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The electron-correlation effect has been incorporated to the disorder model of Matsubara and
Toyozawa to study the shallow impurity states in doped semiconductors. A detailed Green’s-
function analysis reveals the split-impurity-subband structure as a consequence of the electron corre-
lation, in agreement with the result of computer simulations. The impurity conductivity has been
investigated with an application to phosphorus-doped silicon.

I. INTRODUCTION

The random position of impurities in doped semicon-
ductors gives rise to the disordered nature of these sys-
tems which exhibit the metal-insulator transition when
the impurity concentration NN is varied across a critical
concentration N.,. However, both experimental and
theoretical analyses suggest strongly that not only the dis-
order but also the electron correlation is responsible for
the metal-insulator transition. Evidently, the interplay be-
tween the electron-correlation and the disorder effects
makes doped semiconductors the most-studied disordered
system in recent years.1

Theoretical formulations for the electronic properties of
doped semiconductors have developed along two comple-
mentary lines. Starting from the heavily doped high-
concentration regime, electrons are assumed to occupy the
conduction-band states of the host semiconductor and are
scattered by the randomly positioned impurity potentials.
The major issue is that approaching the critical concentra-
tion N, multiple scatterings become dominating and
eventually trap the electrons in localized states. Only re-
cently have Serre and Ghazali’> succeeded in using the
Klauder multiscattering approximation to demonstrate
the formation of the conduction-band tail which splits off
from the main band, giving the identity of an impurity
band as the impurity concentration decreases.

On the other hand, one can start with very low concen-
tration, where the intraimpurity Coulomb repulsion
enhances the Anderson localization. As impurity bands
emerge with increasing impurity concentration, the intra-
impurity correlation splits each impurity band into two
subbands. Except for the recent work of Figueira et al.,’
almost all the existing calculations concentrate on the
lowest-lying impurity band. In this case many authors
have incorporated the s-band Hubbard model* to the
Matsubara-Toyozawa® configuration-average scheme to
investigate the combined electron-correlation and disorder
effects in doped semiconductors.®~?
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‘The s-band Hubbard model has been extensively stud-
ied for its simplicity in dealing with the short-range corre-
lation, which drives the metal-insulator transition. Be-
cause of this historical development, the experimental
confirmation of the existence of an upper Hubbard sub-
band in lightly doped semiconductors'®!! stimulated
much interest in the detailed structure of impurity states
in the regime of low and intermediate doping concentra-
tions. A simple but instructive picture of the formation
of split impurity subbands can be described as follows.
The impurity orbital of a nondegenerate semiconductor
(for example, CdS) can be well approximated by a hydro-
genic 1s function with an effective Bohr radius ¢,(r—R),
where o is the spin index and R is the position of the im-
purity. Let E; and E, be the ionization energies of an
isolated impurity when it is neutral (D°) and negatively
charged (D ™), respectively. As the impurity concentra-
tion N 1is increased, the overlap matrix element
(¢o(r—R;)| ¢,(r—R;)) is no longer negligible - if
|R;—R; | is not very large. Then, the two energy levels
E, and E, spread into split impurity subbands separated
by a gap.

The random spatial distribution of impurities compli-
cates the structure of the impurity band. Before the im-
purity band is fully developed with increasing impurity
concentration, impurity clusters of various sizes will form
first. Furthermore, depending on the geometrical struc-
ture and local environment, impurity clusters can be
charged (both positively and negatively) to different de-
grees. An enormous amount of experimental efforts has
been devoted to the clarification of the nature of these
charged cluster states.'?20 However, theoretical works on
charged cluster states are mostly for a single D~
center?""?? or a small cluster of impurities.?>?* We should
point out that there exists a rich variety of important pa-
pers regarding the physical properties of impurity clusters
which are not necessarily charged. Here we particularly
mention the D~ state because of its relevance to the
present work.
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A complete description of shallow impurity electrons in
doped semiconductors, with impurity concentration vary-
ing from the insulating to the metallic regimes, thus re-
quires a full treatment of three bands: two split impurity
subbands and one host conduction band. So far this
remains an impossible task. Existing sophisticated
theoretical analyses consider either only the split impurity
subbands, or the host conduction band plus an uncorrelat-
ed impurity band. By uncorrelated impurity band we
mean no distinction between the D° and the D™ states.
For example, the density-functional approach of Ghazali
and Leroux-Hugon?’ belongs to this category.

In this paper we will perform a detailed analysis on the
formation of split impurity subbands with emphasis on
the effect of electron correlation. Not only is the intra-
impurity Coulomb energy retained—the correlation effect
on the electron hopping is also taken into account. In or-
der to perform such calculation, we have used
Chandrasekhar’s correlated two-particle wave function.2®
The random feature of the impurity distribution is treated
within the framework of the Matsubara-Toyozawa
scheme.” As we will see in the later sections, the resulting
coupled integral equations are so complicated that in this
first attempt it is worthwhile to obtain a transparent phys-
ical picture with a fewer number of bands. Hence, the
host conduction band is ignored and only the 1s impurity
band will be considered. In this scope the result of large-
scale computer simulation is available for comparison.?’28

At the end it becomes obvious that the present two-band
approach can be generalized without difficulty to include
both the host conduction band and the higher-lying excit-
ed impurity bands, provided sufficient effort is devoted to
the numerical calculation.

II. CORRELATED SPLIT-BAND MODEL

We consider N randomly positioned shallow-level im-
purities in a unit volume of nondegenerate semiconductor
(N is then the impurity concentration) with an isotropic
effective mass. Though the multivalley structure can be
treated similarly, we prefer to work first with this simpler
version in order to keep the mathematical analysis tract-
able. The host semiconductor is then identified via a
chracteristic background dielectric constant, and we will
come back to this point later. At each impurity a hydro-
genic 1s orbital is attached. If only the short-range intra-
impurity Coulomb interaction is retained, the impurity
system is conventionally described by a random-site s-
band Hubbard Hamiltonian

7 T 1
H= Etijaiaaja+7U2niani—o ’ (1)
ijo i,o
where the subscripts i and j label the impurity positions.
Because of the random distribution, the transfer integrals

t;’s are also random.
Let us rewrite the Hamiltonian as

H=3[;(1 —”i—a)aitraja( 1—n;_g)+1;(1 —ni—a)aitfajani—a

i,j,o

+tin; —-aaitraja( l—n;_o)+tn; —aai'tfajanj ol U nighi _q - ()

To clarify the purpose of this rewriting, we define the
correlated operators

bi,=(1—n;_z)al, ,
bio=ais(1—n;_,),

+

Cio =Ni—obio »
Cio=0qigNi —g >
and we rewrite the Hamiltonian once again as

H=3[ tijbiJrcrbja’*" tijbiTacja"" tijcitrbja

i.j,o

+ (5 + T Us;; )CiTaCja] . 4)

The four terms b,-t,bj,, bit,cja, cit,bj‘,, and‘c,?:,cj,, represent
electron transfers with four different local environments.
When a o-spin electron hops from the impurity j to the
impurity i, the initial jth impurity may be either singly or
doubly occupied, while the final ith impurity may be ei-
ther empty or singly occupied by a (—o)-spin electron.
Therefore, we have biLij from the singly occupied jth to
the empty ith impurity, b;,c;, from the doubly occupied
Jjth to the empty ith impurity, ciLbja from the singly oc-
cupied jth to the singly occupied ith impurity, and c¢;oCj,

i,o

lfrom the doubly occupied jth to the singly occupied ith
impurity. Certainly, the matrix elements corresponding to
these physical processes are different. Since later we will
use real wave functions to calculate these matrix elements,
they are real and so we have the final form of our model
Hamiltonian:

H=E, Zbitfbio +E, Ecitrcia‘f" >'t(1 )ijbi-trbja

i,o i,o i,j,o
+3't (z)ij(bitrcjo +Citrbja) +>'t(3 )ijcitrcja , (5)
i,j,o i,j,o

where E,=t;, E,=t;+U/2, and the primed sums ex-
clude terms with i =j. This correlated split-band model
Hamiltonian has a clear interpretation. The terms E; and
t(1);, if alone, form the lower impurity subband. The
terms E, and ¢(3);, if alone, form the upper impurity
subband. These two subbands are in fact not alone, and
so are coupled by the term #(2);;.

A full many-body calculation of the matrix elements
E,, E,, and ¢(v); is certainly impossible. An approxi-
mate calculation scheme is the generalization of the
tight-binding method which is commonly used to treat
narrow energy bands. Such an approximation is reason-
able if the impurity concentration is not too high. In fact,
this is the concentration regime where the short-range
intra-impurity correlation dominates and so our model
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Hamiltonian is justified. In the framework of the general-
ized tight-binding approximation, the whole impurity sys-
tem is divided into two parts when one calculates the ma-
trix elements. Let us first consider E, and E,. In this
case we only solve the problem of a single impurity em-
bedded in the effective field of the remaining N —1 im-
purities. Even if we assume a nondegenerate single-valley
semiconductor and simplify the screening of valence elec-
trons to a static dielectric constant k, the self-consistent
treatment of the polarization within the impurity system
is still a difficult problem. In the tight-binding approxi-
mation this difficulty is avoided with a calculation at the
extremely low impurity concentration where only the
valence electrons contribute a dielectric constant «x. In
other words, E, and E, are derived from an isolated
hydrogenic-type impurity in D° and in D~ configura-
tions, respectively. Again, because the single-valley struc-
ture is assumed, we will not consider higher-charged con-
figurations which have been studied recently by Wu and
Falicov.?’

We will adopt the effective hartree and the effective
Bohr radius as the units of energy and length, respective-
ly. For specific doped semiconductors the effective har-
tree and so the effective Bohr radius can be determined
empirically. Thus, we have E;=—0.5 and the corre-
sponding eigenstate ¢,(r—R)=(1/V7) exp( |[r—R|).
To calculate E, we should notice that 2E, is the total en-
ergy of an isolated negatively-charged impurity. The
two-electron wave function ¥(r;,r,;R) is highly correlat-
ed. There exists in the literature complicated forms of
¥(r;,T;R); for example, the 20-term expansion of
Petelenz and Smith.>° Yet for the hydrogenic-type impur-

ity considered here, the most accurate and convenient D~
) ]

p 1 + Vlon(rlt + onn(rlj

1),,=<¢,,<r, —R,)

={do(r;—R) | Vion(r11) | $o(r1—R;)) ,

3

b

p=1

1

t<3>,.,.=<¢<r,,r2;ni J$o(r3—R;) -

+ Vealrs)+Valrs)

¢a( rn—

-——pﬁ + Vion(7pi) + Vion(ry;)
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wave function is the one constructed by Chandrasekhar?®:

PrryuR)=nlexp(—a|r;—R| —B|r,—R|)

+exp(—a|r,—R| —-B|r—R|)]

X[1—y(|r—r )], (6)

where a=1.07478, B=0.47758, y=0.31214, and 7 is
the normalization constant. The Chandrasekhar wave
function yields a binding energy  E% =E; —2E,=0.0259
as compared to the measured value 0.0275 when applied
to a free H™ ion. The charge density at the nucleus given
by (6) for a free H™ ion is in error by only 2% relative to
Pekeris’s calculation.’! Besides being accurate and rela-
tively simple, another main reason for using the Chan-
drasekhar wave function is that the same wave function
has been used in the computer simulation?”-?® and so we
can compare our analytical result to the numerical one.
The energy E, is thus determined as —0.262 95.

Similarly, in the tight-binding approximation we con-
sider only the (i,j)-impurity pair to calculate the matrix
elements ¢(v);;. For t(1); there is only one electron in
this small cluster of two impurities with the initial and
the final electronic wave functions ¢,(r—R;) and
¢o(r—R;), respectively. For t(3);; there are three elec-
trons and the initial and the final wave functions are,
respectively, ¢,(r;—R;)¥(r,r3;R;) and 1/J(r,,r2,R )Po(r;
—R;). Therefore, if we let V,o,,(rﬂ,)——e /Klr# R;|
and Vel W)——e /k|1,—r,|, then with the assumption
that wave functions localized on different impurities are
orthogonal to each other, the tight-binding matrix ele-
ments are

®)

4+ Valr)

bo(ri—R, >¢<r2,r3;R,~>>

= (Y(r, 1R (r3—R)) | Vion(71) 4+ Vien(72:) + Vien(r3:) + Ve (r12) + Ve (r13) | polr;—R;)P(r,15R;) ) .

(8)

It is important to remind ourselves that the Chandrasekhar wave function is a variational trial function but not the exact

eigenfunction of a D~
same, t(2);; is calculated as

impurity. Since the real matrix elements for the two processes b,Lcja and c;f,bj(, must be the

2
(@)= (o1 =R _oE1=R) || 3 |5+ Vienru)+ Vi) +Vel<r12>] vy sR)))
M:
2
+%(1/)(1'1,I'25Ri) 21 Elr;p;21+Vion(rui)+Vion(ruj) +Val "12)] ¢o(r1—R;)¢p_ (l'z—Rj)>
u—.—"
=($o(r; =R _o(1,—R;) | T[Vien(*1)+ Vien(r17) + Va(r12) + Vien(r2)] | (r,15R;)) )
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To calculate the matrix elements f(v); we have as-
sumed that wave functions (both ¢, and ) localized on
different impurities are orthogonal. This assumption en-
sures the anticommutation relations among the operators
a;, and a;,. However, when these wave functions were
used in the computation simulation,?”?8 there was no such
assumption and the overlaps between these wave functions
were explicitly taken into account. We will see later that
this is the main source of discrepancy between our analyt-
ical result and that derived from the computer simulation.

To arrive at the model Hamiltonian (5) the electron-
correlation effect has been used in both the matrix ele-
ments and the creation and annihilation operators. There-
fore, E, cannot be viewed as the energy of a single elec-
tron. The correct interpretation is that 2E, is the total
energy of two antiparallel spin electrons when they occu-
py the same impurity orbital. We can decompose 2E, as
the sum of E for the first electron with o spin (when the
impurity orbital is single occupied) and E,+ U for the
second electron with —o spin (when the second electron is
added to the singly occupied impurity orbital). Then, it is
clear that the upper split impurity subband is centered
around €,=E,|+ U but not around E,. From the above
calculation we easily obtain €,= —0.0259, i.e., | €,]| is the
binding energy of an isolated D~ impurity.

III. GREEN’S-FUNCTION ANALYSIS

Since the positions of the impurities are random and
the final result requires the configuration average, we will

first start with a fixed spatial configuration of the impuri-
ties and consider the 2X2 Green’s-function matrix
G°(i,j) for a given spin o and a pair of impurities (i, )

[GaGD Galp
GUD= |G (i) G2 (10)
where
G (i) = bio(1);6],(0))) , (11a)
G (i) = bis(1);c(0)) (11b)
G i) = ein(0);b],(0))) (11¢)
GZ(i, )= ciglt);¢],(0))) . (11d)

The Fourier transforms of these Green’s functions
Gipli,j;E)=(A;BNg
= [ «A@;BO)YexpliEt /i)dt  (12)
satisfy the equation of motion
E{A;BYe=([4,B1,)+([4,H]_;B)g,  (13)

where [ 4,B], and [ 4,B]_ are, respectively, the anticom-
mutator and commutator. In calculating the equation of
motion one should be aware of the fact that although a,-t,
and a;, are fermion operators, the operators b, b;,, cf,
and ¢;, do not satisfy the anticommutation relation. We
then obtain the following equations from Eq. (13):

|

GRij3E)=———— [(1—=n_g)8;+ 3 [t(Dp«(1=n;_obroibly g+ t (2 (1 —=n; _g)erg;bfy Wil (14a)
E _El k (k=£i)
ch(l,],E)Z E_E 2 [t(l)ik «(1_ni—¢r)bk¢r;cjtr »E+t(2)ik «(l_ni—a)cka;c;a' »E] ’ (14b)
T ke (ksi) '
Gc?l;(l’],E): E d 2 [t(z)ik «ni—abka;bjTU »E +t(3)ik«ni—acka;b};f »E] ’ (140)
€2 k (ki)
G(;a(i’j ;E)“—‘ hn —oBij + E {t(z)ik « n; —-o‘bka;cfa »E +t(3)ik « ni—acko;cha »E} (14d)

k (ki)

where n,=(n;,) is the mean density of the o-spin electrons. To arrive at the above four equations, we have used what
we call the static approximation. When a o-spin electron hops from the jth impurity to the ith impurity, there is possi-
bility that a —o-spin electron may move into or out of either the ith or the jth, or both the ith and the jth impurities. In
the static approximation, such double-hopping process of a pair of antiparalle] spin electrons taking place at a single im-
purity is neglected. The probability for double-hopping processes to occur is small if the impurity concentratlon is low.
Hence, the static approximation is reasonable for the impurity system in the insulating regime.

To continue our analysis, we need to know the Green’s functions on the right-hand side of Egs. (14a)—(14d). If we ap-
ply the static approximation to the equations of motion of these higher order Green’s functions, after a lengthy algebraic
manipulation the results can be summarized as follows.

(a) For i =j, we have

k (ki)

G i E)=—— [(1—n_)+ S [t(DaGE ki3 E)+1(2)5 G5 (ki 3EN] | (15a)
E—E, k (ki)

G113 E) =G i,i;E) =0, (15b)

62isB=t—[n_,+ 3 [t(2),~kG1§’c(k,i;E)+t(3),~ch‘Z(k,i;E)]]. (15¢)
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(b) For i=~j the higher Green’s functions on the rlght -hand side of Eqgs. (14a)—(14d) will be given separately for k =j
and for k=£j. If k =j we have

€ =1 bjo3b )y N g = —— [(l—n,-,,)2+ S [t K (1=1; _bpasbly We+ 1(2), K (1= _)epesbls W |

E—E, P (p£j)
(16a)
(1 =n;_o)cjo3bfy WE=0, (16b)
(1 —n;_bjgict, Hg=0, | (172)

C—ni_p)ejoc)y W= 1(1— n_gn_o+ 3 (1020, K(1=ni_bposc)e WE+ 130, K (1= _p)epmiciy Wil

p(p#j)

E_

(17b)

and the other four Green’s functions ((n; _ abja, o WE> N _oCjo3b; T W Kny ,,bja,cj,, g, and (n; _ acj,,,cja » g can be
easily derived from Egs. (15a)—(17b). To obtain these results, we have approximated {n;,n;,') =ngn, for i£j. On the
other hand if k=4j, the expressions are more complicated as

«(l—n,-_,,)bk,,;b;[,»E-— z [t l)kp«(l n;_ a(l—nk a)bpar 0‘)>E

E El p(p2k)

120 (1 =1y _ )1 —ng _p)epoibis DE] (18a)

(((l*ni_.g)cka;b;a»ﬁ'— 2 [I(Z)kp« —n;_ ank apa:bja>)E+t(3 kp« l_nz a)nk ocpa’ a»E]:

E €2 pipxk)

(18b)
«(1'_ni——a)bka;CjTa »E= ! 2 [t(l)kp«(l_ni—a)(l_‘nk—a)bpa;cjj-o’ »E
E—Ei ppz0
+1 (2 {1 =1y _ )1 =g _)Cpo3clp WE] (192)
« (1 "ni—-u)cka;c'fa »E: 2 [t(2)kp «(l—ni-—a)nk—abpa;c;a »E +t(3)kp «“"’ni—o)nk—acpa;c;ra »E] ’
! E —€2 2k

(19b)
and by combining Egs. (14a)—(14d) and Eqs. (18a)—(19b), we can easily derive the other four Green’s functions
« n; —abka;bja »E’ « n; —acka;bj:ro »E’ « n; —abka;C]Ta »E’ and « N _oCkosCjo »E

From the above hierarchy of equations of motion, i.e., Egs. (14a)—(19b), we see that if we continue to write down the
equations of motion for increasingly higher order Green’s functions, only in the static approximation is a certain class of
higher order Green’s functions generated. These higher order Green’s functions have the general form

C—=ny o) 1=ny o) Ny _ohy,_o " A;BNg ,
where 4 =b,,, or c,, for arbitrary p, and B =b}:, or cjt,. Only after we have derived the complete hierarchy of equations
of motion can we apply the following decoupling scheme to all the higher order Green’s functions in the whole hierarchy:

C=ny o)A =ny o)y gty ABNgal(1=ny oM 1=ny o)y oty g Y ABNg

~(1—n_g)l—n_go) " n_gn_gs "+ CA,BNg . (20)
In order to put the decoupled hierarchy of equations of motion in a compact form, let us define the matrix operators
(l—n_‘,)/(E’——El) 0
HER 0 o iE—e 2
1/(E —E;) 0
gB=| o  1NE-e)| | @2)
[[( 1 ),‘jS;j t (2)ij8ij J
T = (23)
T |2(2);8; t(3);8;
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and the projection operator & operating on any matrix with the result

A B A0
cp|=|oD|" 24
Then, the Green’s-function matrices satisfy the equations
G(i,i;E)= GJ(E)+g(E)? X T 4, GJ(EVL y ;G°i,i;E)
kl
+8(E)Z 3 T i, GET y,x,G (BT «,;G(i,i;E)
Kk,
+8(E)? 3 Ty, GHET j,k,GE)T 4,1, G (ET ,; GOUisi 3 E)+ - - (25)
ki kyky : :
and
G(i,j;E)= G J(E)TL ;G°Goj;E)+G Y EV X T e, GS(ET & ;G°j,j 3 E)
ky
+GNE) 3 T, GET p,1,G §(E)L +,;G?(j,j;E)
kik, '
+GE) ¥ Ty, GET kx,GG(ET gk, G(ET 4, ;G(pj;E)+ + -+ forizj . (26)
klkaJ

Up to now our analysis has been restricted to a fixed configuration of the random-impurity distribution. In the next two
sections we will apply the Matsubara-Toyozawa configuration-average scheme’ to the Green’s-function matrices in order
to calculate the impurity-band density of states and the impurity conductivity.

IV. IMPURITY BAND

The ensemble-average method of Matsubara-Toyozawa assumes a complete random nature of the spatial impurity dis-
tribution and allows the positions of all intermediate impurity sites { k;} in Eqgs. (25) and (26) run over the whole space
with equal probability. In principle, one can also introduce a pair-correlation function A;; between the (i, /)-pair impuri-
ties. We may replace the summation over intermediate impurity sites by integral 2 —N f dR;, and define a sum of all
possible journeys starting from the ith impurity and ending at the same ith impurity:

n7(E)=g(E)? [ T\NG §(E)T 1;A;dR+8(E)? [ T \NG §(E)T ;NG §(E)T i Ai1A1pA2dR1dR,

+§(E)QII,1NQ g(E)IlzNQ g(E)Iz:;NQ g(E)I3,»A,-1A12A23A3,~dR1dR2dR3+ . ‘ (27)

I

It is impossible to calculate n?(E) if all possible journeys To dress the vertices, all the G § in Eq. (27) should be re-
are considered. Matsubara and Toyozawa have argued placed by £°(E). Within the Matsubara-Toyozawa
that the most important contribution to 7 7(E) is from all scheme, it is easier to calculate 19(E) in the reciprocal
irreducibsle journeys which never pass the origin site on space. Let us define the Fourier transforms
the way.” Although this Matsubara-Toyozawa Ansatz has .
not been justified rigorously, it has been commonly ac- elk)= f T joAjoexp( —ik'R;)dR; , (29)
cepted by almost every author to study the electron- eok)= f T ;oexp(—k-R;)dR,; . (30)
correlation effect in disordered systems. Later when we - =/ / !
compare our result to that derived from the computer Then, Eq. (27) can be simply expressed as
simulation, the agreement can be considered as a strong -3
suggestion that the Matsubara-Toyozawa ensemble-  po(F)= g(E)P f ¢(K)NEO(E)
average scheme is satisfactory. = =

Since the way to select irreducible journeys has been
described in details in the original paper of Matsubara and X { e(K)[L—NE(E)e(k)]™!
Toyozawa, here we will present only the final result. The - =
configurationally averaged diagonal (in terms of the im-
purity positions) Green’s-function matrix (G°(i,i;E)),
can be expressed as

1
2

+

cok)—e(K)}dk . (31)

The two matrix equations (28) and (31) should be solved
0 . . o .
o(E)=(G°(i,i;E)), = o(E)"G C(E) self-consistently. We notice from Eq. (21) that G§(E) is
£ (G e mzzo[ﬂ "Gl diagonal. Because of the projection operator 2, 7°(E) is
also diagonal. Therefore, from Eq. (28) it is obvious that
[I—m°(E)]"'GS(E) . (28) £°(E) is diagonal.
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0.01

0

E -1 0 !
FIG. 1. Right part is the density of states for various impuri-
ty concentrations P, and the left part is the resistivity of Si:P
(theory, solid curve; experiment, dashed curve).

The density of states of the impurity band is defined as

poE) =~ Im( Cargialy Ve e
=_%xm<<<big+cia;b,~2+cit, Wede

=_i:—xmuc,;’,,(i,i;E))c+<ch<i,i;E)>'c]

= Y im[Teeo(B)] . (32)
—Im[Trg ,

It is important to point out that the above expression is a
consequence of the static approximation, since in this case
we have shown (G, (i,i;E)).=0 and (Gg(i,i;E)). =0,
i.e., £9(E) is diagonal. The density of states is so normal-
ized such that the Fermi energy is determined from
E
[ i [p'(E)+p"E)JdE=N , (33)

where N is the impurity concentration.

Since there is no magnetic ordering observed in doped
semiconductors, we will consider here only the nonmag-
netic case for which p'(E)=p*(E). A dimensionless im-
purity concentration P=327N /a}, where a, is the effec-
tive Bohr radius, was first introduced by Matsubara and
Toyozawa,” and has been very popular for its convenience
because for most doped semiconductors the critical con-
centration for the metal-insulator transition is around
P =1 (more precisely around P =0.8). Using the matrix
elements ¢ (v);; given by Egs. (7)—(9), and assuming a con-
stant value of A;;=1, we have computed the impurity-
band density of states. The results are shown in Fig. 1 for
wvarious values of impurity concentrations P=0.122, 0.2,
0.393, 0.763, and 1.04. The zero reference energy has
been shifted such that E =0 coincides with the ground-
state energy of an isolated neutral impurity (D°). Hence,
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1.04

0.763

0.393

0.2

P=0.122

0 1 E

FIG. 2. Density of states derived from the computer simula-
tion (Ref. 27).

the ground-state energy of an isolated negatively charged
impurity (D ) is 0.4741. The bottom of the host conduc-
tion band lies at E =0.5. With decreasing impurity con-
centration, the formation of two split impurity subbands
is clearly seen. Furthermore, when the impurity concen-
tration approaches zero, the two subbands converge to
two impurity levels exactly equal to the ground-state ener-
gies of D% and D —, respectively.

Using the same impurity orbitals for D® and D~ as
those defined in Sec. II, Riklund and Chao?’ have per-
formed a computer simulation to obtain the impurity den-
sity of states. In the computer simulation a single Slater
determinant modified with the Chandrasekhar D~ wave
function has beéen incorporated to an improved unrestrict-
ed Hartree-Fock calculation.  The nonorthogonality be-
tween impurity orbitals localized on different impurities
was explicitly taken into account in the computer simula-
tion. Furthermore, the computer simulation has retained
all the matrix elements. The so-obtained density of states
1s shown in Fig. 2 for the impurity concentrations marked
by the numbers. The long tail of the density of states at
the low-energy side is due to small isolated impurity clus-
ters. The characteristic features of such small isolated
impurity clusters are averaged out in the Matsubara-
Toyozawa scheme. Comparing the corresponding density
of states curves in Figs. 1 and Fig. 2, we see that they
form mirror images of each other, provided we neglect the
low-energy tail in Fig. 2. In Sec. VI we will discuss the
origin of this discrepancy.

V. IMPURITY CONDUCTIVITY

To calculate the conductivity, we need the Fourier transform of the Green’s-function matrices. Starting from Eq. (26),
we take the Matsubara-Toyozawa configuration average and then dress the vertices to obtain
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{G°i,j;E)) .= E(E)T ;; A;E°(E)

+&(E) [ T yNEE)T 1;A11AdR,E7(E)

+§”(E)fri1N§U(E)I12N§"(E)I2in1A12A2de1dR2§”(E)+ Tt (34)

Taking the Fourier transform and making use of Egs. (29)
and (30), we have

(G (KGE)) = [(G°(0,j;E)) exp(—ik-R;)dR;
=£9(E)e(K)[L—NE°(E)(k)]T'E°(E) . (35)
According to Kubo,*? the static conductivity is given by

2(0)= lim X(Q), (36)

Q—0t
where
w B ,
Q)= fo expl(iQ—m)tldr [ (IOt +i#id)ydr
(37)

with B=1/kzT and n—0%. If we define

Tul@)= [~ (T,07,(0)expliondt , (38)
then, the uv component of Z({}) can be simplified to

2, (Q)=— (ePRO

— 1), (Q) . (39)

The fluctuation-dissipation theorem yields the relation
(&P 1)J,(Q)=— [ * ([J,(0),],(N]_)eidr .

(40)

([J,(0),J,(N]_)=—(e*/#) 3 3 Ry juRpgr”

i,j,0 p,q,s

t(l)Pq t(z)Pq

X120y 1030

t(1);
t(2

t(2);

bps(T)bgs(T)] ) bps(T)egs (1)] )

Cps(TIbgs(T)]_ ) cps

The commutator is readily derived from the current
operator

ie +
= % H’ZRiaiaaia
i,o

ie
= ;ERi [H, bitrbia el
io .

(41)

To put the final result in a compact form, we adopt the
notations

A B
S CcD =A+B+C+D, (42)
([4 ([B]|a]l-) b].)
([C {[D]|c]_) d]1_)

([4,a]_+[B,c]_){[4,b]_+[B,d]_) ]

([C,al_+[D,c]_)[C,b]_+[D,d]_)
(43)

and R;;=R; —R;. A tedious algebraic manipulation then

leads to

([5,(0)6;,(0) ([b],(0)c;4(0)

([e5(0)b;5(0) ([e],(0)c;5(0)

£(3);

(44)

(T)egs(T)])

For given cluster of impurities (i, ],p,q) and given spin arrangement (o,s), there are 16 correlation functions of the form
([A,,, 0)B;,(0), C s (T)Dgs(7)]_) appearmg on the right-hand side of Eq. (44). The application of the static approxima-
tion shghtly 51mp11f1es the problem by imposing a restriction s =0¢. Using the fluctuation-dissipation theorem, all these

correlation functions can be expressed in terms of the Green’s-function matrices.

We will not show the explicit

mathematical manipulation which is very long but straightforward. The final result is

20 =—(e*/T)3, 3, RiuRpqy [ " aE |- 2LE
o L,jp,q
t(1)pg 1(2)yg
X
t(2)pg t(3)p

ImGy,(q,i;E) ImGy,(q,i;E)
ImGg,(q,i;E) ImGZl(q,i;E)

ImGg,(j,p;E) ImGE.(j,p;E)
ImGZ,(j,p;E) ImGZ(j,p;E)

t(l)ij t(2),'j
I(Z),'j t(3)ij

(45)

Since the distribution of the impurities is random, the conductivity must be isotropic and so the conductivity tensor Z(0)

is diagonal 2(0)I with

20)=—(e*/37m3, [ ar |- 2LE JEU(E) ,
where
o P t(1); ¢ ImGf,(j,p;E) ImGg,(j,p;E)
EUE)=37R; |, (2); t(3),, ImGG(j,p;E) ImGS(j,p;E)

ijpq

(46)

t( 1 )P'I t(2)Pq
1(2)p 1(3)

ImGy,(q,i;E) ImG§,(q,i;E)

X Rpq ImGY,(g,i;E) ImGZ(q,i;E)

47)
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In the above equations, f( E) is the Fermi-Dirac distribution function.
The above derived conductivity is for a fixed impurity distribution. The next step is to take the configuration average

over all possible random . distributions of impurities.

We have to perform 16 ensemble averages of the form

(G,‘iv( j,0;E)GS.(q,i;E)),.. Again we will follow the argument of Matsubara-Toyozawa® to approximate
( Gav(j’p ,E)ng(‘],l ;E) >c2< Gav(j’p :E) >c ( G:k(q’i ’E) >c . (48)
% 2

After one more lengthy calculation which is too long to be shown here, a compact form of the dc impurity conductivity

is derived as

of (E)
oE

2(0)=—(e*/37m3 [~ dE

where

1]

and

— 1
3

1
Rilso| |2r

Numerical calculation indicates that Z5(E) is negligibly
small as compared to Z{(E). The same conclusion was
obtained by Matsubara and Toyozawa® in their single-
impurity-band model calculation for randomly distributed
impurities without correlation. In our calculation again
we have set A;;=1 in order to avoid the unnecessary com-
plication in numerical computation. We have applied our
analysis of dc conductivity to the phosphorus-doped sil-
icon. From the measured ionization energy of an isolated
neutral impurity, the effective Bohr radius is determined
as 13.2 A. Our calculated resistivity is shown in Fig. 1
(solid curve) as a function of the impurity concentration
P. The measured resistivity>® is also plotted as dashed
curve for comparison. Since in the next section we will
discuss the possible improvement of the present calcula-
tion, we will not make further comment on the agreement
between the theory and the experiment.

VI. DISCUSSION

Our split-impurity-subband Hamiltonian Eq. (5) is a
simplified version of the complete Hamiltonian based on
which the computer simulation?”"?® was performed. This
simpler Hamiltonian still retains the most important
electron-correlation effect, namely, the matrix elements
depend crucially on the local electron distribution. In our
analysis we have assumed the anticommutation relation
for the operators {a,):,,ai‘,}. This is equivalent to the as-
sumption that impurity orbitals localized on different
neutral impurities are orthogonal. However, in the com-
puter simulation the overlap between different impurity
orbitals has been explicitly taken into account. The
nonorthogonality effect has been studied analytically us-
ing an uncorrelated single-impurity-band model.>*3¢ The
result of Yonezawa et al. (Figs. 1 and 2 of Ref. 35) is
reproduced in Fig. 3 as parts (c) and (d). If we assume the

3
N [Im(G°(k;E)) exp(ik-R;)dk

N [Im(G°(k;E)) exp(ik-R;)dk

[EY(E)+E3(E)], (49)

UE)= S (—1/87) [ {Vie(K)[N Img2(E) + NIm( G°(K;E) ), ]} *dk

+7(—1/87) [ Vie(KINIME(E)- V[ & o(k) — (k) INImE? (E)d k (50)

dR; . (51)

(r)rthogonality, the density of states is given as part (c) for
various impurity concentrations. When the nonortho-
gonality correction is introduced, the curves of part (c)
change into the corresponding curves in part (d), as if fol-
lowing a mirror-image transformation. Computer simula-
tions based on various single-impurity-band models are
also available.’”3® Parts (a) and (b) in Fig. 3 are repro-
duced from Ref. 38. Again, the density-of-states curves
derived with [part (b)] and without [part (a)] the assump-
tion of orthogonality form a pair of mirror images.
Therefore, we come to the conclusion that the discrepancy
between the density-of-states curves shown in Figs. 1 and
2 has its origin in the orthogonality assumption. If we in-
clude the nonorthogonality correction to improve our
analysis, it is reasonable to believe that the so-obtained re-
sults should agree very well with those derived from the
computer simulation. If we accept this conclusion, it is
also reasonable to believe that the static approximation
and the Matsubara-Toyozawa configuration average

F (a) Il (b)
-1 0 -1 o 1 2 3
% A
-4 2 [ 2 4 T 2 [) 2 a 6
FIG. 3. Density of states obtained with different approxima-
tions and using different models. See the text for details.
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scheme do not cause large error.

In the Introduction we have emphasized the role of the
host conduction band for a complete study of the metal-
insulator transition in doped semiconductors. In our pa-
per the host conduction band has been ignored. From Eq.
(33) we have calculated the Fermi energy for various im-
purity concentrations: (P;Er)=(0.122;0.15), (0.2;0.17),
(0.393;0.20), (0.763;0.25), and (1.04;0.28). Let us remind
ourselves that the bottom of the host conduction band (as-
sumed not changed even when doped) lies at E,=0.5.
The unreasonably large separation E, — E for the impur-
ity concentration N > 0.393 strongly suggests the necessi-
ty of a three-band model: two split impurity subbands

plus the host conduction band. When electrons occupy -
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the conduction-band states, they can efficiently screen the
impurity potential. The net effect will be a downward
shift of the conduction-band edge and a upward shift of
the donor impurity band.

To close this paper, we should mention that if we set
E|=e€; and t(1);;=1(2);;=1¢(3);;, our analysis reduces to
exactly that of Matsubara and Toyozawa.’
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