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Experimental evidence for vibrational thresholds in network glasses recently predicted theoretical-
ly is discussed. A number of thresholds are observed, some of which are ascribed to phase separa-
tion and some of which may arise from intrinsic network mechanical properties. The glasses are
binary and ternary chalcogenide alloys of Ge and Sn with S and Se, and the experiments are either
acoustical or optical (infrared absorption and Raman scattering), with variable composition and
external pressure. The first direct evidence for an electrical coherence length in a network glass is

identified and analyzed.

I. INTRODUCTION

Substantial progress has been made recently in inter-
preting the results of microscopic experiments on network
glasses’? and relating these results to the macroscopic
glass-forming tendency.? These developments rely on
comparison of the average internal stress in the network,
as generated by valence force fields, with the number of
atomic degrees of freedom available to accommodate
these stresses. Phillips’s qualitative theory* has been made
more rigorous by Thorpe.’ According to Phillips, the
glass-forming composition is optimized mechanically by
equating the number of force-field constraints which are
intact at T=T, (the glass transition temperature) with
the number of atomic degrees of freedom. Thorpe showed
that in the range of glass-forming compositions, the sys-
tem should contain rigid and floppy regions, the latter be-
ing associated with soft vibrational modes stabilized only
by broken or ineffective force-field constraints, such as
van der Waals forces between chains.*

An independent approach to the mechanical properties
of disordered networks based on numerical simulations of
the elastic properties of percolative monatomic lattices®
shows threshold behavior similar to that found in critical
phenomena. Except for very close to threshold, this
behavior is well described by mean-field theory.” In order
to apply phase-transition models to glasses the usual per-
colation picture of charge flow along nearest-neighbor
bonds must be generalized to vector percolation of atomic
displacements as determined by a valence force field
which includes angular bond-bending forces in addition to
nearest-neighbor bond-stretching forces. When this is
done the glass composition at the mean-field percolative
threshold coincides with that predicted by Phillips’s origi-
nal constraint theory.?

In general, one would expect linear increases in the
number of force-field constraints to produce linear in-
creases in the elastic constants in glass alloys, providing
the glass consists of a homogeneous network of the Za-
chariasen type. The mean-field model”® and numerical
simulations®® show that, in addition to this linear varia-
tion beginning at or very near the mean-field threshold, an
additional term of order (x —x,) is expected, with f of
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order 2. Measurement of this effect, together with the
composition dependence of the glass-forming tendency it-
self,> would provide direct evidence for interpreting glass
formation in terms of mechanical critical behavior in a
system close to but not in configurational equilibrium.
The first experimental study of the compositional
dependence of the elastic properties by Gilroy and Phil-
lips'® used a resonator method which gave relative varia-
tions of sound velocity and acoustic attenuation as func-
tions of temperature for several compositions x in
Ge,S;_, and Ge,Se;_, glass alloys. This method did not
permit comparison of the sound velocities in different
samples. Too few samples were used to provide quantita-

‘tive brackets on x,, the critical composition, which should

be 0.2 in these alloys. The theory, however, was con-
firmed in the following sense, which was not recognized
by Gilroy and Phillips, but which is apparent now because
of the development of percolation models.>~® Strong
peaks in the attenuation were observed near 90 K (30 K)
in GeS, (Se and GeSe,) samples (Fig. 1), which were ab-
sent for x >0.33. According to the percolation model, for
x <0.2 floppy regions percolate. The temperatures of the
peaks are in the vibrational range associated with v,(F,)
tetrahedral vibrational modes (110 and 80 cm™! for GeS,
and GeSe,, respectively).!! While the agreement is only
qualitative and the data are sparse, the general behavior
observed in this pioneering study is promising and war-
rants further acoustic experiments, especially near
x=x,=0.2.

An additional feature of acoustic experiments (which is
not present in more microscopic experiments such as Ra-
man or Mossbauer scattering) is that the acoustic wave-
lengths of order 10~! cm are very sensitive to low-
frequency large-cluster rotational vibrations, such as are
involved in glass solidification from the supercooled
liquid. The very large peak in acoustic attenuation in g-
GeS, observed near 90 K (see Fig. 1) may involve such
large-cluster rotational vibrations. According to the
mean-field model, when the network is slightly under con-
strained (corresponding to x slightly less than x,=0.2 in
a Ge,S,_, glass alloy) cyclical (Q%=0) vibrational modes
are present whose number goes to zero at x =x.. When
fluctuation or cluster internal-surface (non-mean-field) ef-
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FIG. 1. Acoustic attenuation data (of K. S. Gilroy and W. A.
Phillips) in several Ge,S;_, glasses as a function of tempera-
ture, reproduced here from Ref. 10 for the reader’s convenience.

fects are included, a small number of cyclical modes are
present even at x =x.. These modes tend to be much
more delocalized'? than the modes with @?> 0. Moreover,
in the physical glass, weak intercluster van der Waals
forces will be present which will shift cluster surface cycl-
ical modes ) and couple them to adjacent cluster surface
modes. These are the modes which would couple most
strongly to long-wavelength external acoustic waves. One
can then understand why the attenuation in Fig. 1 is
peaked so strongly near T=90 K. This corresponds to
the F,-like cluster surface modes found in numerical
simulations of GeS,-like cluster vibrations.'>!> Because
of intercluster interactions the cyclical surface-mode fre-
quencies ) are shifted from Q=0 to just below the bulk
or cluster interior F, GeS, frequency!! of about 110
cm™!. Starting from low T, large-cluster F,-like surface
vibrations are first excited near T =90 K and these cou-
ple strongly to acoustic waves. At higher temperatures
the cluster F,-like surface vibrations will be damped by
coupling to F,-like cluster interior modes, and reduced
acoustic wave attenuation will result. This model of soft
F,-like cluster surface modes is consistent with recent
Mossbauer studies of temperature-dependent cluster sur-
face and interior Debye-Waller factors.!*

The purpose of this paper is to draw attention to
threshold behavior which has been observed by Raman
scattering in certain optic-mode frequencies in chal-
cogenide glass alloys. Some of these thresholds appear at
zero pressure as a function of composition. Although the
percolation models stress acoustic-mode thresholds, it
seems from the data discussed here that related thresholds
may be present in data obtained on Raman-active optic
modes. Additional thresholds, some of which may be of a
nonpercolative nature, have been observed in high-
pressure experiments on the same alloys. After reviewing
the data'>!6 for the reader’s convenience, I discuss several
theoretical models for the apparent threshold behavior.

II. RAMAN SCATTERING DATA

The effects of topological constraints on local vibra-
tional frequencies can also be studied by augmenting the
internal stress force field with external pressure. Murase
and Fukunaga have made both Raman and infrared mea-
surements at room temperature with a diamond-anvil cell
on a wide range of Ge,S;_, and Ge,Se;_, binary alloys

and (Sn,Ge;_,),Se;_, pseudobinary alloys.!>!® These
pressure studies substantially extend the high-pressure ex-
periments on g-GeS, carried out independently by Wein-
stein and Slade.!”

In this paper I discuss some results of these studies
theoretically. The discussion centers on the regime in
which the number of constraints differs slightly from the
number of degrees of freedom. In this regime the
internal-strain energy generated by rigid and floppy clus-
ters may both exhibit power-law dependences on (x —x,)
for y=0 or (y —y,), where x, and y,(x) are the topologi-
cally determined critical compositions. Because noncrys-
talline solids are not in equilibrium, these results cannot
be exact. They are, however, valid to high accuracy be-
cause of the persistent metastability of network glasses,
which results from their close proximity in free energy to
equilibrium.

To achieve the precision needed to identify threshold
compositions xZ and yZ and threshold pressures PZ
(where a refers to a given partially polymerized cluster,
such as a chain or a corner-sharing tetrahedron), as well
as to determine power-law indices, high resolution is re-
quired. Such resolution has been achieved for selected
narrow bands in the Raman spectra of the above-
mentioned binary and pseudobinary alloys. Here I discuss
results for (i) wsde(x) in Ge,Se;_,, corresponding to
the A4, symmetric breathing mode of corner-sharing
Ge(Se, »)4 tetrahedra [a):G‘e(%):202 cm~!], (ii) the frac-
tion of Sg rings as measured by the integrated scattering
strengthAI g of the alternating bending A; mode of Sy
rings (wg, =219 cm™!) in Ge,S,_, alloys, (iii) the pres-
sure dependence of the A4, stretching-mode frequency of
S, chains (w,, =475 cm™'), as well as the A4; tetrahedral
modes of Ge(S),5)s (w4, =345 cm™!) and Sn(S; ),
(@45, =316 cm™') in Geg ¢Sng 4S; glass. Each of these
clusters exhibits scaling behavior which I discuss in terms
of its local rigidity and the global network constraints.

III. GLOBAL THRESHOLD BEHAVIOR

In Fig. 2 the compositional trends of several narrow
Raman bands in Ge,Se;_, glass alloys are shown for the
reader’s convenience as originally measured by Murase
et al.’> Consider first the Se, A4; band associated with
stretching modes of Se chains. As indicated in the figure,
the broad behavior here is linear, indicating increasing
internal stress as the average coordination number in-
creases from 2.0 (at x=0) to 2.67 (at x=0.33). Some
nonlinear behavior may be present near x =0.2. While
more experimental points are needed to draw conclusions
confidently, it appears that there is a discontinuity near
x =0.2 corresponding to 8w~3 cm~'. The experimental
uncertainty is Aw <1 cm™!, and so this discontinuity may
be significant. One possible explanation'® for the discon-
tinuity is that for x <0.2 the Se, chains form (Se,),, bun-
dles of chains, whereas for x > 0.2 the Se, chains are po-
lymerized with outrigger GeSe;,-like rafts. Thus, the Se is
phase-separated for x <0.2 on a scale of order 50 A, but
not for x >0.2. This phase-separation threshold would be
a consequence of the threshold percolation of rigidity at
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FIG. 2. Compositional dependence data (of K. Murase and
collaborators) of tetrahedral (4; and 4'”) and chain Se, modes
in Ge,Se;_, glasses, reproduced here from Refs. 15 and 16 for
the reader’s convenience.

x=0.2 and a corresponding threshold in the internal
stress which disrupts the (Se, ),,-chain bundles.

More direct evidence is provided by the composition
dependence of the 4; and A(f’ bands associated with the
symmetric breathing modes of tetrahedra internal to and
at the edges of “outrigger-raft” clusters.! The stress at
raft edges due to reconstruction and intercluster interac-
tions apparently obscures this threshold in 4% (x), but it
is quite apparent in 4,(x); see Fig. 2. More accurate data
are needed to establish the exponent f associated with this
behavior, but f=2.0%+0.5 describes the present data ade-
quately.

Let us consider next the effect of external pressure P,
on the frequency A4,(x,P.,) as reported recently by Mu-
rase and Fukunaga.'® This is shown in Fig. 3. At
x =x,=0.2 we might expect that application of pressure
would effectively increase x because it increases 4,. For
x=0.25> x,, a first application of P, may have little ef-
fect because Py <Piy o< |x—x.|. Thus, we expect
threshold behavior when P — P, (x)>0. At x=0.25 it
appears that this occurs near P.,=10 kbar, while at
x =0.30 the threshold seems to be at a larger value of P,,,
(perhaps about 20 kbar, although data sparsity and scatter
preclude quantitative analysis). The behavior shown in
Fig. 3 suggests that application of external pressure to an
overconstrained network at first compresses only the flop-
py regions, but then at a critical pressure (10 kbar for
x =0.25) begins to convert floppy regions into rigid ones.
This is a kind of pressure-induced phase mixing, for
which more evidence is presented below.

IV. LOCAL THRESHOLD BEHAVIOR
In g-Ge,S;_, glasses for x <0.2, vibrational bands as-

sociated with the S, chain at 475 cm™! and S; rings at
475 and 219 cm ™! are observed. The composite character
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FIG. 3. Pressure dependence of 4, modes, taken from K.
Murase et al. (Ref. 16).

of the 475-cm~! band renders analysis of threshold
behavior difficult, but the 219-cm ™! band is narrow and
isolated from other bands. Its integrated intensity'¢ is
shown as a function of P, for x=0.15 and 0.20 in Fig.
4. The Sg molecular population is extinguished near
P, =22 kbar for both compositions, although the volume
filling at P=0 for x =0.15 is about twice as large as for
x =0.20.

One can interpret common extinction pressures P,, in-
dependent of x, as reflecting a structure in which the Sg
rings are embedded in S, chains which, in turn, are em-
bedded in GeS,-like clusters. The latter exert no direct
pressure on the Sg rings and hence P, is independent of x,
which modifies primarily only the internal pressure exert-
ed by GeS,-like volumes on S, regions. This example
shows that local threshold behavior, not associated with
percolating volumes, can exhibit intensive or “isolated-
molecule” behavior.

V. TERNARY PHASE SEPARATION

The ternary glasses Sn,Ge;_yS;4 p and
Sn, Ge,_,Se; ,, with O<n <1 and 0<y <0.6, have at-
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FIG. 4. Quenching of S rings as a function of pressure in
Ge,S|_x glasses, taken from K. Murase et al. (Ref. 16).
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tracted much interest.2 In this composition range almost
all the Sn atoms enter the glass network substitutionally
replacing Ge atoms. The Sn atoms are therefore
tetrahedrally coordinated, as are the Ge atoms. However,
at T=T,, where the internal configurational stress is ki-
netically frozen, the contributions of Sn and Ge atoms to
the internal stress field are quite different. This is because
T,,(Sn) << Ty ~800°C << T,,,(Ge). Thus, each Ge atom
contributes two bond-stretching and five bond-bending
constraints to the network, while each Sn atom contri-
butes only two bond-stretching constraints.!® Thus, al-
though GeS, (or GeSe,), which simply contains primarily
tetrahedral building blocks, is overconstrained, the ternary
is ideally constrained!® for y near 0.4.

We saw in Fig. 2 threshold behavior in the 4, frequen-
cy in Ge,Se;_, for x=0.25 slightly larger than
x. =0.20, but no microscopic explanation of the origin of
the threshold was given. In Fig. 5 the Raman shifts of
the tetrahedral Ge(S;,)4, Sn(S;,)s, and chain S" 4,
modes under pressure, as measured by Murase and Fuku-
naga with a diamond anvil,!® are reproduced for the
reader’s convenience. Near 13 kbar something new and
dramatic has occurred. For O<P <13 kbar the two
tetrahedral A, frequencies increase superlinearly, but
above 18 kbar both actually soften. The natural interpre-
tation of this behavior is that above 13 kbar pressure frac-
tures the network chemically, i.e., phase separation takes
place. The solid circles in each figure describe the P =0
spectral peak positions after a compression cycle.
Pressure-induced phase separation is inherently almost
completely irreversible. Note that the Sn(S,; ;)4 A, peak
frequency begins at 316 cm ™', peaks near 322 cm~! near
13 kbar, softens to 312 cm~! at 30 kbar, and remains at
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FIG. 5. Anomalous A, frequency shifts in ternary glass, tak-
en from K. Murase et al. (Ref. 16).
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312 cm~! when P returns to 0.

Chemical fracture produces a strong threshold!® in the
reduced bandwidth Aw/w, which is shown in Fig. 6. This
threshold at 18 kbar is common to the Ge(S;,); and
Sn(S, ;)4 A; bands. This indicates that both tetrahedra
belong to the same fractured network element. The ex-
istence of the threshold itself shows that this network ele-
ment percolates through the glass.

VI. INFRARED SPECTRA

The infrared transverse- and longitudinal-optic (TO and
LO) spectra of Ge,Se;_, and (Sn,Ge;_,), Se;_, glasses
have been measured and discussed in excellent fashion by
Murase and Fukunaga.'® While the scalar 4; modes in
these glasses are Raman active, it is the vector F, modes
of the tetrahedral building blocks which are infrared ac-
tive. For these modes we may also expect to observe
threshold behavior, but the power laws should differ from
those involved in scalar thresholds, although the threshold
compositions should be the same. In the following discus-
sion we recognize that the TO peak frequencies are peaks
in we;, essentially absorption peaks, whereas the LO peak
frequencies occur in o Im(—1/€), where the complex
dielectric function €;+i€, has been obtained by the
Kramers-Kronig transformation.!®

There are two F, peaks in the infrared spectra, a strong
one near 260 cm™! and a weak one near 310 cm™!. The
peak positions for the former are determined more accu-
rately and it appears that there is a softening of the LO
peak in Ge,Se;_, glasses with a threshold at x =x,=0.2,
as shown in Fig. 7. Although this interpretation may
seem incomplete, we do notice that (1) the LO-TO split-
ting peaks near x=0.25, and (2) the LO peak position
varies by 10 cm~! while the TO peak position varies by
<2 cm™!. Because the LO mode involves long-range
Coulomb interactions it is more sensitive to network stif-
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FIG. 6. Anomalous A4; bandwidths in ternary glass, taken
from K. Murase et al. (Ref. 16).
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fening. Note also that in a naive continuous-random-
network model of GetSe™ dipoles, the density of the
latter should increase linearly from x =0 up to x =0.33,
and then decrease linearly as Gey(Se; ;)¢ ethane-like
building blocks are formed up to x =0.40. This is clearly
not the case for the data shown in Fig. 7. The linear in-
crease includes a constant term (due to cluster formation)
up to x =0.2, and above x =0.2, the LO peak softens ap-
proximately linearly. This suggests that mechanical stif-
fening of the network is reducing e*, the dynamical effec-
tive charge responsible for the LO-TO splitting.

The data for the ternary glass alloys (Sn,Ge;_,);_, Se,
are very dramatic. They are shown in Figs. 8(a), 8(b), and
8(c) for x=0.75, 0.80, and 0.86, and they incorporate a
new tetrahedral mode near 230 cm~! associated with
Sn(Se, s;)4 units. The (TO,LO) pair associated with these
tetrahedra generally shows zero splitting until a threshold
value of y=y(x) is reached. Above this threshold, as
shown in Figs. 8(a)—8(c), the TO and LO modes split
symmetrically (TO down, LO up) so that the average fre-
quency remains nearly constant. (Note that this behavior
is qualitatively different from that shown in Fig. 7, where
the TO-mode frequency is nearly independent of composi-
tion.)

From the data shown in Figs. 8(a)—8(c) it is clear that
the (TO,LO) F, modes of Sn(Se, ), tetrahedra are not
split by Coulomb interactions with Ge™Se™ dipoles, but
instead are split only by resonant interactions with other
SntSe~ dipoles, which must vibrate in phase. Moreover,
Yo(x) has the remarkable form

Yo(x)=4(x —x.), x>x, (1)
yO(x)=2(xc ——JC), X <Xc (2)

where x,=0.20. This is the same value of x, used to
analyze Fig. 7, and it is the value of x, used to analyze
the 4; modes of Ge,Se;_, glasses (Fig. 2) and predicted
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FIG. 7. Threshold behavior of LO-TO Ge(Se, /), splitting in
binary Ge,Se;_, glasses.

theoretically.* Unless . x =x,, the Sn*Se™ dipoles vibrate
resonantly only above a concentration y,>0. However,
the resonant vibrational range tends to infinity when x
tends to x.. This is a clear-cut characteristic of critical
behavior.

It is perhaps surprising that the apparent range of
Coulomb interaction responsible for the LO-TO splitting
seems to decrease as |x —x,.| increases. For x=0.33
critical behavior near y =y.=0.4 has been inferred from
the disappearance of internal surface states.>!° However,
for y=0 the internal surface states, as monitored by the
presence of the 4" Raman line, disappear near x =0.12
and are certainly present at x=x,=0.20. Thus, the
disappearance of cluster effects may be the signature of
critical behavior near x =0.33, but they are not a neces-
sary condition of critical behavior. A possible explanation
for the behavior shown in Figs. 8(a)—8(c) is that near
x =x, there is no screening of the Sn(Se, ,,), Coulomb in-
teractions by the ideal Ge(Se, ;)4 tetrahedral sea, but that
with increasing |x —x, | screening develops from either
F,-like latent cyclical modes (see discussion of Fig. 1) or
from admixture of a dipole moment into acoustic modes
by excess constraints.”® This explanation involves subtle
features of the eigenvibrational modes of the network in
the critical region. While elucidation of these subtle
features is a formidable mathematical task which lies well
outside the scope of this paper, I believe it is worth while
to draw attention to a physical mechanism which is con-
sistent with these remarkable data.

VII. DISCUSSION

Many examples of threshold behavior are illustrated in
Figs. 2—8. Some of these are chemical but some may be
mechanical, i.e., some are associated with phase separa-
tion but some may be ascribable to elastic percolation ef-
fects. Before making such an assignment, we note that at
present elastic percolation models refer only to acoustic
waves and specifically to anomalies in the velocity of
sound.”8

If we suppose that the network is continuous, then vari-
ous kinds of sum rules®®?! may apply to network vibra-
tions of a given wavelength k. These sum rules could pro-
duce in the optic modes “echoes” of thresholds in acoustic
modes. )

The question of LO-TO splittings in glass networks has
been discussed by Sekimoto and Matsubara using a
phenomenological macroscopic theory.??> Their model is
based on dipolar interactions between macroscopic sec-
tions of the glass. Payne and Inkson separate the internal
electric field acting on each tetrahedron (in a tetrahedral
glass such as g-SiO,, g-GeSe,, or g-Sn,Ge;_,Se;) into
two components, one of which is uniform and one of
which is random.?* It seems that according to the present
analysis the uniform field is generally not in phase with
the vibrations of an arbitrary tetrahedron. In the most
favorable case [x =x,=0.2 in (Sn,Ge,_, ), Se; _, glasses],
the strength S, of the in-phase part of E, is proportional
only to -the density of identical tetrahedra. For the LO-
TO splitting of the Sn(Se,,,), tetrahedra, S, is propor-
tional to y only. When x#x., S, is proportional to
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y —yo(x) given by Egs. (1) and (2) when this quantity is
> 0; otherwise S, is zero. This means that only tetra-
hedra within a range (or coherence length)
L « |x —x, | ~1/? vibrate in phase with an effective local
field. The separation made by Payne and Inkson should
depend both on distance and on proximity of the glass
composition to its ideal value. In a continuous-random
network (composition unspecified) a self-consistent effec-
tive local electric field may be undefinable. However, the
emergence of an observable coherence length of the inter-
nal electric field seems a natural consequence of topologi-
cal and percolation models of network glasses.*~’

Many of the band shifts that have been illustrated for
the A, tetrahedral modes are of order 5—10 cm~! com-
pared to bandwidths (full width at half maximum) of or-
der 10—20 cm™~!. At present the origin of the bandwidths

is not well established, but it has been suggested24 that the
bandwidth observed optically is a fraction f of the total
bandwidth, where f=d /D and d is a unit-cell diameter
while D is a molecular cluster diameter. If D is a func-
tion of composition, then shifts in peak positions associat-
ed with bandwidth variations might be observed. Howev-
er, except in the case of pressure-induced phase separation
(Figs. 5 and 6), such shifts are not observed.

On the whole I favor, at present, mechanical stiffening
as an explanation of threshold behavior, unless there is
direct evidence for phase separation. The mechanical stif-
fening could affect explicitly cluster rotation, as discussed

~in the introductory section in connection with Fig. 1.

However, further data are undoubtedly desirable to estab-
lish with confidence the microscopic origin of the thresh-
olds discussed here. In this connection perhaps the most



31 VIBRATIONAL THRESHOLDS NEAR CRITICAL AVERAGE. ..

generally valid remark which can be made is that so far
threshold behavior generally occurs in the composition
range predicted by my original constraint model.*
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