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A Monte Carlo technique is employed to simulate the electron transport in SiO, at high electric
fields (from 1.5 10° to 12X 10° V/cm). Both the polar and the nonpolar electron-phonon scatter-
ing processes are considered. We show that the nonpolar interaction with the acoustic and band-
edge phonons is a mechanism which must be included in order to explain the experimental evidence
of a steady-state electron-transport regime at high average electron energy (~3—4 eV) at these high
fields. The LO phonons alone cannot prevent the electrons from running away at fields above
2% 10° V/cm, while at higher fields the main effect of the nonpolar scattering is that of randomiz-
ing the electron momenta via large-angle scattering, thus stabilizing the electron-energy distribu-
tions. The average energies and the energy relaxation distances obtained from the Monte Carlo
simulation agree very well with the experimental data, particularly when collisional broadening ef-
fects are introduced in the simulation. Internal photoemission of electrons from an aluminum or a
silicon electrode into SiO, is also simulated, and the results agree with the well-known data indicat-
ing an effective relaxation length of about 3 nm for electrons in SiO,. Comparison is also made be-
tween the experimental and theoretical electron-energy distributions at high fields (> 8 X 10° V/cm).
The results indicate that at very high electron energies the band structure of SiO, and quantum
transport effects may reduce the effective scattering rates. While the semiclassical Monte Carlo
solution seems to be reasonably valid for electron energies up to about 4 eV, more sophisticated ap-
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proaches are needed to investigate the high-energy tails of the electron distributions.

I. INTRODUCTION

Silicon dioxide is the most commonly employed insula-
tor in the solid-state industry. Since very-large-scale-
integration (VLSI) technology requires smaller devices
with thinner insulating films, it is of crucial importance
to understand the properties of the amorphous SiO, films
subject to high electric fields. Dramatic device failures,
due to effects, such as, threshold-voltage shifts in field-
"effect transistors or dielectric breakdown, are probably re-
lated to the high flow of energetic electrons in the SiO,
conduction band. Carriers are injected into the insulator
after having gained large amounts of energy in the active
semiconducting regions of the device and may also tunnel
into the SiO, if sufficiently high fields are applied across
the insulating layers. Thus, the understanding of the
mechanisms which lead to the degradation and break-
down of the devices is strictly dependent on the under-
standing of the mechanism of transport and energy loss of
electrons in the SiO,.

Some authors have already reported a series of experi-
ments showing that electrons in the SiO, conduction band
can easily gain more energy than predicted by the theoret-
ical picture developed in the past decade, which is based
only on the polar electron-phonon scattering.!~® Recent-
ly, Fischetti has also shown, by a Monte Carlo simulation,
that the new experimental observations can be understood
if proper account is made also for the nonpolar electron-
acoustic phonon scattering.* The scope of this paper is to
briefly review the problem of the electron transport in
amorphous SiO, at high electric fields (>10° V/cm) in
the light of the new data, and to present in more detail the
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approximations employed and the results of the Monte
Carlo simulation performed in Ref. 4.

This paper is organized as follows: In Sec. II we review
the problem of high-field electron transport in silicon
dioxide. In Sec. III we consider the electron-phonon
scattering rates appropriate to SiO, and in Sec. IV we dis-
cuss the difficulties with the semiclassical approach em-
ployed to solve the transport problem. In Sec. V, the
Monte Carlo technique we have used and its implementa-
tion are discussed. Section VI presents the significant re-
sults of the simulation and, finally, in Sec. VII, we draw a
few conclusions.

II. PROBLEM OF HOT ELECTRONS IN SiO,

A. Electron transport in ionic insulators

The problem of electron transport in ionic insulators,

~such as the alkali halides, has been tackled several times

in the past 50 years.”~® In these materials the strong in-
teraction between the electrons and the polar molecules of
the dielectric has been assumed to be the only significant
mechanism of electron-energy loss, with the exception
only of Refs. 7 and 8. This mechanism is very effective
for electron energies comparable to the energy of the
longitudinal-optical (LO) phonons of the insulator. How-
ever, at sufficiently high electron velocities, the lattice can
no longer follow the motion of the electrons and the rate
at which the electrons lose their energy in polarizing the
lattice decreases as the electron energy increases. There
exists a critical field, F,, above which most of the elec-
trons gain more energy from the electric field than they
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can lose to the lattice polarization waves. In this situa-
tion, usually referred to as “velocity runaway,” the elec-
tron energy increases without limit to the maximum ap-
plied voltage; that is, there is no steady-state solution of
the electron-transport equation. .This is considered to be
the threshold of dielectric breakdown,’~? since the very
energetic electrons can now impact ionize the molecular
bonds via inverse Auger scattering, thus causing an
avalanche multiplication process which would eventually
disrupt the lattice.

B. Standard picture for SiO,

A similar picture was viewed also for silicon dioxide.
Although somewhat less polar than the alkali halides,
SiO, exhibits two LO-phonon modes (of energies 0.063
and 0.153 eV) which are coupled rather strongly to the

~ conduction electrons.” This interaction was believed to be
sufficiently strong to maintain a steady-state transport sit-
uation up to fields of the order of 10’ V/cm (Refs. 9 and
10). In the steady-state regime the average electron ener-
gies were expected to be of the order of the dominant
LO-phonon (<0.15 eV). This implied very short mean
free paths (~0.2 nm) for the electrons at all fields below
the runaway threshold. Above this critical field, the elec-
trons could be slowed down only by high-energy process-
es, such as interband impact ionization, as is the case for
the alkali halides. However, rather than a conventional
avalanche multiplication breakdown, the generation of
electron-hole pairs was suggested to trigger the breakdown
process in a different way.!"!> Due to the low mobility of

holes in amorphous SiO, (Ref. 13), a positive space charge

would result from the steady-state balance between the
generation of holes and their recombination with the in-
jected electrons. In turn, this would produce an enhance-
ment of the field at the injecting electrode. Thus, an even
higher electron current and faster production of impact-
ionized holes would result, and so on in a divergent feed-
back process which, once more, would somehow cause the
destructive breakdown of the dielectric. We shall refer to
this model based on LO-phonon scattering only (and im-
pact ionization as the breakdown-triggering process) as
the “standard model.”

The validity of this picture seemed to be confirmed by
several additional results, both experimental and theoreti-
cal. First, the electron mobility was measured at low
Sields (< 10% V/cm) by Hughes'# and found to be in agree-
ment with the theoretical expectation based on LO-
phonon scattering.’ Second, during high-field ( >7x 10°
V/cm) electron injection via Fowler-Nordheim tunneling
into the SiO,, a buildup of positive charge was observed to
occur in the oxide, as predicted by the standard model."
Finally, theoretical calculations based on LO-phonon
scattering predicted the critical runaway field F,;, to be in
the range of 7X 10° to 107 V/cm (Refs. 9 and 10); that is,
in the range of breakdown fields observed experimentally
in the middle 70’s.

C. Problems with the standard model
The standard model was never unanimously accepted,

since some experimental observations seemed to be in
sharp contrast with it. Some of the experimental observa-
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tions which seemed to be in contrast with the standard
model are as follows.

(1) The electron mean free path predicted by the stan-
dard model at high fields seemed to be too small to explain
the results of internal photoemission experiments per-
formed in metal-oxide-semiconductor (MOS) structures.®
The experimental photoyield at a given field and photon
energy could be explained only by assuming an “effective
scattering length” of about 3 nm in the image-force-
lowered barrier between the injecting electrode and the ox-
ide. More recently, resonant tunneling was observed dur-
ing high-field Fowler-Nordheim injection in thin (~4.5
nm) SiO, (Ref. 17). In order for these resonances to be
observed, the electron wave functions must preserve their
coherence over distances of about 1.5 to 2.5 nm in the
SiO, conduction band at fields of about 9 10° V/cm.
This would not be possible if the electron mean free path
for collisions with the LO phonons at these high fields
were of the order of 0.2 nm.

(2) The electron energies seem to be significantly higher
than the LO-phonon energy at fields lower than the runa-
way threshold. This was deduced from early measure-
ments of the energy of the electrons emitted from the
8i0, into vacuum.'® A significant number of electrons
was collected at fields of about 8 10° V/cm. Since only
electrons with energy higher than the SiO, work function
(0.9 V) can be collected, a significant number of electrons
with energy higher than 0.9 eV are present in SiO, at
these fields. On the contrary, the standard model predicts
that an insignificant number of electrons hotter than 0.15
eV should exist at fields lower than the breakdown field.
The same conclusion could be drawn from the sharp drop
in the electronic capture cross section for positively
charged Coulombic centers in SiO, at fields larger than
1—2%10% V/cm (Ref. 19). This drop could be well ac-
counted for by a significant electron heating much below
the runaway threshold.

(3) The breakdown fields observed at present are much
larger than those predicted by the standard model. We
have remarked above that the breakdown fields observed
10 years ago were of the order of 8 10° to 107 V/cm, as
predicted by the ionization-recombination model. Recent-
ly, these breakdown fields have increased to the range
1.5x107 to 1.8%x 107 V/cm (Ref. 20). Moreover, the
anode fields at breakdown do not seem to depend strongly
on the oxide thickness, at least in the range of 3 to 50 nm
(Ref. 2), contrary to predictions of the standard model.
Therefore, it seems that the maximum field strength the
insulator can survive is still a function of technological
variables, rather than of intrinsic physical processes. As
technology improves, higher and higher breakdown fields
are obtained and the correlation observed in the past be-
tween the field at which velocity runaway occurs, as
predicted by the standard model, and the breakdown field
seems now to be, at best, merely coincidental.

(4) Positive charge is formed at high fields in thin SiO,
even when the total applied voltage is below threshold for
impact ionization.»*' Thus, another mechanism must be
invoked for the generation of this positive charge and its
existence in thicker oxides cannot be claimed to be a man-
ifest proof that impact ionization occurs.
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D. Need for a new scattering mechanism

The most serious difficulty with the standard model
concerns the average electron energies; that is, item (2)
above. In the LO-phonon based picture, the only way
electrons can gain energies higher than 0.15 eV is by run-
ning away. Indeed, according to the standard model, in
the range of energies between the LO-phonon energy and
the lowest possible threshold for interband impact ioniza-
tion (=~ the SiO, band gap =9 eV), there is no other
mechanism for energy loss. The presence of electrons
with energies significantly higher than 0.15 eV at fields
below the velocity runaway threshold cannot be reconciled
with this model.

Recently, some of us have shown that significant elec-
tron heating occurs already at 3 10° V/cm (Refs. 1—3).
Three different experimental techniques have been em-
ployed. Figures 1—3 illustrate schematically the struc-
tures employed and the quantities measured in the three
experiments. The first one, called for brevity ‘“electro-
luminescence,” indirectly allows the determination of the
average energy of the electrons as they exit the SiO, layer
of MOS structures and enter the metal gate.! These elec-
trons lose energy by exciting surface plasmons at the
metal-vacuum interface. In intentionally roughened
structures, the coupling between surface plasmons and
photons is greatly enhanced and a measurable lumines-
cence is observed.??> From the spectrum of the emitted
photons it is possible to derive the average energy of the
electrons entering the gate. The second experimental
technique (“‘carrier separation”) allows the indirect mea-
surement of the energy of the electrons transported at
high fields from the gate to the silicon substrate of p-
channel field-effect transistors as they enter the substrate
and generate electron-hole pairs in the silicon.? Holes and
electrons can be independently counted by measuring the
currents at the source and/or drain and substrate contacts,
respectively. The hotter the electrons, the larger the num-
ber of pairs which are generated. Thus, a measurement of
the ratio between the hole and electron currents allows the
determination of the average energy of the electrons as
they exit the oxide. The last technique employed (‘“vacu-
um emission”) provides direct information about both the
average energy and energy distribution of the electrons in-
jected into the SiO, from the Si substrate as they travel
through the insulator and a thin metal gate and are col-
lected by an analyzing system in a vacuum chamber.’

Each technique has advantages and disadvantages. In
particular, the interpretation of the data obtained from
the photon spectrum in the electroluminescence experi-
ment requires a significant deconvolution and extrapola-
tion. The vacuum emission data may be affected by the
electron scattering in the thin metal gate, which may
modify the details of the electron-energy distributions.
More accurate information is expected from the carrier
separation data. In this case, the connection between the
average electron energy and the number of electron-hole
pairs which are generated in the silicon substrate involves
only a deconvolution of the data with the probabilities for
a multiple-ionization process in silicon as a function of
electron energy. These probabilities have been accurately
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FIG. 1. Schematic band diagram (a) and device structure (b)
illustrating the electroluminescence experiment described in Ref.
1. Electrons are injected from the silicon substrate of metal-
oxide-silicon capacitors into the SiO, layer by using a silicon-
rich injector. This avoids premature dielectric breakdown of the
insulator. A fraction of the injected electrons lose energy in the
metal gate by emitting surface plasmons at the metal-vacuum
interface. The plasmons then decay radiatively and the average
energy of the electrode is deduced from the spectrum of the
emitted photons.

evaluated and compared with the theoretical model of
Alig et al.?

While the details of the picture emerging from these
different experiments could be somewhat affected by the
interpretation of the data, the main conclusion is remark-
ably consistent. The average electron energies, no matter
how measured, are significantly higher than the LO-
phonon energy even at the lowest fields at which the experi-
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FIG. 2. In the carrier separation experiment described in Ref.
2 the electrons are injected from the polysilicon gate of a p-
channel field-effect transistor into the silicon substrate. The
number of electron-hole pairs generated by the hot electrons as
they enter the substrate is obtained by measuring the hole
current at the source and/or drain electrodes and the electron
current at the substrate contact. The average energy of the car-
riers is then evaluated by using the known probability for im-
pact ionization in Si as a function of the electron energy.
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FIG. 3. Band diagram (a) and device structure (b) employed
in the vacuum-emission experiment described in Ref. 3. The in-
jected electrons travel through a thin ( <25-nm) metal gate and
their energy distribution is measured by collecting the carriers
with a counting electrode in a vacuum chamber in the presence
of a variable retarding potential.

ments were performed (~3x10° V/cm). As shown in
Fig. 4, the three techniques indicate that the average elec-
tron energy increases almost linearly with the anode field,
ranging from about 2 eV at 3.5X 10° V/cm to about 4 to 5
eV at 10’ V/cm. No runaway is observed at any field, as
the average electron energies do not depend on the SiO,
thickness in the range 6.6 to 150 nm. Even the energy
distributions seem to be only moderately affected by the
thickness of the insulator in the range 50 to 150 nm. The
distance the electrons must travel in the SiO, conduction
band before reaching a steady-state regime was found to
be of the order of 3 nm, as determined by the dependence
of the average energies on SiO, thickness in very thin ox-
ide layers. (It follows that the electron energies are almost
completely determined by the electric field in the last 3
nm of the insulator they must travel before entering the
anode. Therefore, the anode field has been used in Fig. 4.)
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FIG. 4. The average energies of electrons injected into 50-
nm-thick SiO, layers at different anode fields as obtained from
the three techniques of Figs. 1—3. The energies are measured
from the bottom of the conduction band of Si (carrier separa-
tion) or from the Fermi level of the Al electrode (electrolumines-
cence and vacuum emission). The dashed line indicates the posi-
tion of the bottom of the SiO, conduction band relative to the Al
Fermi level or the bottom of the Si conduction band.

This characteristic distance can also be related to the slope
of the data in Fig. 4. The average electron energy {(w)
can be expressed as a linear function of the applied anode
field with slope:

d{w)
LA/ 1
dFanode ek ’ ( )

where e is the magnitude of the electron charge and A
(~3 nm) is the “energy-relaxation distance” usually em-
ployed in the linearized Boltzmann equation.?*

To complete the picture, it should be noted that the sig-
nificant heating observed at these low fields is actually
consistent with the LO-phonon scattering. Indeed, Fitting
and Frieman have performed a Monte Carlo simulation of
the electron transport in SiO, including the Frohlich
scattering with the two dominant LO phonons.”> Con-
trary to the results of Lynch® and Ferry,'° they found that
velocity runaway should occur already at about 23X 10°
V/cm. We observe that a qualitatively similar conclusion
can be reached from the path-integral approach of
Thornber and Feynman.® As also noted by Lynch, a sim-
ple extrapolation of their results to SiO, would provide a
critical field of 3 10° to 4 10° V/cm, depending on the
choice of the electron effective mass. The following ques-
tion remains: why did the calculation of Refs. 9 and 10
provide results which are in contrast with the Monte Car-
lo simulations of Fitting and Frieman and with the exper-
imental observations? Possibly, Lynch’s calculations are
affected by an overestimation of the energy losses to the
LO phonons. His approach, originally due to Fermi,?¢
correctly describes the energy losses of heavy and fast par-
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ticles whose deflection after a collision can be neglected.
These undeflected charged particles interact with the elec-
trostatic field of the harmonically bound scatters for
longer times, thus losing more energy than light particles,
such as electrons in a solid, which have a nonnegligible
probability of suffering large-angle scattering. Finally,
Ferry seems to obtain solutions of the Boltzmann equa-
tion which at high fields (>7X 10° V/cm) are stable (i.e.,
the electrons do not runaway) for times probably too short
( <1071 sec) to apply to realistic injection experiments.

The recent experimental and theoretical results we have
outlined in this section clearly indicate that the LO-
phonons cannot prevent the electrons from running away at
fields as low as 2 10° V/cm. Another scattering mecha-
nism, previously neglected, must be effective at higher
fields and energies, to control the steady-state electron
transport.

Acoustic phonons have been already invoked by Sparks
et al.® in the context of avalanche breakdown in alkali
halides and they have been shown to be a necessary in-
gredient to understand the high-field electron transport in
these insulators. Ridley?’ has also suggested that in SiO,
the acoustic phonons may become significant scatterers at
high fields and that they may constitute that missing
energy-loss mechanism in the “no-loss” energy range be-
tween the LO-phonon energy and the threshold for inter-
band impact ionization. Finally, Fischetti has recon-
sidered this idea and, following the approximations em-
ployed by Sparks et al. with the appropriate modifica-
tions, has implemented it in a semiclassical Monte Carlo
simulation.* It was concluded that indeed the inclusion of
the electron-acoustic phonon scattering can account for
the recent experimental results outlined above. In the fol-
lowing, we shall consider these calculations in detail.

III. ELECTRON-PHONON INTERACTION
AND THE TRANSPORT PROBLEM

Among the various scattering mechanisms controlling
the transport of electrons in a solid, we have considered
only the electron-phonon interaction. The electron-
electron scattering is negligible because of the very low
concentration of carriers (typically much less than 10"
electrons/cm?) present in the SiO, conduction band dur-
ing a Fowler-Nordheim tunnel injection or a photoinjec-
tion experiment. Scattering from charged impurities or
defects may be significant, in principle. However, on one
hand, it is very difficult to know the exact spatial distri-
bution of these ionized centers in the oxide. On the other
hand, it has been observed experimentally that the average
electron energy is independent of the concentration of
negative charges trapped in the bulk oxide (due to filled
water-related electron traps) or of positively charged sites
at the interface.” Therefore, Coulomb scattering with
charged centers in the SiO, has been neglected. Finally,
high-energy processes, such as, interband impact ioniza-
tion or bulk-plasmon emission, could alter significantly
only the high-energy tail of the electron distribution.
While this tail may be important in controlling the degra-
dation and breakdown characteristics of the oxide, in this
paper we shall restrict our attention to the gross features
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of the electron transport and ignore the high-energy col-
lisions.

Electrons can interact with the lattice via polar scatter-
ing with optical phonons and via nonpolar scattering with
both acoustic and optical phonons. The latter is usually
dominant in covalent solids, the former in ionic crystals.
SiO, has a mixed bonding .character,?® so that both in-
teractions should be considered. As stated above, the in-
clusion of the nonpolar electron-phonon interaction con-
stitutes the main difference between our calculation and
the previous ones. We shall now review the two types of
interaction and consider their scattering rates, as usually
derived in the literature.?’

A. Polar electron-phonon interaction

An electron traveling in a polar insulator will interact
with the optical phonons via the polarization field of the
ions. This interaction is particularly strong in the case of
longitudinal phonons, which are associated with a large
field, while the transverse-optical phonons are usually ig-
nored. The Hamiltonian describing this Coulombic in-
teraction has been given by Fréhlich in the form:>%°

ieG
iy = 3 5% cliqtulbg—bT ), 2)
k,q

where k and q are the electron and phonon wave vectors,
respectively, ¢y and b, are the electron and phonon opera-
tors, and the coupling constant G is given by

#iwoy o
4

l p—

G2= _,1_
€, €.

, (3)

where €, and €_ are the permittivity at frequencies larger
and smaller than the optical-phonon frequency wig.
Since the LO-phonon spectrum mostly presents narrow
bands, the dispersion of ;g is usually ignored.

The magnitude of the phonon momentum g appearing
in the denominator of Eq. (2) expresses the Coulombic na-
ture of the interaction. The physical implications relevant
to the problem of the electron transport are twofold.
First, small momentum-transfer interactions are largely
favored in the polar electron-phonon scattering. Thus, the
electrons will be largely deflected in the forward direction;
that is, in the direction of the field. Second, as the elec-
tron energy increases, the effect of the widening of the
volume in phase space available to the final states is small,
since collisions with short-wavelength phonons are less
probable, so that the scattering probability decreases as
the electron-energy increases. This typically Coulombic
effect is one of the major characteristics of the polar
electron-phonon interaction and constitutes the basis of
the standard model outlined in Sec. II.

The first-order scattering rate I/T;,%};r at finite tempera-
ture for emission or absorption of one phonon can be ob-
tained from Eq. (2) by the Fermi rule and by using the
effective-mass approximation with parabolic and spherical
bands:
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where m* is the electron effective mass, # is the Planck’s
constant divided by 27, and nyo is the thermally-
averaged occupation number of the optical phonons. The
upper (lower) sign refers to phonon emission (absorption)
and the maximum and minimum momentum transfer al-
lowed by energy-momentum conservation are

*311/2
9max = (zmﬁ) [w1/2+(w:Fha)LO)l/2] ’
*11/2
qmin=i‘(2—mﬁ)—[wl/2—(w$ﬁww)l/2] )

where w is the electron energy. Integrating Eq. (4), the
scattering rate for emission or absorption of one LO pho-
non by an electron with energy w is

1
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B. Nonpolar electron-phonon interaction

Electrons can interact with both acoustic and optical
phonons via nonpolar processes in which the electron
Bloch waves are perturbed by the displacement of the ions
from their equilibrium position. In general, the Hamil-
tonian describing this kind of interaction can be put in the
form:*
lﬁl/qu

Hnonpolar: 2 1/2 C]t+qck(aq“a iq) , (6)

kq (2p04)
p being the density of the lattice, aq is the acoustic- or
optical-phonon operator, wgq is the phonon frequency and
S is a coupling constant.

In the case of scattering with acoustic phonons, the
strength of the interaction is usually taken to be propor-
tional to the relative displacement of the ions from one
unit cell to another, and thus proportional to the magni-
tude of the phonon wave vector g. Indeed, in the limit of
a long-wavelength deformation of the lattice, this can be
viewed as being uniformly translated over a large region.
Therefore, the Bloch waves will be minimally perturbed
and the interaction will vanish in the limit g—0. On the
contrary, short-wavelength phonons represent large distor-
sions of the ionic potential from the equilibrium situation
as we move from one cell to another, and the traveling
electrons will feel a strong perturbation. In the limit
g—0, Bardeen and Shockley have written the coupling
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constant Sg as>
Sq=Ciq ¥

in the simple case of spherical bands. The factor C, is
the “deformation potential” and it expresses the variation
of the electron energy at the bottom of the conduction
band as the linear dimensions of a unit cell are modified
by a unit length. In the opposite limit (high phonon
momentum), the coupling constant S, can be expressed in
terms of the differential scattermg cross section o related
to the form factor of the lattice:*°
77‘ﬁ4 N2 2

|Sqi2:7q—aq’ ' (8)
where N is the atomic density.

In both limits (¢g—0 and g-—¢gpz, the wave vector at
the Brillouin-zone edge), the coupling constant .S, is pro-
portional to the phonon momentum. Thus, the nonpolar
interaction with the acoustic phonons exhibits a behavior
opposite to the one exhibited by the polar interaction:
large-angle scattering is favored with respect to forward
scattering—particularly when umklapp processes begin to
play a role—and the scattering rate increases with electron
energy. Thus, one might expect than this interaction will
become dominant at high energies, as was suggested by
Ridley.?’

The nonpolar scattering with optical phonons has been
taken by Harrison to be proportional to the absolute ion
displacement.>! The energy factor S is then the defor-
mation potential, independent of q. Therefore, the nonpo-
lar electron-optical-phonon scattering increases with ener-
gy at a slower rate.

For spherical, parabolic bands, Sparks et al.® have
given the expressions for the nonpolar scattering rates in
the two limits of low electron energy (w <<wgy, the elec-
tron energy at the edge of the first Brillouin zone), when
umklapp processes cannot occur, and in the opposite limit
of high electron energies (w >>wgz/2), when umklapp
processes are significant. In the first limit, the rate for
emission (for w larger than the cutoff energy w, =2m*c2,
¢ being the sound velocity) or absorption of a transverse
(TA) or longitudinal acoustic (LA) phonon can be written
as

1 m*C3
- dmptic k

(£)

qmax 2 1 1
[ ™ dg gt ng++13), ©)
Tnonpolar(w) 0

where ng is the thermally averaged acoustic-phonon occu-
pation number. The phonon dispersion relation has been
approximated by wq~7ic;q. The maximum phonon wave
vector which can be emitted or absorbed is
Gmax =2k F2m*c, /#.

Since Eq. (9) is only valid for small electron energies,
we can employ a high-temperature expansion of the Bose
factor nq and obtain the usual “deformation-potential”
exprggsion for the scattering rate for emission and absorp-
tion:

1 3m*3/2c2k T
21/2

s w'?, , (10)

4
Tnonpolar( w) TPCs ﬁ

the factor 3 accounting for the three branches (LA and

TA) of the acoustic-phonon spectrum which we consider
equivalent.

In the limit of high electron energy, following Sparks
et al.,® we shall assume that an equivalent scattering rate
with the band-edge photons can be obtained by substitut-
ing in Eq. (9) the lattice density with M /ao, ag being
the lattice constant and M , the mass of the heaviest con-
stituent of the unit cell. Furthermore, the phonon disper-
sion relation for the transverse and longitudinal modes at
the edge of the first Brillouin zone will be approximated
by @eqge ~ficsqpz. Thus, summing over the transverse and
longitudinal modes and using Eq. (8), one has

3/2
1 87 H N0 1,1
S (ngg, +2%7),
m (0]
> Wedge

(%)
7-nonpolar( w ) Wz

(11

having neglected the dependence of ¢ on q.

Sparks et al. have already shown that the high-energy
umklapp processes included in Eq. (11) play a key role in
understanding the high-field properties of ionic insulators.
The strong energy dependence of the nonpolar electron-
phonon interaction is a key issue also in SiO,, as will be
shown.

C. Electron-phonon scattering rates in SiO,

The scattering rates given by Egs. (10) and (11) are ob-
tained in the effective-mass approximation, using parabol-
ic and spherical bands. From pseudopotential calcula-
tions of the band structure of a quartz,> this approxima-
tion should be satisfactory for electrons with energy below
1 eV, assuming an effective mass of 0.5mg.. At higher
electron energies, we have to face several problems. Some
of them originate from the questionable validity of the
semiclassical solution of the transport problem at high
scattering rates, as we discuss in the next section. More
problems arise from our poor knowledge of the band
structure and density of states for SiO,. Finally, the
amorphous structure of thermally grown SiO, poses ques-
tions of fundamental nature, such as the definition of um-
klapp processes, unit cells, or even phonon modes and
electron momenta. We ignore this last class of problems,
on the heuristic grounds that actually a quartz and
thermally grown silicon dioxide exhibit striking similari-
ties in optical and mechanical properties. Thus, a quartz
can be employed as a prototype to perform the simula-
tions.

The inadequacy of the available experimental and
theoretical data about the detailed structure of the SiO,
conduction band(s) is a serious issue. From the calcula-
tion of Ref. 32 relative to a quartz, we may expect that at
electron energies approaching the edge of the first Bril-
louin zone (=5 eV), the density of states may go through
a minimum, as the first conduction band terminates. This
will probably yield smaller scattering rates than those cal-
culated above. Again, we assume parabolic bands at all
electron energies with m*~mg.. and ignore the possibili-
ty of intervalley scattering at high energy. Thus, the non-
polar electron-phonon interaction—which controls the
electron-energy losses at these high energies—is probably



31 THEORY OF HIGH-FIELD ELECTRON TRANSPORT IN SILICON DIOXIDE 8131

overestimated. Consistently, we calculate the electron en-
ergy at the Brillouin-zone edge, wgy, by considering a
spherical Brillouin zone with volume equal to the volume
of the zone in a quartz,>* obtaining wgz~5.5 eV. This is
consistent with the band structure calculated by Cheli-
kowsky and Schliiter.>?

Neither the SiO, deformation potential, C,;, nor its
form factor, S, are known. Therefore, the form factor
has been estimated from Eq. (8) by assuming that the
cross section o is dominated by the larger oxygen ions.
Their integrated cross section, 3.5X 10~ ¢cm? (from the
discussion of Ref. 8), has been rescaled by the average,
dynamic effective mass of oxygen in SiO, (~1.1le, as
given by Pantelides and Harrison®*), to account for the co-
valence of the Si—O bond in SiO,. Thus, from Eq. (10),
| Sq|/g=~3.5 eV. At low electron energy, the deforma-
tion potential should be used to evaluate S,. However,
since the polar interaction controls the transport at low
energies, the same coupling constant can be used for the
nonpolar scattering at all energies without significant er-
rors. The difference between longitudinal- and
transverse-acoustic and band-edge modes has been ignored
and an equivalent sound velocity has been obtained by ap-
propriate averaging the longitudinal (c¢;) and transverse
(cr) sound velocities: 3/c¢;~2/cr+1/c; (Ref. 35).

Finally, the low- and high-energy expressions given by
Egs. (10) and (11), respectively, have been algebraically in-
terpolated between wpz/2 and wgy. Different interpola-
tions have been employed (either requiring simply the
continuity of the scattering rates or also the continuity of
higher-order derivatives) without obtaining appreciable
differences in the final results.

Figure 5 shows the scattering rates obtained from the
approximations discussed. Both LO-phonon modes are
included to evaluate the polar scattering rate. The cou-
pling constants for these interactions have been taken
from Lynch® (€p/€, —€9/€ .~0.063 and 0.143 for the
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FIG. 5. Polar, nonpolar, and total electron-phonon scattering
rates in SiO, at 298 K when collisional-broadening effects are
not taken into account. Both emission and absorption processes
are included.

low- and high-energy polar modes, respectively, €, being
the vacuum permittivity). The nonpolar scattering is with
LA and TA phonons at low energy and with the band-
edge phonons at high energy. The low-energy nonpolar
interaction between electrons and optical phonons is
neglected, since it is not expected to contribute appreci-
ably when a reasonable choice ( ~10® eV/cm) is made for
the deformation potential.

IV. TRANSPORT PROBLEM

It is evident from Fig. 4 that very high scattering rates
must be expected for the electron energies observed exper-
imentally. Under these conditions, the semiclassical ap-
proach to the transport problem (the Boltzmann equation
or the equivalent Monte Carlo technique) may suffer from
serious difficulties. We now briefly review these problems
and describe later, in Sec. IVB, how one of these non-
linear effects, the “collision broadening,” has been imple-
mented in our Monte Carlo simulation.

A. Limits of the semiclassical approach

The semiclassical description of electron transport relies
on two basic assumptions: the validity of the perturbation
theory and of the adiabatic approximation.>® For pertur-
bation theory to apply, the unperturbed electron must be
described by an eigenstate sufficiently stable to survive at
least one de Broglie wavelength Ay progie before scattering
when the perturbing Hamiltonian is turned on; that is

IZ)"de Broglie = 1/k , (12)

where k is the magnitude of the electron wave vector and
I its mean free path.

The adiabatic approximation requires that the electron-
ic wave functions respond instantaneously to the motion
of the ions in the crystal. If the phonon wavelength is
larger than the electron mean free path, the charge redis-
tribution following a lattice distortion cannot occur and
the adiabatic approximation fails. In other words, two
successive collisions must be separated by a time interval
sufficiently long so that the two processes may be regard-
ed as independent. Otherwise, the interference between
the emitted or absorbed phonons may change the strength
of the interaction. This condition can be expressed as

I>1/q, (13)

where ¢ is the magnitude of the phonon wave vector. In
general, if these conditions are not satisfied, a correct
solution of the transport problem can only be obtained by
solving the lattice degrees of freedom exactly (i.e., nonper-
turbatively), as done by Thornber and Feynman for the al-
kali halides.® Unfortunately, their path-integral approach
is quite unmanageable in our situation, since more than
one lattice mode has to be solved. Thus, in our approach
no attempts have been made to solve these difficulties
which can arise at high electron energies. A more com-
plete discussion of these issues, given by Peierls®” and Lan-
dau,’® suggests that actually the limits set by Egs. (12) and
(13) may be too strict and that we could push perturbation
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theory, to some extent, beyond those limits. More recent-
ly, Capasso et al.** have pointed out that one should at
least account for the fact that when the condition given by
Eq. (12) is not met, the eigenstate describing an electron of
momentum 7k should be given a broadening Aw ~#/7, T
being the average time between collisions. This accounts
for the short lifetime of the states employed in the pertur-
bative expansion and has been implemented in our simula-
tion, as discussed below. However, it should not be
viewed as the final solution of these problems.

Another assumption usually made in solving transport
problems is to ignore the finite duration of the collision
processes. However, at high electric fields the electron en-
ergy may change significantly during the collision process
as it moves in the high external field. As a result, the
scattering rates would be significantly altered. Barker®
has considered the effects of the intracollisional field on
the scattering rate and has given a criterion for the validi-
ty of the standard perturbation theory in the form

e#F-
w > LTEATe | (14)

2m* ’
where F is the electric field, 7, is the duration of the col-
lision (=~ the inverse of the phonon frequency), and Aw is
the electron-energy broadening mentioned above. Again,
this criterion is violated at high energies and for the um-
klapp processes considered here. Attempts to solve this
problem have been made in the past, but it would be a for-
midable task to implement them in the present context.
Finally, the nonpolar electron-phonon scattering rate must
eventually drop at electron velocities too high for even the
acoustic mode to respond and absorb energy from the
traveling carrier.! We lack any estimate about the criti-
cal energy at which this could happen and will proceed
using Eq. (11) at all energies above wgz.

In conclusion, the experimental data as well as the re-
sults of our semiclassical Monte Carlo approach show
that, at the fields of interest, most of the electrons in SiO,
have relatively low energies, so that the scattering rates
are sufficiently moderate to give us some confidence about
the validity of the semiclassical picture, particularly if
proper account is taken for the collision-broadening ef-
fects. However, care must be taken when considering the
high-energy tails of the electron-energy distributions,
since these nonlinear effects become important in this
range of energies.

B. Collision broadening

When the average time 7 between two successive col-
lisions with the lattice becomes too short, one must assign
the electrons a finite linewidth, Aw. From the Heisenberg
uncertainty principle, this width is of the order of #/7 and
it changes the scattering rate itself, since the electrons can
now scatter to a broadened distribution of final states.

The necessity of including this effect into semiclassical
Monte Carlo simulations has been discussed by Capasso
et al.®® Chang et al.*? have calculated the effect of the
collisional broadening on the electron-phonon scattering
rate by relating it to the imaginary part of the electron
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self-energy via the optical theorem. An easy way to see
how this arises* is to consider an electron in the unper-
turbed state (i.e., eigenstate of the free Hamiltonian) |k)
at time ¢ and ask what is the probability that the electron
will still be in the same state after a time interval At when
the electron-phonon interaction (i.e., the perturbing Ham-
iltonian) is turned on. In the interaction representation of
time-dependent perturbation theory, the amplitude for the
electron to remain in the same state is

(k,t +Azt | k,t)=exp éAkat , (15)

where Awy is the (complex) energy shift of the state | k),
due to interaction Hamiltonian H;,, that is, the electron
self-energy. At the lowest order in the perturbative ex-
pansion, Aw, is given by

| (kx| Hine | K',%;) |2
Wk — Wy’ iha)q+Awk

Awe= 3,

okt

) (16)

where H,, is the interaction Hamiltonian at the initial
time ¢. The sum is performed over the intermediate elec-
tron and phonon states of momentum k',q and energy
wy,fiwg, respectively, as illustrated in Fig. 6, and over
emission ( —) and absorption ( + ) of one phonon. The la-
bels x;  represent the proper phonon states in the matrix
elements relative to the emission and absorption processes.

The real part of the self-energy represents the energy
shift of the state | k) due to the electron-phonon interac-
tion, while the imaginary part of Aw, expresses the finite
electron linewidth. This is related to the lifetime of the
state | k) since, from Eq. (15), the probability that the
electron will remain unscattered in the same state after a
time At is

[ (k,t+At |k,t)|>=exp

_ —;—Im(Awk)Atl . an

The quantity 2Im(Aw,)/% is the lifetime of the electron
state, that is, the scattering rate:

1 2Im(Aw,)
(k) # ’

(18)

From Egs. (16) and (18), we finally obtain an equation
for the scattering rate:

4
/
]
1
1

k K k
FIG. 6. Diagram illustrating the one phonon emission and/or

absorption processes contributing to the self-energy of the elec-
trons.
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where I'(k)=Im(Aw,)=%/27(k). Equation (19) can now
be solved to obtain the scattering rate 1/7. It can be no-
ticed that Eq. (19) can be obtained by the Fermi golden
rule simply replacing the energy-conserving & function
with a Lorentzian of half-width T".

In high-energy region (w >wgz), where collisional-
broadening effects are expected to be significant, we can
consider only the broadening due to the nonpolar interac-
tion with the band-edge phonons. By using Eq. (19), the
scattering rate given by Eq. (11) is replaced by the solu-
tion of the equation

1 34272 32
_ SZrthr w (2anz+1)
TnonpolarlW) — m*M > Wedge | WBZ
2 r
—arct —_ | ——T , 20
X ﬂ_arc an T v (w) (20)

where account is made for the broadening of both initial
and final states by defining I =7/7npotar(w), and

1 t4%2t +1)
I = dt .
(w) f—l 12t + 124 (T /4w)?

Equation (20) has been obtained by assuming that
w >>fiwg and T >>%iwg, by neglecting the real part of the
energy shift Aw,, and limiting the sum in Eq. (19) to
q<k. ' '

The integral I (w) has been evaluated analytically using
the symbolic language Scratchpad* and Eq. (20) has been
solved numerically to obtain the scattering rate 1/7(w).
Figure 7 shows the result. The low energy (w <wgz/2)
and the broadened high-energy scattering rates have been
interpolated with a cubic function in this example. The
effect of the collision broadening is that of slightly in-
creasing the scattering rate at high energies, as can be seen
comparing Fig. 5 to Fig. 7.
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FIG. 7. Electron-phonon scattering rates in SiO, at 298 K
with the inclusion of collision-broadening effects.

[wy —wy +Re(Awy ) +iw P+ [T(K) ]

(19)

——
V. MONTE CARLO TECHNIQUE

We have employed a conventional Monte Carlo tech-
nique to solve the electron-transport problem in SiO,. Ex-
cellent reviews of this technique have been given by
Price®® and Jacoboni and Reggiani.*® Here, we briefly
summarize the basic issues and their implementation in
our work.

A. Technique

1. Duration of the electron free flight

When simulating the electron transport in a uniform
electric field, the position and momentum of the electrons
during the free flights between collisions have been deter-
mined by solving directly the classical equations of
motion. If nonuniform fields were considered, as in the
simulation of internal photoemission, a second-order
Runge-Kutta algorithm was used.

In order to determine stochastically the time ¢ during
which the electron will move free in the solid, we must

" consider the probability p (¢)dt that an electron will suffer

a collision during a time interval dt after having traveled
freely for a time ¢ and having undergone the previous col-
lision at time t=0. Knowing the total scattering rate
1/7(k) as a function of the electron wave vector (or of its
energy, as in the case of spherical bands), this can be writ-
ten as

dt
7(k(2))

td’ 1
= Lo

p(tdt = exp . (21)

The evaluation of the integral in the exponent can be very
time consuming. Therefore, we have employed a standard
technique, called a “self-scattering” algorithm.*’ It con-
sists in defining a “fake” total scattering rate 1/7y which
constitutes an upper bound to the real total scattering rate
in the region of energy of interest. Then, Eq. (21) be-
comes trivially

p(t)dt:—Lexp(—t/To) , (22)
To

and the time of free flight ¢ until the next collision can be
obtained from a random number &, in the interval [0,1] as
t =—7pln(&;). One must take into consideration that
some computer time must be wasted to decide whether the
electron has undergone a real or a fake collision. A
second random number &, is generated. If &, > 7o/7(w),
then a self-scattering event has taken place and the final
electron state is taken equal to the initial state. Otherwise,
the collision process is considered.

2. Determination of the collision process

The same random number &, is employed to determine
the type of interaction the electron suffers by comparing
it with the partial scattering rates:
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a;=1/m(w),

112:‘1/7'1(1.0)“'1/7'2(“)) ’

ap=a, _+1/1,(w),

where 1/7, 1/7,, etc., are the various types of collisions.
If a; <&,/T9<a; 1, then the ith collision process has tak-
en place.
quantity 1/7y can be considered to be a function of the
electron energy, so that the probability of having a fake
collision is always very small. This ‘“fast self-scattering”
algorithm can be implemented by calculating the scatter-
ing rates at several electron energies separately from the
main program and storing them in a separate file. For a
given electron energy, the scattering rate is read from this
file with a suitable interpolation and the constant 7 is es-
timated so that it is always larger than the total scattering
rate. A check must be made that during the free flight
the electron energy does not increase so much that the to-
tal scattering rate exceeds 1/7y. If this occurs, the con-
stant 7, is decreased and the free flight repeated. The
reduction in computer time this procedure provides is par-
ticularly large when the collision-broadening effects are
included, since the calculation of the scattering rates
themselves requires a significant computing time.

3. Determination of the final state after scattering

The final state of the scattered electron is determined
by the polar and azimuthal scattering angles, 6 and ¢, and
by its new energy. The algorithm employed to choose
them stochastically is originally due to Metropolis and
Ulam.*®* If x is a random variable having probability
p(x)dx of taking a value between x and x +dx, then a
random choice of x preserving its probability distribution
is obtained by choosing a random number £ with uniform
distribution in the closed interval [0,1], and solving the
equation

" dx'p(x!)
P(x):———————f’;m‘" TP
f Taxdx'p(x')

*min

(23)

If the probability P(x) is not an easily invertible func-
tion, the rejection technique®® can be employed to save
computing time. A number M is selected, such that
M >p(x) in the interval [ X ;n,Xmax]- Then, after select-
ing two random numbers & and 7 in [0,1].
X =p[Xmin+EXmax —Xmin)] and Y =nM are compared.
If X>7Y, then the value x'=x;;+E&Xmax —Xmin) i
chosen. Otherwise, a new pair of numbers & and 7 are
selected and the procedure repeated. Obviously, the
values x' chosen in this way will be distributed between
X min and x .., with probability p.

Therefore, after having selected the type of collision,
the magnitude of the wave vector g of the absorbed or
emitted phonon is chosen with either technique. Typical-
ly, since the probability distributions of the phonon wave
vectors, as given by the integrands of Eqgs. (4) and (9), are
easily integrated and inverted, the direct technique is em-
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To further reduce the computing time, the

ployed. After having determined g, the polar scattering
angle 6 is easily calculated from energy and momentum
conservation.

The polar scattering angle 6 is simply chosen randomly
from a random number &3 in [0,1]:

cosf@=1-2&;, (24)

in the occurrence of umklapp processes, as some momen-
tum is also transferred to the lattice in the Bragg reflec-
tion accompanying these processes. The azimuthal angle
¢ is also chosen randomly between O and 2.

Finally, the energy of the emitted or absorbed phonon is
known either because the dispersion is ignored (LO and
band-edge phonons) or from the value of g previously
determined. Thus, the energy of the scattered electron
can be selected. Its new velocity and direction are finally
obtained from the energy-momentum dispersion relation
(parabolic in our approximation) and from simple tri-
gonometric relations.

4. Collision broadening

If collision broadening is introduced, then the final en-
ergy of the electrons is chosen via the rejection technique
with a Lorentzian probability centered around the classi-
cal value and with half-width T, as discussed previously.
The same procedure should be followed to select the pho-
non wave vector ¢, and thus 6. In practice, since the
broadening effects are significant in the high-energy re-
gion (i.e., the region in which most of the collisions in-
volve umklapp processes), the broadening of the final an-
gles is ignored, and 0 is selected randomly, as in Eq. (24).

B. Determination of the physical quantities

The Monte Carlo technique allows the determination of
quantities of physical interest such as electron-energy dis-
tributions, average energies, and drift velocities. In a
steady-state situation, these can be determined by follow-
ing a single electron traveling in the solid, sampling
periodically its position, time of flight and momentum,
and averaging them.

In our case, the existence of a steady-state transport was
not a priori obvious, particularly in the light of the results
of Fitting and Frieman. Therefore, the histories of a sta-
tistically high number of independent electrons were
simulated over a prefixed distance (the oxide thickness).
Even when the existence of a steady-state regime is assert-
ed, this allows also the simulation of transient situations,
as those occurring over distances too short to attain steady
state, or in internal photoemission, when nonuniform
external fields are present. The possibility of solving with
minor efforts the transport equation even in a transient re-
gime is actually one of the main advantages of the Monte
Carlo technique.

The energy-distribution histograms and average ener-
gies were obtained by simply recording the energies at the
end of the travel. The ergodic theorem guarantees that
this is the correct procedure at steady state. Drift veloci-
ties were obtained by selecting a fixed travel distance, suf-
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ficiently far from the starting position so to guarantee the
achievement of a steady-state regime. For every free path
around this position, its length and duration were record-
ed and the drift velocity obtained directly from the ratio
of the average path length over the average path duration.
An alternative estimator®® of the drift velocities was also
obtained by recording the change of electron energy dur-
ing each path, Aw, and the change of the component of
the electron momentum along the field F, #iAkp. The
average drift velocity (vp) was then obtained from a sum
of these quantities over all paths around the chosen posi-
tion:

S Aw
paths
=—. 2
{vp) S #iAky (25)

paths

The Monte Carlo program has been written in
FORTRAN77 and run on an IBM, model No. 3081 com-
puter. Electron-energy distributions and average energies
were obtained by following the histories of 500 to 2000
electrons over a typical distance of 50 nm. Larger dis-
tances were occasionally tried to check the stability of the
distributions. Shorter distances were employed to deter-
mine the minimum length that the electrons must travel
to reach a steady-state condition. The initial electron
states were selected by choosing zero forward angle and
zero energy, as in a Fowler-Nordheim tunnel-injection ex-
periment. Occasionally, nonzero initial energies and ran-
domly selected forward angles were employed to deter-
mine the “cooling” or “heating” distance as a function of
the initial electron energy and field. Typically, the com-
puter time required to obtain a 500-electrons histogram
was about 10 min of CPU (central processing unit) time at
low fields (~4 X 10 V/cm), increasing to 20 min or more
at the high fields at which more frequent scattering at

larger angles occurs (> 8 10° V/cm).

VI. RESULTS OF THE SIMULATION

A. Steady-state transport in uniform field

Figure 8 shows the energy distributions obtained with
and without the inclusion of the collisional broadening for
electrons traveling in a uniform field. The travel length
was 50 nm for both the Monte Carlo simulation and the
experimental data shown for comparison.

The average electron energy which is deduced from
these distributions is plotted in Fig. 9 as a function of the
electric field. We have also reproduced the experimental
data obtained from the three experimental techniques
described in Sec. IID. Figure 10 illustrates the fact that,
depending on the applied field, a relatively short distance
is needed to attain a steady-state situation. Electrons
starting with zero energy will, on the average, gain signifi-
cant energy in the first few nm. At high (>6x10°
V/cm) and low fields ( <2X% 10° V/cm), the average elec-
tron energy corresponds to high scattering rates, as can be
seen from Fig. 5 or Fig. 7. Therefore, a short “heat-up”
distance (=~1 to 4 nm) is sufficient to achieve a steady-
state distribution. In the range of medium fields, the
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FIG. 8. Electron-energy distributions at three different values
of the anode field as obtained from vacuum-emission experi-
ments described in Ref. 3 and from the Monte Carlo simulations
with and without collision-broadening effects.

average energy corresponds to a minimum of the scatter-
ing rates, the LO phonons having already lost their effi-
ciency, but the acoustic phonons still providing a relative-
ly weak interaction. Thus, longer field-thermalization dis-
tances, approaching 10 nm, are obtained. After the elec-
trons have traveled 1 to 10 nm, the average energy relative
to the uniform field in the oxide is obtained and transport
occurs in a steady-state regime. Simulations performed
for travel distances as long as 150 nm have shown that the
average energies do not vary, while only a slight increase
in the high-energy tail of the distribution is observed as
the distance increases. The “cool-down” distance (that is,
the distance electrons injected with high energy have to
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FIG. 9. Average electron-energy obtained from the Monte
Carlo simulations (with and without collision-broadening ef-
fects) as a function of the anode fields. Comparison is made
with the data of Fig. 4 replotted by measuring the energy from
the bottom of the SiO, conduction band. The Monte Carlo data
are obtained by simulating the transport of 2000 electrons across
50 nm of SiO,. The statistical error is less than +0.05 eV at the
higher fields. An effective mass m™ =my,, has been employed
at all energies. Simulations performed employing an energy-
dependent effective mass (m*=0.5my, at low energy,
m™* =my,. at high energies, as described in Ref. 8) have provid-
ed similar results for fields larger than 2 10 V/cm, the aver-
age energy being slightly higher at the lower fields.

travel to reach the steady-state regime) is illustrated in
Fig. 11. Again, this distance is a function of both the ini-
tial electron energy and the electric field.

These field-thermalization characteristic distances are
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FIG. 10. Simulated average energy of electrons injected with
zero initial energy into SiO, as a function of distance inside the
oxide at three values of the electric field (no collision broaden-
ing). The energy-relaxation distance A has been obtained by fit-
ting the data to the expression (w(x))=(w(e))[l
—exp(—x/A)], where x is the distance inside the SiO, and
(w(o)) the average energy of the electrons in the steady-state
regime in the applied field.
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FIG. 11. Simulated average energy of electrons injected with
0 and 5 eV initial energy as a function of the distance inside the
SiO, (no collision broadening). The energy-relaxation distance A
has been obtained by fitting the data to the expression
(w(x))=(w(w)) +(w;—{(w(ew)))exp(—x/A), where w; is
the initial electron energy.

strictly related to the so-called “energy-relaxation length”
usually employed to linearize the Boltzmann equation.24
The “energy-relaxation time” 7, is usually defined as

[ {w) —<(wo) |

Tw= < vp )eF » (26)

where {w,) is the average initial electron energy (the
thermal equilibrium or the injection energy) and (w) is
the average energy at steady state in presence of the field.
The energy-relaxation distance is then

[ {w)—{wy) |
eF ’

The results providing rather short relaxation distances
imply that in the case of electric fields distorted by oxide
charging (such as, electron trapping), the electron-energy
distributions will be completely determined by the value
of the electric fields close to the positive electrode; that is,
the anode field. Therefore, comparison between theoreti-
cal and experimental results should be done at the same
value of the anode field. This has been done in Figs. 8
and 9. ‘

The energy-relaxation distance can also be related to the
characteristic slope of the curve (w) versus F in the
range of electric field for which the average energy in-
creases linearly with the field,”® as indicated by Eq. (1).
The constant A is found to be approximately 3.5 nm when
no account is made for the collisional-broadening effects,
and 2 nm if the broadening is included in the simulation.
These values agree well with the experimental values ob-
tained by the different techniques previously discussed.

The satisfactory agreement between the experimental
data and the results of the Monte Carlo simulation, which

A= (vp )7y = @7

‘has been reported previously, is significantly improved by

the inclusion of the collisional broadening. We should be
cautious in concluding that this broadening solves the
problems of the semiclassical picture. After all, the non-
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polar scattering rate is calculated by estimating rather
crudely the coupling constant Sg/gq. Even in well-known
semiconductors, such as Si and GaAs, these coupling con-
stants are treated as adjustable parameters and determined
by fitting the theory to the experimental data.’! A similar
procedure could have been employed in this work. There-
fore, the only conclusion we can draw is that the collision
broadening seems to provide a better agreement between
experiment and theory with our particular choice for the
coupling constant of the nonpolar electron-phonon in-
teraction. But other choices of this constant may provide
opposite results. An independent determination of the
form factor of SiO,, either experimental or theoretical, is
needed before stronger conclusions could be drawn.

The main conclusion of the simulation can be cast in
the following form. The LO phonons are able to maintain
a stable electron-energy distribution as long as the field is
lower than the critical value F,,~1.5%10% V/cm. The
strong polar interaction and the large energy losses with
the 0.15-eV phonons keep the electrons almost thermal.
This confirms the validity of the standard LO-
phonon—based picture at these low fields. However,
above Fy, the LO phonons are unable to prevent the velo-
city runaway. This can be seen from the sharp increase of
the average energy at about 1Xx10° to 1.5%10°® V/cm in
Fig. 9. Indeed, without the inclusion of the nonpolar
scattering, a steady-state situation cannot be obtained. At
fields higher than Fj,, the nonpolar scattering dominates
the transport. Its main effect is that of randomizing the
electron momenta via the large-angle scattering, particu-
larly in the umklapp processes.’? This is evident from
Fig. 12, where a comparison is made between the low-field
trajectories (dominated by forward scattering with LO
phonons) and the high-field trajectories (affected by the
many Bragg reflections and large-angle scattering in-
volved in nonpolar collisions). Thus, the actual electron
paths get longer as the field increases. Although the ener-
gy absorbed by the acoustic phonons is practically negligi-
ble, the longer paths produce an enhanced probability of
energy losses to the LO phonons and the electron distribu-
tions remain stable at all the fields at which the simula-
tion was performed (< 1.6 107 V/cm). The problems
which affect our semiclassical approach at high electron
energies should not change the basic features of this pic-
ture. Indeed, the mean free path of an average electron
ranges from about 1.5 nm at 3 eV (4 10° V/cm) to about
0.8 nm at 4 eV (12 10° V/cm); that is, it is sufficiently
long to satisfy the requirements set by Eqs. (12) and (13).
However, a comparison between the theoretical and exper-
imental electron-energy distribution shown in Fig. 8 indi-
cates that at high energies the scattering rate may be
lower than predicted by Egs. (11) or (20). In particular,
the strong high-energy tails observed in vacuum-emission
experiments may originate from the low density of states
at the edge of the first Brillouin zone, as confirmed by
inverse-photoemission data,* and from the nonparabolici-
ty of the SiO, conduction band at these high energies.®
Stronger conclusions cannot be drawn, as we should re-
gard the vacuum-emission data as also affected by some
uncertainty, since it is not easy to estimate to what extent
the experimental distributions are distorted by the thin
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FIG. 12. Trajectories of four electrons in real space at two
values of the electric field. The low-field trajectories show that
the transport is dominated by the forward polar scattering,
while at 8 10° V/cm the nonpolar scattering at large angles
randomizes the direction of motion.
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and high fields the electrons attain a lower energy since they
suffer a larger number of collisions with the more numerous
acoustic and band-edge phonons.

metal gate.’

The effect of the lattice temperature on the average
electron energies has been simulated by considering only
the emission processes by setting npo=0 in Eq. (5) and
nq=0 in Egs. (9) and (11), thus simulating transport at 0
K. The average electron energies at 0 and 298 K are
shown in Fig. 13. As expected, no appreciable differences
are observed at the low fields at which the electron trans-
port is controlled by the high-energy LO phonons whose
population is weakly dependent on temperature. At high
fields and low temperature, the nonpolar scattering with
the less numerous acoustic and band-edge phonons is sig-
nificantly reduced and the average energies increase, al-
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FIG. 14. Simulated room-temperature drift velocity as a
function of the electric field with and without the inclusion of
collision broadening. The experimental data are taken from
Ref. 14.

though the effect is not large.

Finally, we show in Fig. 14 the average drift velocity as
a function of the field. In the LO-phonon—controlled re-
gime, our results reproduce those obtained by Ferry.
Agreement between theory and the experimental results of
Hughes can be obtained by assuming a much larger elec-
tron effective mass (> 1.3my,.) which would result from
the formation of a polaron at low fields.>* At higher
fields, the polaron should be “stripped” and the bare elec-
tron mass should be recovered. A saturation of the drift
velocity is observed as soon as the nonpolar scattering
takes over. Actually, a negative differential mobility
seems to occur at high fields, probably due to the longer
time spent by the carriers in the insulator as the probabili-
ty of large-angle scattering and umklapp processes be-
comes significant.

B. Internal photoemission

In the experiments aimed to determine the yield of
internal photoemission, ultraviolet light (~5 eV) is used
to excite carriers from below the Fermi level of the elec-
trodes of an MOS capacitor. Since the barrier at the
SiO,-electrode interface for the holes is usually much
larger than the barrier for electrons, only electrons can be
injected from either electrode by choosing the proper po-
larity of the bias voltage applied to the gate of the struc-
ture. The photocurrent flowing through the insulator is
then measured as a function of the photon energy for a
fixed value of the bias voltage or, for fixed photon energy,
as a function of the field applied to the insulator.

In order to interpret the data collected in the past, ac-
count must be made for the lowering of the SiO,-electrode
potential barrier due to the image force. The potential

ENERGY
A
CATHODE Sio,
T eAd
ed,
We
CX >

0

FIG. 15. Schematic representation of the potential at the
cathode-SiO, interface (with image-force barrier lowering)
which has been used in the simulation of internal photoemission
experiments.
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®(x) at a distance x inside the SiO, from the injecting in-
terface can be written as

e

P(x)=Pg—Fx ————,
(x) o 167€,,x

(28)
where @ is the barrier height in absence of image force,
€ox 1s the SiO, permittivity, and F is the uniform field ap-
plied externally across the insulator. As illustrated in Fig.
15, the potential has a maximum at

. 172
= |—c , 29
X0= | T6me, F @9
and the barrier height is reduced by the amount
g1
A= | (30)
41r€,,x

In their early experiments, Berglund and Powell!® could
explain their data by assuming that the electrons excited
above the barrier maximum could scatter in the barrier
with an effective escape distance A and be reflected into
the injecting electrode. The photoyield Y could be well
fitted by the following equation:

Y =4 exp(—xo/Mfio — Do+ ADY , (31)

where p is an integer taking a value between 2 and 3, de-
pending on the energy distribution of the electrons excited
in the cathode, #iw is the photon energy, and A4 is a func-
tion of the photon frequency which reflects the properties
of the photon absorption in the cathode. The characteris-
tic distance A deduced from the experiments had a value
of about 2.5—3.5 nm. This value could not be accounted
for by the standard picture.

We have performed several Monte Carlo simulations of
this process. The photoexcitation of the electrons by pho-
tons of energy fiw has been simulated by employing the
potential given by Eq. (28) and avoiding the singularity at
x=0 by truncating the potential at the Fermi level of the
cathode. The initial electron energy w; was randomly
selected between the Fermi level of the cathode, wg, and
wr + fiw, that is

w; =wr +&fiw , (32)

£ being a random number between O and 1. The azimu-
thal injection angle is selected randomly. The polar angle
0 in the electrode is also selected randomly:

cosf@=1-2&,. (33)

However, this angle will be modified by the refraction
that the electrons suffer as they enter the insulator,

becoming
172
J , (34)

where w;,, is the initial electron energy measured from
the Fermi level of the cathode. One restriction applies to
the values 6 can have, as it follows from Eq. (34):

(Wp +W; 0x (1 —20)* —wp

6, =arccos

wi, ox

(Wr +Wj o Jc0s?0 —wp >0, (35)
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FIG. 16. Photocurrent as a function of electric field in the
SiO, as obtained from the Monte Carlo simulation without
collision-broadening effects. The photon energy employed in
the simulation was 5 eV. The numerical results are fitted to the
approximate expression given by Ref. 16 and Eq. (32) of the
text.

which requires that only electrons having a sufficiently:
high component of momentum perpendicular to the
cathodic interface, k,, will enter the oxide; that is,
kl/2m =Ww; > Wg.

We show in Figs. 16 and 17 the results of the simula-
tion. We have taken wy=12 eV, as done by Powell and
Berglund in the case of injection from the silicon sub-
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FIG. 17. Square root of the photocurrent is plotted as a func-
tion of photon energy for different values of the field in the
SiO,. No collision-broadening effects were included in the simu-
lation.
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strate. To obtain the photoyield, electrons reentering the
cathode after their injection have been considered reflect-
ed and lost. Carriers reaching a distance 2x, inside the
insulator have been considered injected. The photo-
yield as a function of the electric field (Fig. 16) has been
fitted with the formula given by Eq. (31) with p=2, as
follows from the flat electron distribution we have as-
sumed in the cathode. The effective distance A takes a
value of about 2.5 nm, in good agreement with the experi-
mental results. In Fig. 17 we plot the photoyield as a
function of the photon energy for the case of injection
from the Al electrode (wr=10 eV). The square root of
the photoyield is a linear function of #w, as follows from
Eq. (31) with p=2. The presence of a tail of the yield at
low photon energies should be noticed. These tails have
been observed experimentally by Hartstein et al.> and are
too large to be attributed to tunneling phenomena. Their
appearance in the simulation is due to the appreciable
probability that the electrons absorb energy from the
acoustic phonons. Stronger tails could also be expected
from the collisional broadening (which has not been in-
cluded in the results presented in Fig. 17), in analogy to
what was found by Tang and Hess.>

VII. CONCLUSIONS

In conclusion, by employing a Monte Carlo technique,
we have demonstrated that the recent experimental results
showing anomalous electron heating in SiO, can be ex-
plained by invoking the nonpolar electron-phonon interac-
tion. While the LO phonons can indeed control the elec-
tron transport at low electric fields, they cannot prevent
the velocity runaway at fields as low as 2Xx10° V/cm.
Above this critical field, a steady-state electron transport
at relatively high average electron energies is provided by
the large-angle collisions with the acoustic and band-edge
phonons.

Several problems further complicate the results because
at high electron energies the semiclassical solution provid-
ed by the Monte Carlo technique seems to lose its validity.
However, at the average energies observed experimentally
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and theoretically in the range of 2 10° to 12X 10° V/cm,
the scattering rates are sufficiently low to justify use of
the semiclassical approach, particularly if proper account
is made for the finite linewidth acquired by the electrons.
Excellent agreement between the experimental data and
the results of the Monte Carlo simulation is obtained,
when focusing on the average energies, the energy-
relaxation length, and the low-field internal photoemission
yields. Thus, the first-order properties of high-field elec-
tron transport in SiO, seem to be well explained by both
polar and nonpolar electron-phonon collisions. On the
other side, the results of the vacuum-emission experiments
show the existence of a larger number of electrons in the
high-energy tail of the distributions than predicted by the
semiclassical solutions. This may be an indication that
density-of-states, nonparabolicity, and quantum effects
begin to take place. More sophisticated approaches—such
as those proposed by Thornber and Feynman,®
Thornber,”” or Barker**—and a better knowledge of the
band structure of SiO, are needed to obtain a reliable
description of these high-energy electrons which may be
responsible for the degradation and breakdown of silicon
dioxide.

ACKNOWLEDGMENTS

The authors would like to thank P. J. Price for fruitful
discussions about the Monte Carlo method and K. K.
Thornber for having pointed out some problems relative
to the nonpolar electron-phonon scattering at high elec-
tron energies. The authors also thank J. Socha for having
remarked on the importance of the momentum-ran-
domization effects in controlling the electron transport at
high fields, and F. J. Himpsel for a discussion of the in-
verse photoemission data. Finally, one of us (M.V.F.)
deeply appreciates the help provided by Z. A. Weinberg in
understanding the problem of hot electrons in SiO, (in
particular, the inconsistency of the photoemission and
resonant tunneling data discussed in Sec. IIC with the
standard model), and the assistance given by B. M. Trager
with the use of the symbolic language Scratchpad II.

*Present address: Massachusetts Institute of Technology, Cam-
bridge, MA 02139.

IT. N. Theis, J. R. Kirtley, D. J. DiMaria, and D. W. Dong,
Phys. Rev. Lett. 50, 750 (1983); in Insulating Films on Semi-
conductors, edited by J. F. Verveij and D. R. Wolters (North-
Holland, Amsterdam, 1983), pp. 134—140; T. N. Theis, D. J.
DiMaria, J. R. Kirtley, and D. W. Dong, Phys. Rev. Lett. 52,
1445 (1984).

2D. J. DiMaria, T. N. Theis, J. R. Kirtley, F. L. Pesavento, D.
W. Dong, and S. D. Brorson, J. Appl. Phys. 57, 1214 (1985).

38. D. Brorson, D. J. DiMaria, M. V. Fischetti, P. M. Solomon,
and D. W. Dong, J. Appl. Phys. (to be published).

4Massimo V. Fischetti, Phys. Rev. Lett. 53, 1755 (1984).

SH. Frohlich, Proc. R. Soc. London, Ser. A 160, 230 (1937); 172,
94 (1939); Adv. Phys. 3, 325 (1954). Other early papers are by
H. B. Callen, Phys. Rev. 76, 1394 (1949); and R. Stratton,
Proc. R. Soc. London, Ser. A 246, 406 (1958).

6K. K. Thornber and Richard P. Feynman, Phys. Rev. B 1,

4099 (1972).

L. H. Holway and D. W. Fradin, J. Appl. Phys. 46, 279 (1975).

8M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradu-
din, L. J. Sham, E. Loh, and D. F. King, Phys. Rev. B 24,
3519 (1981). :

SW. T. Lynch, J. Appl. Phys. 43, 3274 (1972).

10D. K. Ferry, Appl. Phys. Lett. 27, 689 (1975); J. Appl. Phys.
50, 1422 (1979); and in The Physics of SiO; and Its Interfaces,
edited by Sokrates T. Pantelides (Pergamon, New York,
1979), pp. 29-—34.

1T, H. DiStefano and M. Shatzkes, Appl. Phys. Lett. 25, 685
(1974).

12P, Solomon and N. Klein, Solid State Commun. 17, 1397
(1975).

I3R. C. Hughes, Phys. Rev. B 15, 2012 (1977).

14R. C. Hughes, Phys. Rev. Lett. 26, 1333 (1973); Solid-State
Electron. 21, 251 (1978).

15The generation of positive charge in SiO, during high-field



31 THEORY OF HIGH-FIELD ELECTRON TRANSPORT IN SILICON DIOXiDE

electron injection has been investigated so intensively in the
past decade that we cannot attempt to cover the literature on
the subject. Examples of investigations which lead to a direct
correlation between the so-called “anomalous positive charge”
and impact ionization can be found in the early paper by
Morris Shatzkes and Moshe Av-Ron, J. Appl. Phys. 47, 3192
(1976) and, more recently, by M. Knoll, D. Braunig, and W.
R. Fahrner, IEEE Trans. Nucl. Sci. NS-29, 1471 (1982).

16C. N. Berglund and R. J. Powell, J. Appl. Phys. 42, 573
(1971). ‘

173, Maserjian and N. Zamani, J. Appl. Phys. 53, 559 (1982).

18p. Solomon, in The Physics of SiO, and Its Interfaces, edited
by Sokrates T. Pantelides (Pergamon, New York, 1978), pp.
35-39.

19T, H. Ning, J. Appl. Phys. 47, 3230 (1976); D. J. DiMaria, F.
J. Feigl, and S. R. Butler, Phys. Rev. B 11, 5023 (1975); D. J.
DiMaria, in The Physics of SiO, and Its Interfaces, edited by
Sokrates T. Pantelides (Pergamon, New York, 1978), pp.
160—178.

20A more complete discussion of this issue is given in Ref. 2,
where ‘destructive breakdown was observed to occur at anode
fields of (12—16)x10° V/cm. Examples of even higher
breakdown fields in thin oxides and of the importance of
technological variables can be found in Simon S. Cohen, J.
Electrochem. Soc. 130, 929 (1983).

2IM. V. Fischetti, Z. A. Weinberg, and J. A. Calise, J. Appl.
Phys. 57, 418 (1985).

22J. R. Kirtley, T. N. Theis, J. C. Tsang, and D. J. DiMaria,
Phys. Rev. B 27, 4601 (1983).

23R. C. Alig, S. Bloom, and C. W. Struck, Phys. Rev. B 22,
5565 (1980).

24K. Seeger, Semiconductor Physics (Springer, Vienna, 1983), p.
46.

25H.-H. Fitting and J.-U. Frieman, Phys. Status Solidi A 69,
349 (1982).

26]. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975), p. 618.

27B. K. Ridley, J. Appl. Phys. 46, 998 (1975).

28W. A. Harrison, in The Physics of SiO, and Its Interfaces,
edited by Sokrates T. Pantelides (Pergamon, New York,
1978), pp. 105—110. ‘

29See, for instance, C. Kittel, Quantum Theory of Solids (Wiley,
New York, 1963), pp. 130—142; or J. M. Ziman, Principles of
the Theory of Solids (Cambridge University Press, Cambridge,
1972), p. 205.

303, Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

31W. A. Harrison, Phys. Rev. 104, 1281 (1956).

32James R. Chelikowsky and M. Schliiter, Phys. Rev. B 15, 4020
(1977).

BR. W. G. Wyckoff, Crystal Structure (Interscience, New York,
1965), and references therein.

343, T. Pantelides and W. A. Harrison, Phys. Rev. B 13, 2667
(1976).

35Handbook of Chemistry and Physics (Chemical Rubber Com-
pany, Boca Raton, Florida, 1981), 61st edition.

36Here, we shall outline the discussion presented by J. M. Zi-
man, Electrons and Phonons (Clarendon, Oxford, 1960), p.
212,

37R. E. Peierls, Quantum Theory of Solids (Oxford University
Press, Oxford, 1974), p. 140.

38The argument due to Landau is discussed in R. E. Peierls,
Helv. Phys. Acta 7 (Suppl.), 24 (1934).

39F. Capasso, T. P. Pearsall, and K. K. Thornber, IEEE Elec-
tron Device Lett. EDL-21, 295 (1981).

8141

40J.-R. Barker, J. Phys. C 6, 2663 (1973), and Solid-State Elec-
tron. 21, 267 (1978).

4IK. K. Thornber (private communication).

42Yia-Chung Chang, D.Z.-Y. Ting, J. Y. Tang, and K. Hess,
Appl. Phys. Lett. 42, 76 (1983).

43The elementary formulation outlined here can be found in any
textbook of quantum mechanics, such as, J. J. Sakurai, 4d-
vanced Quantum Mechanics (Addson-Wesley, Reading, 1973),
p. 64. A more formal and general discussion of the correla-
tion between decay of quasiexcitations and self-energy can be
found in W. Heitler, Quantum Theory of Radiation (Claren-
don, Oxford, 1970), Chap. IV, or J. M. Ziman, Elements of
Advanced Quantum Theory (Cambridge University Press,
Cambridge, 1969), Chap. 4.

44James H. Davenport, Patrizia Gianni, Richard D. Jenks, Vic-
tor S. Miller, Scott C. Morrison, Michael Rothstein, Christine
J. Sundaresan, Robert S. Sutor, and Barry M. Trager (unpub-
lished).

45Peter J. Price, Semicond. Semimet. 14, 249 (1979).

46Carlo Jacoboni and Lino Reggiani, Rev. Mod. Phys. 55, 645
(1983).

47T. Kurosawa, in Proceedings of the International Conference
on the Physics of Semiconductors, Kyoto [J. Phys. Soc. Jpn.
Suppl. A 49, 345 (1966)]; H. D. Rees, Phys. Lett. A 26, 416
(1968); J. Phys. Chem. Solids 30, 643 (1969).

48N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335
(1949). ;

493. von Neumann, in Monte Carlo Method Natl. Bur. of Stand.
(U.S.) Spec. Publ. (No. 12, U.S. G.P.O., Washington, D.C.,
1951), pp. 36—38.

S0A simple monodimensional argument shows that the existence
of a linear relationship between (w) and F is implied by a
scattering rate increasing with energy as w2, as in Eq. (11).
Indeed, at steady state, the energy gained by an electron of
velocity v from the field F must be equal to the energy lost to
phonons of energy #iwp at a rate 1/7; that is evF =%wp /7.
Assuming simply v =(2w/m*)'/?, and expressing the linear
dependence of w on F as w=eAF, we obtain
1/T=evF /#iwp=const. Xw>/%, which is the energy depen-
dence of the nonpolar electron-phonon scattering rate at high
energies as given by Eq. (11).

S1See, for instance, K. Hess, Solid-State Electron. 21, 123 (1978)
and the discussions in Refs. 45 and 46 for examples related to
transport in silicon. GaAs has been investigated, among oth-
ers, by H. Shichijo, K. Hess, and G. E. Stillman, Appl. Phys.
Lett. 38, 80 (1981), and by H. Shichijo and K. Hess, Phys.
Rev. B 23, 4197 (1981).

523, B. Socha, Ph.D. thesis, Cornell University, 1985.

S3F. J. Himpsel, Th. Fauster, and D. Straub, J. Lumin. 31-32,
920 (1984).

54The polaron-corrected electron effective mass m;‘ol is given by
perturbation theory as mjyy=m*/(1—a/6), where the pa-
rameter « is

172
e2

= 87Tﬁ(DLO

2m *wLo
#

(o4

and m* is the electron effective mass in absence of the polar
interaction with the optical phonons. In the case of SiO,, the
parameter a is about 1.35, considering only the 0.153 eV pho-
non. At low energies, where the polar interaction is dom-
inant, we expect that m*~0.5mg... Thus we should have
m;‘o.:o. 64mge.. Good agreement between theory and the
low-field mobility data can be obtained only with m™* ~m e,



8142 FISCHETTI, DiMARIA, BRORSON, THEIS, AND KIRTLEY 31

or by employing rather strong deformation potentials for the
interaction between the electrons and the acoustic and (trans-
verse) optical phonons. This has been done by H. Koster, Jr.
and K. Hubner, Phys. Status Solidi B 118, 293 (1983) with the
choice of 3 eV and 2x 10° eV/cm for the acoustic and optical
deformation potential, respectively, and by W. Porod and D.
K. Ferry, Phys. Rev. Lett. 54, 1189 (1985), who chose the

values of 25 eV for the acoustic intravalley and of 10° eV/cm
for the intervalley deformation potential.

35A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, Phys. Rev.
B 25, 7174 (1982).

56J. Y. Tang and Karl Hess, J. Appl. Phys. 54, 5145 (1983).

57K. K. Thornber, Solid-State Electron. 21, 259 (1978) and
references therein. '



