in proportion to the nondephased
part of the (kt, co&) pulse and the signal beam with wave
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vector and frequency (2k2 —k~, 2co2 —co&) will be emitted.
One can obtain information about the dephasing relaxa-
tion of the (ki, co~) polariton pulse by measuring the inten-
sity of the output pulse (2k& —k~, 2co2 —co&) as a function
of the relative time delay between the two pulses. To real-
ize the above idea an experiment was carried out for the
excitonic polariton in CuC1. ' It was demonstrated for the
first time that the dephasing relaxation of the excitonic
polariton could be measured directly in the picosecond
time domain by time-resolved, nondegenerate four-wave
mixing. The experimental details are given in Ref. 1.

This paper is organized as follows. In Sec. II the prop-
agation dynamics of the excitonic polariton. are formulat-
ed. The third-order nonlinear polarization in the crystal
is calculated perturbationally and the signal intensity of
the nondegenerate, four-wave mixing is derived in a suit-
able form for analysis of the experimental data. In Sec.
III experimental data of the correlation trace of nondegen-
erate four-wave mixing are analyzed to determine the de-
phasing relaxation constant of the excitonic polariton as a
function of energy. In Sec. IV, the various mechanisms of
the dephasing (momentum) relaxation of the excitonic po-
lariton are discussed and the relaxation rate due to each
mechanism is estimated quantitatively. It is found that
mutual collision among excitonic polaritons is the most
probable mechanism to cause the dephasing relaxation of
the excitonic polariton. In Sec. V, the basic equations of

motion for the excitonic- polariton are derived quantum
mechanically and also the damping constant of the polari-
zation field, which is identified with the dephasing relaxa-
tion constant of the excitonic polariton, is derived by the
standard statistical mechanical method using the projec-
tion operator. Finally in Sec. VI, a few proposals are
presented to overcome the difficulty of nondegenerate,
four-wave mixing, that the dephasing relaxation constant
in the resonance region cannot be determined precisely.
In addition a few interesting problems are pointed out for
future study.

II. NONDEGENERATE FOUR-WAVE MIXING
VIA EXCITONIC POI.ARITONS

Let us now present the theoretical scheme used to
analyze the experimental data. Of main interest is the
propagation of excitonic polaritons and their nonlinear in-
teraction in the crystal. Since the excitonic polariton is a
composite elementary excitation of exciton and photon,
one has to treat the polarization of the material system
and the electromagnetic field on an equal footing. The
basic equations of motion are given by the constitutive
equations for the material polarization due to the exciton
and the Maxwell equations for the electromagnetic field.
They are written explicitly as

2 P(r, t)+ dt'I (t —t'), P(r, t')+ co, — V P(r, t) = Pco,E(r, t)I—(v, t),Bt2 M (2.1)

2E(r t) c)

i
I(r, t)+y~~[I(r, t) —Io]= ' P(r, t)+ —,

' —I dt'I (t —t')P(r, t')
fico, Bt (2.2)

e z E(r, t) cV' E(r, t) =——4iv P(v, t),
Bt Bt

(2.3)

with e( k, co)E (k, co) =c„E(k,co)+4+P(k, co), (2.5)

4&Pcoi/E~ =cot —cot
2 2 2 (2.4)

where I', I, and E denote, respectively, the polarization
field, the population inversion of the material system, and
the electric field; and co, (cot), M, e, Io, and y~~ are the
transverse (longitudinal) exciton frequency, the exciton ef-
fective mass, the background dielectric constant, the
thermal equilibrium value of I, and the longitudinal (pop-
ulation) relaxation rate, respectively. The damping func-
tion 1 (t) is related to the dephasing relaxation of the exci-
tonic polariton and its time dependence leads to the
frequency-dependent damping constant I (co). Equations
(2.1) and (2.2), for the polarization field and the popula-
tion inversion due to the exciton, are taken from the well-
known equations of motion in laser theory ' with modifi-
cation to include spatial dispersion. In Sec. V, these equa-
tions are derived microscopically and their use for the
case of excitonic polaritons can be justified. As a matter
of course, this set of equations leads to the familiar ex-
pression for the dielectric function e(k, co) defined by

4~f3~,'
e(k, co)=e„+ ~'+r, k'yM +i~r(~)

(2.6)

The frequency-dependent or -independent damping con-
stant I (co) is usually introduced phenomenologically.
However, as is clear from the above argument, it has the
meaning of a damping of the polarization field. In this
sense I (co) can be called the dephasing relaxation constant
of the excitonic polariton. Our main interest in this paper
is how to determine I (co) from the experimental data of
nondegenerate four-wave mixing. This is possible because
the other material constants e, 13, co„and M are deter-
mined fairly precisely by hyper-Raman scattering' ' ' and
time-of-flight' ' measurements.

The spatial distribution of the electric field is shown
schematically in Fig. 1 when a monochromatic elec-

where the spatial and temporal Fourier transforms of the
electric and polarization fields are considered. In a situa-
tion with no excitation, it is calculated as
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FIG. 1. Schematic representation of the electric field distri-
bution inside and outside a slablike crystal.

2
ck =e(k, co), (2.7)

tromagnetic field with unit amplitude enters the crystal.
The incident laser beam is assumed to propagate normal
to the crystal surface. This assumption can be justified
because of the small angle of incidence and the large
dielectric constant of CuCl. The slablike crystal occupies
the region from z =0 to z =d. The complex wave vector
k(co) is determined by the dielectric function through the
relation

b (CO) e i 2k—(co)df (~)
@+1

with

v e=c k( co)/co.

Then the electric field in the crystal is given by

[f( }e
—ik(co)z+b (~)eik(co)z]ei mt+ c c

(2.9)

(2.10)

These results are obtained for the case of a monochromat-
ic wave. When a pulse or wave packet is considered, the
electric field can be decomposed into its Fourier com-
ponents as

and is taken to be in the lower half of the complex plane.
The coefficients f (co) and b (co) correspond to the
forward- and backward-propagating polariton waves,
respectively, and their expressions are obtained from the
Maxwell boundary conditions as

2(v e+1)
(i/e+ 1)2 (v e—1)2e i2—k(co)d

(2.8)

0

E~(t)cosco~t =f dco g~(co)e' '(e +e )/2
00

dco[g (co+co )+g (co —co )]e'"'
OO OO

=Re dco[g~(co+co~)+g~(co —co~)]e'"' =Re dco G~(co)e' ' (2.11)

with

G (co)=g (co+co )+g (co —co ), (2.12)

(2.14)

where co is the carrier frequency, E (t) the pulse envelope, and g (co) its Fourier transform. The electric field and the
polarization field in the crystal can be written as the superposition of monochromatic waves:

E(z, t
~
k(co~), co~}=Re f dco G~(co)[f (co)e '"' '+b(co)e'"' ']e'"' (2.13)

P(z, t
~

k(co ),co )=Re f dco6 (co)[e(k(co),co} e][f(co)e—'"'"'+b(co)e' '"']e' '/4'

When two light pulses with wave vector and frequency denoted by (ki, coi) and (k2, co2), respectively, enter the crystal,
the third-order nonlinear polarization with wave vector 2k2 —ki and frequency 2co2 —coi will be generated and emit the
signal beam to be measured in the experiment. The nonlinear polarization can be calculated perturbationally from the
equations of motion (2.1)—(2.3). Starting from the state with no excitation, one has, apart from a proportionality factor,

E~(z, t) =Re dco G (co)f(co)e'"' (2.15)
0

P 2G (~)f(~)eic0(—ik(co)z

P~(z, t) =Re dco 2
co, co +fico, k (co)/M— +icoI (co)

(2.16)

where only the forward-propagating parts in (2.13) and (2.14) are retained and the subscript a ( = 1,2) indicates the first
or second laser pulse. Substituting (2.15) and (2.16) into the right-hand side of (2.2) and extracting the term proportional
to exp[i (co2 —co()t], one obtains

Ace, f dco f dco'exp Ii (co co')t i [k (co—) k'(co—')]z I 62(c—o)G i (co')f(co)f'(co')

X [[i +f'(co)/2]D(co, k(co))+[—i '+1( ')/2]D*( ', k(co'))I, (2.17)

with
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f3COl
D(co,k) =

co, —co +%co, k /M+icoI (co)

The population grating with wave vector k2 —k& and frequency co2 —co, is calculated from (2.2) as

(2.18)

I(k2 —ki, co —co ) — f dco f dco' . G2(co)Gl (co')f(co)f*(co')
%co 1 ((+l CO —CO

&& i co+ D (co,k(co) ) + i co'—+ D"(co', k(co') )
I (co) r(~ )

2 2
(2.19)

Then substitution of this population grating into the right-hand side of (2.1) yields the third-order nonlinear polarization
PNL with wave vector 2k2 —k& and frequency 2co2 —co~ as

&(3)(2k k 2 )
2 f "d f"d,f "

d „expIi (co+co" co')r—i [k (—co)+k (co") k"(c—o')]z I
0 0 0 1 ii+ l (CO —CO )

XD(co+co" co', k(c—o)+k(co")—k*(co'))G2(co)G2(co")Gl (co')

Xf(co)f(co")f*(co') I (co)ico+ D(co, k(co) )

ico'—+ D*(co',k(co'))r(~ )

2
(2.20)

This nonlinear polarization will generate a signal electric field, acting as the source te~ on the right-hand side of (2.3)
which is given by

00 00 00

E(2k2 —kl, 2co2 col) = —— f dco f dco' f dco"
0 0 0

41T(co+co —co ) F(co,co,co )

e„(co+co"—co')~+e [k—(co)+k(co")—k'(co')]
(2.21)

where F(co,co', co") denotes the whole integrand on the
right-hand side of (2.20). This electric field is the field
within the slablike crystal but not the signal field to be ob-
served outside the crystal. The latter has to be calculated
from the Maxwell equations and the associated boundary
conditions.

Within the nonlinear crystal, the homogeneous electric
fields are usually associated with the nonlinearly induced
electric field whose wave vector is not necessarily identical
to that of the homogeneous wave. These homogeneous
fields arise as a due consequence of the Maxwell boundary
conditions. ' In Fig. 2 the configuration of the non-
linearly induced wave and the associated homogeneous
waves is shown schematically, where the electric field cor-
responding to the backward-propagating nonlinear polari-
zation is neglected owing to its smallness. Assuming the
normal incidence of the laser beams the electric field for
each wave in Fig. 2 can be written as

E, +Ef +Eb =E„, n, E, +n (Ef Eb ) = E„, — —
—iKd —iKI, d iKI, dE e ' +Efe +Ebe =E, ,

n, E,e ' +n(Efe " Ebe " )=E, , —
(2.23)

where n, and n are defined by

n, =cK, /co, n =cKl, /co .

The amplitude E, is calculated as

(2.24)

and z =d, the four relations among E„E„E„Ef,and
Eb are obtained:

i(~t +Ko&) icot —iKO(z —d)Ese

i (a)t —KI,z) i (mt+ K&z)Efe , Ebe
(2.22)

Er =

=Es

with co=2co2 —co&, K, =2k(co2) —k*(col), Ko ——co/c, and
Kl, ——k(co), where E„E„,and E, correspond to the non-
linearly induced field, the reflected field, and the electric
field to be observed outside the crystal, respectively, and
Ef and Eb correspond to the associated homogeneous
waves. From the Maxwell boundary conditions at z=O

FIG. 2. Schematic representation of electric field amplitudes
with frequency 2co2 —co&. E„E„,and E, represent the non-
linearly induced wave, the reflected wave, and the transmitted
wave, respectively, and Ef and Eb are the forward- and
backward-propagating homogeneous waves.
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E, (1—n)(n —n, )(e ' " —1)+(1+n)(n+n, )(e ' " —1)
E (1+n) e " —(1—n) e

or can be rewritten as

E, i (n n—, )co/c —i(It, —K„)z —i(E, +K„)z
dz[(n +1)e ' " +(n —1)e ' " ] .

(1+n) e " (—1 —n) e

(2.25)

(2.26)

E,b, (R, t) =—
Combining all the results, the expression of the electric field amplitude to be measured outside the crystal is given by

2g d 00 00 00 co, (n n,—)
2 2

dz dco dco dco
0 0 0 0

1 2 iKhd P iic—gd1+n e —1 ne—
4'rcoX, z 2, Gz(co)G ~

(co'),
[y„+ ( — ')]( 'K,' —e„,')

XGz(co")f(co)f"(co')f (co")D(co„K,)

i co+ D(co, k(co) ) + i co'+— D'(co', k (co') )
I (co) . , I (co')

2 2

—r(X —lt &)z —i(K +Kg, )z g —d&&[(n+1)e ' " +(n —1)e ' ]exp ico, t—
C

(2.27)

with

co, =co+co" co', —K, =k(co)+k(co")—k*(co'),

Kg =k(cog ), ng =cd�/co~, n =cKt, /cog

(2.28)

where R is the z coordinate of the observation point. This
expression is quite general but contains a fourfold in-
tegral, which is a rather heavy task to perform straight-
forwardly. It is desirable to simplify the expression by in-
troducing reasonable approximations. The integrations
with respect to co, co', and co" are over the spectral width
of the incident laser pulses. If a function contained in the

integrand is slowly varying over the region where the
spectral function G (co) takes significant values, it can be
put outside the integral and replaced by its value at the
peak position of G (co). In this spirit of simplification,
all of the factors within the integrand on the right-hand
side of (2.27) can be put outside the integral except for the
exponential factors. This simplification can be justified
under the condition that

co],cop)) Aco, &co/Ug(co)k(co) ((1, (2 29)
where hen denotes the typical spectral width of the in-
cident laser pulses, and Ug is the group velocity of the ex-
citonic polariton. Then the expression (2.27) can be great-
ly simplified to

00 00 00 R —d
E»( Rt) cc f dz f dco f dco' f dco"G2(co)Gq(co")G~ (co')exp i(co+co" co') t ——

C

(2.30)

with

n =ck(2co2 —coi)/(2coz —coi),

where the unimportant multiplicative factors are omitted. At this stage the threefold frequency integral is reduced to a
separable form and can be performed easily. The co dependence of k (co) in the exponent is expanded up to the first-order
term as

k(co) =k(co)+ (co —co )+. . .=k(co )+ +. . . ,
dk co —co

dco Us(co )
(2.31)

where co denotes the peak position of a spectral function G(co). Then the threefold frequency integral in (2.30) can be
simplified as
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E.„(R,t) ~ exp[i(2co, —co, )tg]
d 00 00 OO

X f dz f dco f dco'f des"Gz(co)G*, (co')Gz(co")expj i—[2k(coz) —k*(co~)]z+l(6+6 —6 )tg I

X j ( n + 1)exp[ikt z —i(1/uz —1/uh )(6+b, ")z + i (1/u, —I/uI, )b, 'z]

+ (n —1)exp[ —ikI z i—(1/uz+ I /ut, )(5+b,")z + i(1/u ~ + I/u~ )b, 'z] I,
(2.32)

with the abbreviations:

5=co —cop~ 6 =co —co]~ 6 =co —copy v] =us(co] )~ uz =ug(coz)

R —d
ut, us(2—coz co, )—, kt, =k(2coz —co(), n =ckp, /(2coz co—(), t~ t ———

C

Making use of the relation

f dco G~(co)e' '= f dco[g (co+co~)+g~(co co~)]—e = J dcog~(co co~)e — =E (t),
one can further simplify (2.32) to

d
E,b, (R, t) ~ f dz exp j —i[2k(coz) —k*(co()]zI

X j (n+1)e " [Ez(ta+(I/ug —1/uz)z)] E&(tz+(I/ua —I/u&)z)

+(n —1)e " [Ez(ttc —(I/uq+ I/uz)z)] E, (tz —(I /u~ +1/u&)z)I .

(2.33)

(2.34)

(2.35)

The second term in the second pair of curly brackets of (2.35) contains a factor which is rapidly oscillating with respect
to z and gives a smaller contribution to E,» than the first term. In the following only the first term will be considered.
The physical quantity observed in the experiment is the integrated intensity of the signal field, namely,

f dt
i
E,b, (t)

i
(2.36)

(2.38)

The correlation trace is obtained by repeating the same measurement while changing the delay time ~d of the second
pulse relative to the first pulse. When the shapes of the two pulses are identical, the signal field is given by

d
E.„(R,t) ~ f dzexpji[kI, 2k(coz)+—k*(co&)]zI[E(tz+(I/ut, —1/uz)z)] E(tz+rd+(1/ut, —1/u&)z), (2.37)

where E(t) is the common pulse envelope. The expression is remarkably simple and important in the analysis of the ex-
perimental data.

It is instructive to look into the limiting form of the correlation trace when all the incident pulses are 5-function-like.
In this case the signal field is calculated as

E,b, (R, t) ac J dz e' [5(ttc +(1/vt, —1/vz)z)] 5(tz+rd+(I/ut, —I/v& )z)

= f dze' [5(4+(I/ug —1/uz)z)] 5(rd+(1/uz —1/v&)z)

cc 6(rd)6(d(1/u& —1/vz) r)d[ (5' +—( /Iu—h I /u) zrd(/1/ &
u—1/uz))] exp[ibkrd/(I/u& —1/uz)],

with

b.k =kt, —2k(coz)+k*(coi),

where 6 is the Heaviside step function and the inequality u& & uz is implicitly assumed because coz & co, &cot in the experi-
ment. The integrated intensity of the signal field becomes

dt
~
E,b, (t) ~

6(rd )6(d(1/u, —1/u ) —rd )exp j —2[2k;(coz)+k;(co~) k; (2coz co—~)]rd/(I /—u ~
—1/uz) I, (2.39)

where k;(co) is the imaginary part of the wave vector de-
fined by

k(co)=k„(co)—ik;(co), k;(co) &0 . (2.40)

Thus, the correlation trace is nonzero only within the
range from rd ——0 to rd =d (1/u ~

—1/vz ) and shows a
quite asymmetric form as depicted in Fig. 3. In this ideal
limit, one can estimate 2 k; (coz) +k; (co ~ ) —k; (2coz —co

& )

from the decay rate of the correlation trace. Furthermore,
by varying ~& and co2 appropriately, one can determine
k;(co) at each co and accordingly I (co) in principle. The
decay rate in (2.39) has a clear physical meaning. The
length rd/(I/u~ —1/uz) is nothing but the depth in the
crystal where the two 6-function-like pulses meet and the
nonlinear interaction occurs. Before the two pulses over-
lap spatially, each polariton wave suffers spatial damping
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expf-Y

I (cu) of the excitonic polariton is determined as a func-
tion of energy. The electric field at the observation point
is given by (2.37) and the integrated signal intensity is cal-
culated as

d(~q-viz)

I(rd) = f dt
~
E„,(R, t)

~

'

dt f dz f dz'e' ' ' 'E (t+az)

XE(t +«+pz)E'(t +az')
FIG. 3. A typical correlation trace of nondegenerate four-

wave mixing under a limiting situation in which the two in-
cident pulses are 5-function-like. y(ru&, co2) is given by
2[2k;(co2) +k;( co & ) —k;(2' q —co

& )]/( 1/v ~
—1/v2 }.

with

XE(t +rd+ pz') (3.1)

due to the imaginary part k; of the wave vector. The gen-
erated nonlinear polarization emits the electromagnetic
field, which is observed as a signal field outside the crys-
tal. This signal field with frequency 2coq —co& propagates
in the crystal as a polariton wave and suffers spatial
damping during the passage from z =«/(1/u& —1/u2) to
z =d, i.e., the rear surface of the sample. These spatial
dampings lead to the decay rate in (2.39).

K=k(2cuz —co))—2k(co2)+k'(a))) =K„+iK;,

a= 1/ut, —1/uz, P= 1/ul, —1/v&,
(3.2)

where the real and imaginary parts of K are denoted by
K„and K;, respectively. In the following the incident
pulse envelope E(t) is supposed to be Gaussian:

E(t) ~exp( —t 2/2a)2, (3.3)
III. ANALYSIS OF EXPERIMENTAL DATA

In this section the experimental data of the correlation
trace are analyzed on the basis of the general theory
developed in Sec. 1I and the dephasing relaxation constant

where o. characterizes the pulse width. Calculating the
time integral in (3.1) first, and changing the integration
variables z and z' to x and y defined by x=z+z' and
y =z —z', one obtains

]/2

I(rd )=—
2 3

]./2
&0

E K
2D 4D

(K„) d [(a—p)x 2'] — iK,Re' dx exp — —K;x erf VD x—
4D o 6~2 2D

X [(a—P )x —2' ]f dx f dy+ f dx f dy exp — Kx Dy —— —

2d [(a—P)x —2«]+ dx exp
d 6o.

T

iE,Kx erf vD—2d —x—
2D

(3.4)

with

D =(2a +P )/4o (3.5)

2 I&l
Re erf[z =x +iy] =erf[ ]+xe f dt e' sin2xt . (3.7)

Z

erf[z]= f dt exp( —t ),
and its real part is given by

(3 6)

where the error function with complex argument z is de-
fined by

It is now instructive to examine the case where the two in-
cident pulses have the same energy, i.e., ~~ ——co2. In this
case the denominator y~~ i+(co —co') in (2.27) cannot be
simply put outside the integral because co —co' can become
zero. Employing the Gaussian pulse envelope (3.3) and
carrying out the frequency integral in (2.27), one obtains

d exp[ cr x /4+ix—(tg+rd/2)]E,b, (R, t) cc dz exp[ —2k;(co~)z]
o 00 /~~+ lX

(3.8)



8178 T. TAKAGAHARA

where t~ ——t —(R —d)/c and 0; is defined by (2.40). The
important point to be noted is that rd and k;(co) are con-
tained in a separate manner. Thus, k;(cu) or equivalently
I (cu) cannot be determined from the correlation trace, i.e.,
from the ~d dependence of the integrated signal intensity.
This confirms the importance of nondegenerate four-wave
mixing in the study of the dephasing relaxation of the ex-
citonic polariton as mentioned in the Introduction.

In the experiment the energy of the second pulse co2 is
fixed at the transparent region of the crystal, while that of
the first pulse oui is varied over the resonance region as
shown in Fig. 4. The energy of the nonlinearly mixed
light 2co2 —cui lies in the far off-resonance region. As seen
from (3.2), the imaginary part E; is dependent on I (ru) at
three energy points, namely, I"(co i ), I (ro2), and
I"(2ru2 —oui). The one of most interest is I (cubi), since the
others are values in the off-resonance region. The values
of I (coq) and I (2cuq —

cubi) are taken from the data of re-
flectivity and transmission measurements. ' The value of
I (oui) is left as an adjustable parameter for the curve fit-
ting. In the numerical calculation of the correlation trace,
the dispersion relation of the excitonic polariton in CuCl
is used; the dispersion relation has been studied recently in
detail. 'p '3'' The parameter o is determined from the ex-
perimental pulse width (full width at half maximum or
FWHM) of 20 ps. The theoretical results are indicated by
closed circles in Fig. 5. The spatial overlap between the
two pulses and accordingly the integrated signal intensity
become larger, in the case of a later arrival of the second
pulse, than in the case of an earlier arrival, since the
group velocity of the second pulse is quite large. The ex-
treme case of this feature is demonstrated in Fig. 3 for 5-
function-like pulses. In reality, the incident pulse has a
finite width and the correlation trace in Fig. 3 becomes
broadened. The asymmetry of the correlation trace in
Fig. 5 can be understood in this way. The values of I"
determined from the curve fitting are given in Fig. 6. The
right-hand ordinate indicates the dephasing relaxation
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FIG. 5. Integrated intensity of the 2co2 —~1 beam emitted
from a 14.15-pm-thick CuC1 crystal as a function of the relative
time delay ~d ——t2 —t1 between co2 and co& pulses.

a P= I /u i—, D = (4o u i ) (3.9)

Since the ratio u i /c is typically 10 ", the Gaussian factor

expI —[(a—P)x —2~d] /6o. I

in (3.4) represents a very sharp distribution whose peak
position and width are both of the order of I pm or less.
Thus, when the sample thickness d is about 20—30 mic-

time 4/(I /2) of the excitonic polariton. As seen in Fig.
6, I is of the order of 0.01 meV independent of the sam-
ple thickness and increases as the energy approaches the
exciton resonance. When the energy co~ approaches the
exciton resonance, the correlation trace becomes nearly—
symmetric with respect to ~d ——0 and insensitive to the
change of oui. This feature can be understood on the basis
of (3.4). In the resonance region the group velocity of the
excitonic polariton is quite small and one can employ the
following approximations:
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FIG. 4. Left: Dispersion relation of the excitonic polariton
in CuC1, shown for both the upper- (UP) and lower- (LP) branch
polaritons. Right: Group velocity of the excitonic polariton
normalized by light velocity e in vacuum (lower abscissa) and

the calculated transit time of the polariton pulse through a
14.15-pm-thick CuC1 crystal (upper abscissa). The energy %col is

varied from 1 to 11, whereas Ace& is fixed at the transparent re-

gion.

FIG. 6. Dephasing relaxation constant I as a function of en-

ergy of the excitonic polariton in CuC1. The three data symbols
correspond to samples of different thicknesses. Long error bars
above 3.200 eV mean that I cannot be determined precisely.
The dashed line is the calculated energy dependence of I based
on a model of polariton-polariton scattering (see text}.
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rons, the second integral in (3.4) can be neglected and one
finds for positive rd

2v)K) (0' (3.14)

X„
I(rd ) ~ exp

4D
2E;vd
a —P

IV. MECHANISMS OF DEPHASING RELAXATION
OF EXCITONIC POLARITONS

r

27d
XReerf v D a —P

iK„
2D

(3.10)

Substitution of (3.9) into (3.10) leads to

I(rd ) ~ exp[ (u—~oK„) 2—u~K rd]Re erf[rd lot'.u—&oK„] .

(3.11)

Since u~o.K„ is large and typically of the order of 10, one
can use an approximate formula derived from (3.7) for

2 2
e ~ Reerf[x+ yt]=e " f dtexp(t: —y )sin2xt .

0

(3.12)

Because the integral factor in (3.12) has only a weak
dependence on x, the characteristic dependence of the
correlation trace on ~d is given by

I (7d ) oc exp[ —2u ~K; rd —(rd /o ) ] . (3.13)

For a typical value of K; of about 10 cm ' and for cr of
the order of 10 ps, the rd dependence of the correlation
trace is dominated by the second exponent in (3.13) and
the profile becomes insensitive to the change of co& in the
exciton resonance region. Thus, the value of K; or
equivalently I (co) cannot be determined precisely in the
resonance region. However, even in a situation where the
correlation trace is limited by the incident pulse width, the
upper limit of I (tu) can be estimated from the relation

Let us now discuss the mechanism of the dephasing re-
laxation of excitonic polaritons. As mentioned in the In-
troduction, the relaxation to be observed in the experiment
depends in general on the method of measurement. In the
four-wave mixing experiment not only the incident laser
beams but also the generated signal beam are spatially
well collimated. Thus, any mechanism which causes a
momentum change of the excitonic polariton will lead to
the decay of the macroscopic polarization with a well-
defined wave vector. Even elastic scattering leads to the
decay of the polarization field, namely, the dephasing re-
laxation of the excitonic polariton in the case of four-
wave mixing. This is in striking contrast to the case of in-
duced absorption (IA). ' ' In the case of IA all the po-
laritons that are scattered elastically into various direc-
tions can contribute to the absorption signal since only the
energy is relevant in the absorption process and the direc-
tion of the polariton wave vector does not matter. The
decay-time constant of IA reflects the energy relaxation of
the ensemble of the injected polaritons. On the other
hand, momentum relaxation by some mechanisms contri-
butes to the dephasing relaxation of excitonic polaritons.
The most likely mechanisms to cause such dephasing or
momentum relaxation are (a) impurity scattering, (b) pho-
non scattering, and (c) polariton-polariton scattering.

Assuming the impurity-polariton scattering matrix ele-
ment M to be independent of the momentum transfer, one
can calculate the momentum relaxation rate due to the
impurity scattering as

M VI";~~(k)= ~M
~

+5(E(k+q) E(k))= — f dqq f ds8in 58( E(( k+q —2kqcos8)' ) E(k)—)
q

iMi V

2rrfi u~(k) "0
[M ['Vk'
M u (k)

(4.1)

where Vis the quantization volume and ug(k) is the group
velocity of the excitonic polariton with wave vector k. As
seen from this expression, I; ~(k) shows an increase in
the exciton resonance region due to the decrease of the
group velocity and the increase of the wave vector k. The
energy dependence of I; „(k) is similar to the experimen-
tal result. On the other hand, the estimation of the abso-
lute value of I;m~(k) cannot be precise since the magni-
tude of the matrix element M is uncertain. For a rough
estimate, one may treat the scattering classically. The
scattering cross section can be supposed to be the square
of the exciton Bohr radius which is about 7 A in CuC1.
The group velocity of the excitonic polariton in the off-
resonance region is of the order of one hundredth of the
light velocity in a vacuum. If the impurity concentration

¹ is assumed to be 10' cm, one can estimate the order
of I; @as

r, ,=(7 A)'u, X, =1 5&& 10' s-. ' . (4.2)

This value is smaller by a few orders of magnitude than
the experimentally estimated value. However, it is prema-
ture to rule out the impurity scattering as a mechanism of
the dephasing relaxation of the excitonic polariton. To
clarify the role of impurity scattering quantitatively, it is
necessary to study the sample dependence of the dephas-
ing relaxation constant by varying the impurity concentra-
tion systematically.

To examine the second possibility, the scattering proba-
bility is calculated for both the deformation potential cou-
pling with longitudinal acoustic (ac) phonons and the
Frohlich interaction with longitudinal optic (op) phonons.
The LA-phonon scattering rate via the deformation-
potential coupling is given by
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I,(k)= g l
V (q) l

[n&5(E(k) —E(k+q)+Rcuz)+(1+nq)5(E(k) —E(k q—) A—co&)],
q

(4.3)

V„(q)=
2pu V

with

[D.f.(q) —D.f.(q) ] (4.4)

and

f, (q) =1/[1+(agazq/2) ]
(4.5)

f„(q)= 1/[1+(a,a~q/2) ]

where the first term in the square brackets represents the
contribution from the phonon absorption process and the
second term that from the phonon emission process.
E(k) denotes the energy dispersion of the excitonic polar-
iton and fuuq the acoustic phonon energy at wave vector q.
For the case of a ls exciton, the exciton-phonon coupling
constant V„(q) is given by

'

1 /2

I

parameters are employed: u =3.8&&10 cm/s, p=4. 16
g/cm, D, —D, = —0.4 eV, and the temperature is
taken to be 2 K. The calculated result is shown in Fig. 7.
In the energy region above ~1 the results are shown for
both the upper- and lower-branch polaritons. The in-
creasing trend of the LA-phonon scattering rate as the en-
ergy approaches the exciton resonance is in agreement
with the experimental result in Fig. 6. However, the abso-
lute value of the scattering rate is much smaller than the
experimental value. Thus, it can be concluded that LA-
phonon scattering is only a minor mechanism of the de-
phasing relaxation of the excitonic polariton.

Similarly the LO-phonon scattering rate can be calcu-
lated. In this case the exciton-phonon coupling is induced
through the Frohlich interaction and its explicit form is
given by '

where p, u, V, az, and D, (D, ) denote the mass density,
the sound velocity of LA phonons, the quantization
volume, the exciton Bohr radius, and the deformation po-
tential constant for the conduction (valence) band, respec-
tively, and o.'h and a, are defined by

V,p(q) = LO

V E'p

1/2

[f,(q) f„(q)]/q, —

(4.&)

~„=m„/(m„+m, ), ~, =m, /(m„+m, ) (4.6)

with the electron (hole) effective mass m, (m~). The cou-
pling constant (4.4) is usually approximated in the small
momentum limit as

1/2

where e„(eo) and ficoLo are the optic (static) dielectric
constant and the LO-phonon energy, respectively, and f,
and f, are defined in (4.5). Taking into account only the
phonon-emission process, one obtains the following
scattering rate due to the LO phonon:

V„(q) -=
2pu V

(D, D„) . — (4.7) r.,(k) = X l
V.p(q) I

'~«(k) —«k —q) —~, ) .
fz

Strictly speaking, (4.3) should be multiplied by another
factor relating to the exciton content in the polariton
mode. However, the exciton content is a slowly varying
function with respect to the polariton energy and is al-
most unity over a rather wide range of 50—60 meV
around the exciton resonance in the case of CuC1. Thus,
the factor of the exciton content in the polariton mode
can be safely neglected. In the calculation the following

(4.9)

The relevant parameters are chosen as AcoLo ——26 meV,
e =5.0, ' Ep= | co( /&g ~I=3.2080 eV, ' and
Ace, =3.2025 eV. ' The calculated result is shown in Fig.
8. The general trend of the energy dependence is similar
to that in Fig. 7. In this case also, the absolute value of I
is too small to explain the experimental results. On the
basis of these results one can conclude that phonon
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FIG. 7. Dephasing (momentum) relaxation rate of the exci-
tonic. polariton in CuCl due to the acoustic phonon scattering.
Above the longitudinal exciton energy co~ the results are shown
for both the upper- (UP) and lower- (LP) branch polaritons.

FIG. 8. Dephasing (momentum) relaxation rate of the exci-
tonic polariton in CuCl due to the optic phonon scattering.
Above the longitudinal exciton energy co~ the results are shown
for both the UP and LP branch polaritons.
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FIG. 9. Correlation traces of nondegenerate four-wave mix-
ing for a 1-pm-thick CuCl crystal. The pulse width ht
(FTHM) is chosen to be 30 ps and the dephasing relaxation
constant I is varied at 0.01, 0.04, and 0.08 meV (see text in Sec.
VI).

scattering makes a minor contribution to the momentum
relaxation of the excitonic polariton and cannot explain
quantitatively the experimental results.

Let us finally examine the possibility of polariton-
polariton scattering. Even when a well-collimated laser
beam is concerned, there is uncertainty with respect to the
direction of the polariton wave vector of the order of 0.1'.

This broadening of the polariton wave vector may lead to
mutual collisions among polaritons injected by an intense
laser beam. The two colliding excitonic polaritons can
scatter into various directions of the wave vector conserv-
ing the total energy and momentum. When the propaga-
tion direction of the scattered polariton is appreciably de-
flected from that of the incident polaritons, the scattered
polariton cannot contribute to the signal intensity of the
four-wave mixing. Even if the scattered polariton propa-
gates in almost the same direction as the incident polari-
tons, the energy of the scattered polariton is not necessari-
ly equal to that of the incident polariton. When detection
is spatially well collimated and is also energetically well
resolved, almost none of the scattered polaritons can con-
tribute to the signal intensity. Thus, polariton-polariton
scattering leads to the dephasing or momentum relaxation
of the excitonic polariton. When the polariton-polariton
scattering matrix element is written as

W( k J yk2yk3ykg) Ck~ Ck Ck Ck4 (4.10)

denoting the creation (annihilation) operator of the exci-
tonic polariton with wave vector k by Ck (Ck ), the
momentum relaxation rate of an excitonic polariton with
wave vector k is given by

k), k2, k3

k2 k39k )
I

( 1+Nk )( 1+Nk2 )Nk 5(k] +k2 k3 k)5(E(k 1 ) ++(k2 ) +(k3) E(k) )

(4.11)

where N(k) is the occupation number of the excitonic polariton with wave vector k. In (4.11) Nk and Nk can be

neglected since the wave vector and energy of the scattered polaritons are in general different from those of the incident
polaritons. The summation with respect to k3 is carried out over the distribution of the incident polaritons. As a result,
I, is proportional to the laser intensity. Expression (4.11) can be reduced to a more convenient form for numerical cal-
culation. Taking the z axis in the direction of wave vector k+k3 and neglecting the wave-vector dependence of W, one
can reduce (4.11) to

r, (k)=
I

W I'gN„/5(Z(k, )+E(k+k, —k, ) —E(k, ) —E(k))
k3 k)

OO 5(
I
ki

I

—
I
kY

I
)

2~' I
W

I QNk f d
I

k&
I I

k&
I f d8sin8+

I&(() IkV I) I

(4.12)

with

f(~ Ik~ I
) =&g( Ik~ I

)+Ug(
I
k+k3 ki

I
)( Iki I

—
I

—k+k3
I
cos~)~

I
k+k3 —ki

I
(4.13)

where Ug is the group velocity of the excitonic polariton,
V the quantization volume, and the superscript n indi-
cates a number of solutions which satisfy the energy con-
servation implied by the 5 function. It is found numeri-
cally that the integral in (4.12) is not sensitive to the angle
between k and k3 within a few degrees. Thus, it is per-
missible to replace the summation over k3 in (4.12) by the
value for a typical k3 multiplied by the total number of
incident polaritons. In the numerical estimate of the ab-
solute value of I „the two colliding polaritons are as-
sumed to have the same energy 3.188 eV (

I
k

I

=
I
k3 I

)

O'V=4. 8)& 10 erg, (4.14)

and obtains

1","'(3.188 eV)=3.6X10' s (4.15)

where the number density of the incident polaritons is

and the angle between the two wave vectors is chosen typ-
ically as 0.1'. Using the recent results of the microscopic
calculation of the collision matrix element of excitonic po-
laritons in CuC1, one finds a typical value
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supposed to be 10' cm, estimated from the power,
pulse width, beam diameter- of the laser, and the crystal
thickness. This value can be compared with the experi-
mental result:

I 'c"~'(3. 188 eV) = 1.5X 10' s (4.16)

These two values agree well within a factor 3. However,
this agreement should be considered as fortuitous since
there remains uncertainty in the estimation of the number
density of polaritons and other dynamical parameters. In
the theoretical fitting the absolute value of I is adjusted
to the experimental value at 3.188 eV and the energy
dependence of I is determined by (4.12). The calculated
result is shown by a dashed line in Fig. 6. As for the ener-

gy dependence of I, the agreement between theory and
experiment is satisfactory, although the experimental
values are ambiguous in the resonance region.

From the above arguments it may be concluded that the
dephasing or momentum relaxation of the excitonic polar-
iton is caused mainly by polariton-polariton scattering
under our experimental conditions, although impurity
scattering cannot be ruled out as a mechanism of the de-

phasing relaxation.

(p A+ A.p),
2mc

(5.1)

where A is the vector potential and p the momentum
operator. In the second-quantized form the vector poten-
tial is written as

A(r) =g
1/2

eq, e'q"(bqk+b qk), (5.2)

tations. However, the excitonic polariton is not a local-
ized excitation but propagates throughout the crystal with
a definite wave vector. In this section the basic equations
of motion are derived from the microscopic point of view
and it is confirmed that the same equations of motion as
in laser theory are applicable for the case of excitonic po-
laritons with a small change to incorporate spatial disper-
sion. First of all let us derive the polarization field opera-
tor quantum mechanically from the electromagnetic in-
teraction

V. MICROSCOPIC DERIVATION OF EQUATIONS
OF MOTION AND DEPHASINCx RELAXATION

OF EXCITONIC POLARITONS

In Sec. II, the basic equations of motion for the exciton-
ic polariton are taken from the familiar ones in laser
theory which are derived on the picture of localized exci-

where bq (bq), eqk and V are the annihilation (creation)
operator of the photon with wave vector q, the polariza-
tion vector, and the quantization volume, respectively,
and the polarization index I, indicates the transverse
modes in the Coulomb gauge. Calculating the matrix ele-
ment between the electron field operators, one obtains

d r W~ r p. A+ A.p 'P r =e &e 2'
2mc mc V

1/2
po'eqx

&&2 (ac, /c+qauk —au k+qack )(bqk+b qk) (5 3)

~ 1 3
/ po

— d'r u,„.(r)pu, „(r),
Uo

(5.4)

where u~k(r) denotes the periodic part of the Bloch func-
tion of the u band, Uo the volume of the unit cell, and the
usual s-p band combination is tacitly assumed for the
conduction and valence bands. Here the wave-vector
dependence of the matrix element is neglected. In the
resonant-term approximation, (5.3) becomes

where a~k (a k) is the creation (annihilation) operator of
the o.-band electron with wave vector k. The real vector
po is defined by

E(r) = —— A(r)
1

c Bt
' 1/2

2vrfic
f q f

q, A
V

eqke""(bqk bq, )—
=pe'q"[E (q)+E+(q)] =pe'q"E(q),

q q

(5.6)

where the Fourier component of the electric field E(q) is
decomposed into the positive and negative frequency parts
corresponding to b q and bq, respectively. With these
notations (5.5) is written as

mc

r

ie 2~Ac
V

1/2
PO'eqk

l ~
X (ac,k+q uk qA, u, k+q ck —qA,

[a, k+qa, kE (q)+a„k+qa, kE (q)] .
PIC

(5.7)

Supplementing the nonresonant terms, one obtains the
second-quantized form of the electromagnetic interaction
as

On the other hand, the electric field is given by

(5.5) e uo.«q)
(ack+qauk+au , k+qack )

PlCk q
(5.8)
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From the analogy to the electromagnetic interaction in the
dipole approximation, the polarization field operator with
wave vector q can be introduced by

o(q)= Jd re'q"I(r),

can be written as

(5.13)

epp
P(q) = — g(ac, k+qauk+au, k+qack) .

mcIqI
(5.9)

o(q) =&(ac,k+q ck au, k+qa k)
k

(5.14)

« Iq I

=& . (5.1 1)

On the other hand, the quantity corresponding to the pop-
ulation inversion is defined by

I ( r) = (a,„a,„au„—au„) IUD (5.12)

The prefactor of (5.9), having the dimensions of the elec-
tric dipole moment, will be denoted by p:

p=
e

I I 0 I

(5.10)
mcIqI

where the typical value of q is determined by the exciton
energy e as

+ & y gk(q)(ac, k+qaukbqk aukac, k+qbqk )
k, q, A.

(5.15)

where E~(k) is the energy dispersion of the a-band elec-
tron and the electromagnetic coupling constant is defined

' ]/2

by transforming the Wannier operators into the Bloch
operators.

Now that the operators of the polarization field and of
the population inversion are derived microscopically, the
equations of motion for these variables will be considered.
The Hamiltonian is assumed in the simplest form as

H = yE, (k)a ka,k+ yE„(k)a,ka, k

where a „(a „) is the creation (annihilation) operator of
the a-band electron in the Wannier representation and Up

is the volume of the unit cell. The Fourier component of
the population inversion, defined by

ePp

)AC

27TAC

A typical equation of motion is given as

(S.16)

a, k+qauk [H ac,k+qa k] = —[E.«+q) Eu(k)]—a„+qa„„

ie IpoI
Amc

X(ac,k+qa. , k q a., k+q+—q
a—.k)E+(q') i

I

q' I, (S.17)

E,(k+q) E„(k)=-e„(q—)

with the exciton energy dispersion e„(q), one finds

(5.18)

d f l
/ac, k+qauk g

& (q)/ac, k+qauk
k k

pro(q +q')E(—q'), (5.19)

where the negative frequency part of the electric field is
added to the second term on the right-hand side and the
notation of (5.10) is used. In the same way one obtains

where E+(q) is the positive frequency part of the electric
field defined in (5.6). Hereafter, the electric field com-
ponent parallel to pp will be considered. Taking the sum
over wave vector k on both sides of (5.17), replacing

I

q'
I

in the denominator op the right-hand side by a typical
value given in (5.11), and introducing the replacement

+au, k+qack e~(q)+au k+qack
k k

+ @go.(q +q'—)E (q') . (S.20)

The basic equations of motion for the polarization field
operator are derived by adding (5.19) and (5.20) or by sub-
tracting (5.20) from (5.19) as

p(q) = — e„(q)g(ac k+qa„k —a„k+qa,k ), (5.21)
k

d Pg(ac, k+qauk au, k+qack )

2

e„(q)p (q) —go(q +q—')E (q'), (5.22)

where p (q) is the magnitude of the vector in (5.9).
Next, the equation of motion for the population inver-

sion is derived:

l &e
I po I 1

ac,k+qack = [ c( +q) E,(k)]ac,k+qack+ — g, [a, k+q+q a,kE+(q') a, k+qa, k q E—(q')], (5.23)

l &'e
I po I 1

dt u k+qauk =—[E„(k+q) Eu(k)]a„k+qauk+ — g, [ac k+q+q a„kE (q') ak+ a k E+(q'—)] .rime, Iq'I ' ' ' " '+'' (5.24)
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The first term on the right-hand side of each equation
represents wavelike behavior due to the dispersion of the
energy band. Since q denotes the wave vector of the pop-
ulation grating and is usually small, the first terms on the
right-hand side can be safely neglected. By repeating the
same procedure as in the derivation of (5.19) from (5.17),
one obtains

d 2lP yE(q )y(ac, k+q+q'avk av, k+q+q'ack ) .
k

Another relevant equation is derived from (5.30) and is
given by

2lP
dt 1 (P12 P12) to op + Etr 7 Iij'(Pl2 P12)

It is easily seen that the equations of motion from (5.27)
to (5.29) have a one-to-one correspondence with the set of
equations (5.33),, (5.34), and (5.31), if the relaxation terms
in the latter are dropped and the following correspondence
is supposed:

(5.25)
SP12 P'( ), PP» P (r). (S.35)

1(r)=—ge 'q"o(q), p (r) =—ge 'q"p (q),

p (r) = ge a, k+qa, k,P —iqr (5.26)

P (r)= ge av, k+qavk ~

P —iqr

where, of course, it holds that p(r)=p+(r)+p (r). Then
the equations of motion for these operators are obtained
as

d l

dt
p(~)= —e„(iV)[p+(~)—p (~)], (5.27)

l 2lP
dt A" fi

[p+(r) p(r)] = e(—i—V )p (r)+ I(r)E(r ),
(5.28)

2lI(r) =—E(r)[p+(r) —p (r)] .
dt

(5.29)

Here the field quantities are scalars since, as mentioned
before, the electric field component parallel to the polari-
zation field is considered.

It is quite instructive to compare these equations with
the density-matrix equations for a two-level atom. The
latter are familiar in laser theory ' and are given explicit-
ly as

Equations (5.21), (5.22), and (5.25) form the basis set for
the dynamical description of the excitonic polariton. I.et
us now introduce the real-space field operators defined by

Thus, the equations of motion, which were originally de-
rived in laser theory, turn out to be applicable in the case
of excitonic polaritons with a small change to incorporate
spatial dispersion. In fact Eqs. (2.1) and (2.2) can be de-
rived from (5.27) and (5.29) with the replacement of
2(t)tp /A' by Pc@,.

Next, the inclusion of the relaxation terms will be dis-
cussed from the microscopic point of view. The relaxa-
tion phenomena result from the reversible dynamical
equations of motion, when some kind of coarse graining is
introduced which is closely related to the method of mea-
surements; for example, the phonon state of the crystal
lattice is not measured and the signal emitted in a particu-
lar direction is selectively observed. The procedure of
coarse graining can be incorporated by means of the gen-
eral method of projection ' to derive the irreversibility
from reversible dynamics. In the following let us derive
the relaxation terms due to the polariton-phonon interac-
tion and the polariton-polariton scattering. In the pro-
cedure of coarse graining the total system is divided into
the relevant system and the rest, which is usually called
the reservoir, and the dynamics of the total system are
projected onto that of the relevant system by eliminating
the degrees of freedom of the reservoir. To be more con-
crete, let us consider the reduced density operator defined
by

(S.36)

where P is a suitable projection operator. The equation of
motion for p„ is generally given by

d lP
dt

Pi2=l ~OP&2+ Fo —Xi P].Z

l2P
E(P12 P12)+ Y(((~0

(5.30)

(5.31)

p, (r) = I.sp„(r)——l

t
dr pL t(1 P)L(—t t)IAL ( )——

SR e SRPr

Here the upper (lower) level of a two-level atom is denoted
by 2 (1) and o, (To, lrltt)o, )M, and y(( (y) ) are the population
inversion defined by p22 —p~~, the equilibrium value of o.,
the energy difference between the two levels, the electric
dipole moment, and the longitudinal (transverse) relaxa-
tion constant, respectively. The polarization defined by aS+IIR +~SR (5.38)

(5.37)

where the Hamiltonian of the total system is divided into
those of the relevant system (S), the reservoir (R) and
their interaction (SR) as

P =(M(P12+P12)

satisfies the equation

(5.32)
and the Liouville operators are defined, for any operator
A, by

L~ =[~~] I-s~ =[Hs ~l Ls2(~ =[~sly ~] .

(5.33)
)fc

P = —'YW+t~OP(P» P12) . — In the case of the polariton-phonon interaction, the
relevant system and the reservoir correspond to the exci-
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tonic polaritons and the phonon system, respectively. The
suitable projection operator is given by

0 0~p pphTrph p pph ps (5.40)

where p~h denotes the thermal equilibrium state of the
phonon system, the trace is over the phonon states, and pz
is the density operator only for the excitonic polaritons.
It is convenient to use the polariton operator instead of
the electron-hole excitation operator. Let C~t, (Cqk )

denote the creation (annihilation) operator of the excitonic
polariton with wave vector k, where the index A, specifies

the electron-hole relative motion. The polariton-phonon
interaction Hamiltonian can be written as

H,p
——g:-( q)Ck+qCk(bq+b q), (5.41)
k, q

where b (b) is the creation (annihilation) operator of
phonons and:-(q) is the coupling strength dependent on
the kind of phonons and on the exciton internal motion.
Here the electron-hole relative motion is assumed to be
the lowest 1s state and the index A, is dropped. Then by
substitution of H,„for Hsz, the second term of (5.37) can
be calculated up to the second-order perturbation with
respect to HsR as

z & ~:-(q)
~ f drI [n e ' +(1+nq)e ' ][Ck Ck, Ck+z(o)Ck(o)e. ps(v)e ]

k, k', q

+[nze ' +(1+nq)e ' ][e ps(r)e Ck+~(a)Ck(a), Ck qCk]I, (5.42)

where sr=~ t and co~ —and n~ denote the frequency and the occupation number of the phonon with wave vector q,
respectively. The Heisenberg operator is defined in terms of Hs in (5.38), namely, the Hamiltonian of the excitonic po-
lariton. Taking into account only the secular terms and employing the Markovian approximation, one can further
reduce (S.42) to

g ~:-(q) ~'t [n,5(E(k+q) —E(k)—~ )+(1+n )5(E(k+q) E(k)—+m )][C„'Ck~q,Ck+qCkps(t)]
A k

+ [ne5(E(k+q) E(k)+Re@&—)+(1+n~)5(E(k+q) E(k) fico~)]—[ps(t)C—k+&Ck, CkCk+~]) =I'~hp,

(5.43)
where the polariton dispersion is denoted by E(k) and the relaxation operator I ~h is defined by this equation. Conse-
quently, the equation of motion for the reduced density operator ps in (5.40) becomes

l

dtd
ps(t)= —

&
[Hs ps]+I pops . (5.44)

In order to derive the equations of motion for physical quantities, the average value of some operator A, defined by

(A(t)) =TrAps(t),

will be considered. The equation of motion for the averaged quantity (A (t) ) is given as

(A(t)) =TrA ps(t)= —Trps[Hs A]+TrAI ~hps .l

dt dt

(5.45)

(5.46)

(5.47)

The damping of the polarization field component p (Q) arising from the second term of (5.46) is calculated as

The Fourier component of the polarization field with wave vector Q can be written in terms of the polariton operator as

p(Q)= —p(Cg+C g) .

Q I:-(q)
I
'I [n&5(«Q) —«Q q) ~&—)+(I+n&)5(«Q) «Q q—)+~q)]& C—q' qCg-

q

—[n&5(E(Q) —E(Q q)+%co&)+( I+n—q)5(E(Q) —E(Q q) Acoz)](Cg —e—Cg z ) Ip(Q),
(5.48)

where a decoupling approximation such as

TrC~ C~ Cg ps( t) =- (Cg ) ( Cx.Cx ), (5.49)

is employed. When (CkCk ) is regarded as the population
of polaritons with wave vector k, the first term of (5.48)
can be interpreted as the rate coming into the polariton

state with wave vector Q, whereas the second term can be
interpreted as the rate leaving the same polariton state. If
only the polariton state with wave vector Q is occupied in
the initial state, only the second term of (5.48) does not
vanish and gives exactly the same damping constant as in
(4.3).
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Now let us consider the relaxation term due to
polariton-polariton scattering. In this case the relevant
system is the ensemble of polaritons with a particular
range of wave vectors contained in the incident beam; the
reservoir corresponds to the other polaritons, which will
be referred to as the reservoir polaritons. The suitable
projection operator is given by

ap= ~O')(O'~ Tr'p, (5.50)
where

~

0') denotes the vacuum state with respect to the
reservoir polaritons and the primed trace implies the trace
operation over the reservoir polaritons. The polariton-
polariton scattering Hamiltonian is given by (4.10). Then
by a similar calculation as in (5.42), the relaxation opera-
tor in the Markovian approximation is derived:

I,P= —„g g'&(E(k )+E(k ) —E(k ) —E(k )}
~

8'(k, k;k, k„) I'[[C„,C„,,C C„p]+[pCt Ct, C„C ]I,
l~ 2 3~ 4

(5.51)

where the summation with respect to k& and k2 is over
the relevant polaritons, whereas the sum concerning k3
and k4 i.s over the reservoir polaritons and is indicated by
a prime. The damping constant of the polarization field
component p (Q) due to the relaxation operator I", is cal-
culated from (5.46) and (5.51) as

i
W(ki, Q;k3, k4)

i Xg
kl k3, k4

X&(E(k, )+E(Q)—E(k, ) —E(k, ))(p(Q) ),
(5.52)

where the decoupling approximation as in (5.49) is em-

ployed and KI, represents (CI, CI, ). This expression is ex-
actly in agreement with (4.11) as it should be.

In summary, the basic equations of motion for the exci-
tonic polariton are derived microscopically and given a
firm basis. It is confirmed that the equations of motion
familiar in laser theory are applicable also in the case of
excitonic polaritons with the inclusion of spatial disper-
sion. At the same time, the damping of the polarization
field that is identified with the dephasing relaxation of the
excitonic polariton is derived by the standard statistical
mechanical method using projection operators and it is
confirmed that up to second-order perturbation the sta-
tistical mechanical method gives the same result as the
golden-rule calculation.

VI. SUMMARY AND DISCUSSION

The concept of the dephasing relaxation of the exciton-
ic polariton has been clarified for the first time and the
method of analysis of the experimental data of nondegen-
erate four-wave mixing has been established. The various
mechanisms of the dephasing relaxation of the excitonic
polariton are discussed and the most probable mechanism
is identified as the polariton-polariton collision. The ob-
served dephasing relaxation constant of the excitonic po-
lariton in CuC1 is of the order of 0.01 meV and increases
as the energy approaches the exciton resonance.

The conceptual difference between the dephasing relax-
ation of the localized excitation and of the propagating
elementary excitation has to be emphasized. In the form-
er the dephasing relaxation or, in other words, the trans-

verse relaxation is related to the decay of the coherence of
the relevant transition or of the off-diagonal component
of the density matrix. In the latter case, however, the ex-
citations are not localized but propagate throughout the
crystal with a definite wave vector. Accordingly, the
coherence of the relevant transition, which is usually re-
lated to the polarization field, has the degree of freedom
of the wave vector. This degree of freedom is one of the
salient features of the propagating elementary excitation
which make a striking contrast with the case of the local-
ized excitation. In addition to the wave vector the exci-
tonic polariton has a degree of freedom of the exciton
internal state, i.e., the electron-hole relative motion. The
change of the exciton internal state may lead to the fluc-
tuation and relaxation of the exciton coherence, since the
oscillator strength of the exciton depends on the exciton
internal state. The dephasing relaxation due to the change
of the exciton internal state may be caused by a mutual
collision among the excitonic polaritons under a rather
high excitation. In this paper, however, the dephasing re-
laxation due to a change of wave vector has been dis-
cussed exclusively.

In the exciton resonance region, as mentioned in Sec.
III, the correlation trace becomes insensitive to the de-
phasing relaxation constant I and the experimental value
of I cannot be determined precisely. Let us make a few
proposals to overcome this difficulty. The simplest one in
principle is the use of a pulse with width comparable to
the dephasing relaxation time. In the limit of infini-
tesimal pulse width, as shown in Sec. II, the correlation
trace shows directly the decay due to the imaginary part
of the wave vector. Thus, an improvement in the pre-
cision of measuring I can be expected by use of shorter
pulses. A second proposal is to use a thinner sample. Let
us consider a thin sample whose thickness is of the same
order as the absorption length of the excitonic polariton,
namely, the inverse of the imaginary part of the wave vec-
tor. In this case the simple expression (3.13) cannot be
used and one has to calculate the full expression (3.4).
The correlation trace can be expected to be sensitive to the
value of I . In fact, for a 1-pm-thick sample of CuCl one
obtains correlation traces sensitive to the value of I, as
shown in Fig. 9. Thus, the value of I can be fixed from
curve fitting if the value lies within the range shown in
the figure.
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Finally let us point out a few interesting proposals for
future study, The first one is the use of two-photon exci-
tation of the upper-branch polariton. This excitation
scheme was first devised by Frohlich et al. ' to mea-
sure the polariton dispersion in CuCl. By two-photon ex-
citation an upper-branch polariton can be created almost
uniformly in a sample because the fundamental photon
energy lies in the transparent region of the crystal. Furth-
ermore, this excitation scheme can create an upper-branch
polariton selectively without excitation of the lower-
branch polariton owing to wave-vector conservation.
Thus, the troublesome additional boundary conditions
(ABC} problem can be avoided and the dephasing relax-
ation constant of the upper-branch polariton can be mea-
sured precisely, although the tunable energy range may be
rather limited. A second proposal is the use of
reflection-type four-wave mixing. As is well known, the
pseudogap region is highly absorptive and shows a high

reflectivity. Thus, it is desirable to measure the four-wave
mixing signal in reflection geometry rather than in
transmission geometry. In fact, four-wave mixing in re-
flection geometry is successfully observed in CuCl (Ref.
34} using nanosecond laser pulses. Since the excitonic po-
lariton in the pseudogap region has a very short penetra-
tion depth in the crystal, one can probe the relaxation of
the excitonic polariton in the vicinity of the crystal sur-
face by means of reflection-type four-wave mixing.
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