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k p theory, effective-mass approach, and spin splitting for two-dimensional electrons
in GaAs-GaA1As heterostructures
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A five-level k p theory is developed for conduction-band electrons in heterostructures. A local ef-
fective mass and a local g factor are obtained which depend on the variation of the p-type valence-
and higher conduction-band edges. The effective mass and the spin splitting found in cyclotron and
spin-resonance experiments are explained. A finite spin splitting is obtained at zero magnetic field
and the possibility of determining the interface discontinuity from the spin splitting is discussed.

INTRODUCTION

To describe the band structure of semiconductors in the
vicinity of extremal points, the so-called k p perturbation
theory has been developed by Luttinger and Kohn' and
Kane. The k.p theory is a semiempirical theory which
uses several experimentally determined quantities (energy
gap, effective mass, g factor) defined at a special point
(mostly the I point) as an input. This technique allows
one to determine the shape of the energy bands in the vi-
cinity of the symmetry point to high accuracy without
any need of complicated first-principles calculations. A
reexamination of the k.p theory in III-V and II-VI com-
pound semiconductors has been given by Hermann and
Weisbuch.

In k.p theory the effective band-edge mass is usually
defined as the inverse second derivative of the quasiparti-
cle (electron or hole) energy with respect to momentum at
the valley extremum. Although this concept is quite evi-
dent for bulk electrons, it is not a priori clear if the
effective-mass approach holds at surfaces or interfaces,
where the energy-band structure is strongly modified and
translational symmetry is not preserved.

However, experimental results from silicon metal-
oxide-semiconducting (MOS) inversion layers show that
the effective mass at the interface is equal to the bulk
mass (many-body corrections at low densities neglected" ).
This is qualitatively explained by the properties of the
electronic wave function: On the one hand the electron
penetrates only very little into the oxide; on the other
hand, the wave function spreads many unit cells into the
bulk silicon. Hence the effective-mass approach can be
well applied. A modified effective-mass equation has
been derived by Sham and Nakayama.

Band-structure calculations for narrow-gap semicon-
ductor inversion layers with an infinite potential well have
been performed by several authors.

Within the last ten years a second class of structures
containing quasi-two-dimensional electrons has been
developed. By the successive deposition of adequately
doped different semiconductor materials (such as GaAs-
GaAlAs) heterostructures and superlattices have been
prepared. The main quality restriction is the difference in
the lattice parameters.

Especially for GaAs-GaA1As, the conduction-band

discontinuity is quite low, 250—300 meV, ' so that the
penetration of the electrons from the bulk GaAs into the
barrier GaAlAs cannot be neglected. Self-consistent cal-
culations of the energy bands= including the penetration of
the electrons into the GaA1As have been recently per-
formed by several authors, " ' who phenomenologically
treated the bulk parameter variation in the two materials.

The purpose of the present paper is to describe the in-
fluence of band mixing (or nonparabolicity) in quantum
wells on the electronic structure in detail. Electric and
magnetic subband energies, the variation of the effective
mass, and the spin splitting are calculated.

The formulation of k.p theory in two-dimensional (2D)
systems with more or less abrupt material transitions re-
quires careful handling of several physical problems.

First, the electron densities are high and a single-
particle picture is not sufficient. Working within the Har-
tree approximation, this means that the total energy that
has to be minimized is not the sum of the energies of the
single particles, which obey the usual Schrodinger equa-
tion.

Second, a k.p Hamiltonian has to be derived which de-
scribes the transition between the two materials, by an
adequate decomposition of the eigenstates into Bloch and
envelope functions.

Third, the correct matching conditions of the wave
functions across the interface have to be obeyed. A very
useful study of model effective-mass Hamiltonians con-
cerning this problem has been recently performed by Mor-
row and Brownstein. '

In contrast to elemental (or compound) semiconductors
with an oxide interface the electrons in heterostructures
are confined at the interface of quite similar materials.
The variation of the crystal potential at the boundary is
relatively small. Most important, the symmetry of the in-
volved Bloch functions remains essentially unchanged.
Therefore the loss of translational symmetry normal to
the interface can be mathematically handled within the
framework of k p theory.

A three-level scheme is employed, which is extended to
a five-level model by analogy. The calculation is restrict-
ed to compounds with an s-type conduction-band
minimum at the F point. An 8&8 k.p matrix is derived
and reduced to a coupled equation for the two spin com-
ponents of the conduction band. The different contribu-
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tions to the effective mass and to the g factor are dis-
cussed.

The variational wave functions used in the calculation
are formally identical to those used by Ando' and Bas-
tard. ' The effective mass calculated for GaAs-
Gao 7Alo 3As heterostructures is in good agreement with
the experimental values of Seidenbusch et al. ' The pos-
sibility of determining the conduction-band discontinuity
from the spin splitting is discussed. The experimental re-
sults of Stein and Klitzing' are qualitatively well
described. It is demonstrated that from the variation of
the effective g factor due to light illumination the origin
of additionally created inversion layer electrons can be
determined.

HARTREE APPROXIMATION

The Hartree Hamiltonian for the interacting electron
gas is given by

HH ——g T'+ V',„,+ —,
' g WJ.

2 J+g

where the first two terms denote the kinetic energy and
the external potential acting on the ith particle. The dou-
ble sum over W~z is the self-interaction of the electron gas.

Eigenstates
l P) of the system are represented as a

product of single-particle wave functions:

(2)
2

Varying ( & HH ) —A, & P l P ) ) with respect to the wave
function

l y; ), one obtains the single-particle Hamiltoni-
an:

(3)

The constants A.; are easily identified with the single-
particle energies of the system. Whereas Eq. (3) is the
Schrodinger equation that can be integrated, the total en-
ergy E that has to be minimized is

(4)

For k.p theory, this distinction is essential, since it is the
single-particle Hamiltonian that has to be diagonalized.
'Finally, it should be noted that the exclusion (i&j ) is ir-
relevant for the considered system, where the electron
densities are high.

k.p THEORY FOR HETEROSTRUCTURES

long-range potential V(z) includes the depletion

4'
VD(z) = Ngz,

Ks

and the Hartree contributions

4~e
VH(z) = N, j z —f p(z')(z —z')dz'

KS
00

of the electrons. ~, is the static dielectric constant, which
is assumed to be material independent. Xd and X,~

denote the depletion and inversion charge, and p(z) is the
normalized electronic charge density. Image charge ef-
fects are neglected, since their influence on the subband
energies is very small. '

Figure (la) shows schematically the energy band struc-
ture near the I point ( k =0) in a cubic direct-gap semi-
conductor. The main contributions to nonparabolicity in
the s-type conduction band arise from mixing with the
valence and the higher conduction band, which are both p
type. Figure (1b) shows the potential distribution in a het-
erostructure. The steps in the conduction band, the
valence band, and the spin-split band are denoted by 5„
5„, and 5~. For simplicity the higher conduction band is
not indicated.

In the following the k p matrix is derived for a three-
level model to keep the analytical expressions short. In
the final formulas, however, the full five-band expressions
will be used.

Before investigating the heterostructure case, the princi-
ples of k p theory are shortly reviewed: The first step of
k p theory is to develop the electronic wave function p(k)
in the vicinity of the symmetry point in terms of the sym-
metric Bloch functions uI p.

y( k) = g u((0)f((k) .

The functions u~ p have the symmetry of the direct lattice,
oscillate rapidly, and satisfy the band-edge equation:

[P /2mp+ Vp(x) —e~ p]uI(0) =0 .

The envelope functions f~(k) are slowly varying and
describe the band mixing away from the symmetry point.
The index l goes, at least in principle, over all energy
bands of the crystal. For practical calculations, however,
only the nearest energy bands contribute. The present cal-
culation is for an s-type conduction band, which mainly
interacts with its neighboring p-type valence and higher
conduction band.

The second step of k p theory is to multiply the
Schrodinger equation:

In a heterostructure with the interface in the z =0
plane the band structure is determined by the following
single-particle Hamiltonian:

A =P /2mp+ Vp(x)+ V(z), V(z) = VH(z)+ VD(z) .

X 2
(P u()+

QI
(Pur)P+ P + Vp(x)ur fi

2mo

=e g fI u( (10)

P denotes the momentum operator and mo is the free-
electron mass. Vp(x) is the crystal potential which in-
cludes also the material change at the boundary. The

from the left with u p and to integrate over the unit cells.
The envelope functions fI(k) are assumed to be constant
over the unit cell. They are taken out of the integral and
one obtains a matrix equation for the f~ (k):
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Here the momentum matrix elements between the in-
teracting bands have been abbreviated with ~~ and Eq.
(9) has been used. Equation (11) can be solved by matrix
diagonalization. '

In a heterostructure, k p theory can be applied based on
the following arguments: For most semiconduc-
tor heterostructures, such as GaAs-GaA1As, the differ-
ence of the lattice constants is small. For a particle the
boundary represents mainly a change of the rapidly oscil-
lating crystal potential. Neglecting lattice mismatch, the
symmetry of the two materials is identical and the Bloch
functions are very similar.

Therefore the complete wave function is expanded in
the regime of GaAs unit cells by GaAs Bloch functions
and in the barrier regime by GaA1As Bloch functions.
The continuity conditions for the wave function can be
fulfilled without drastic changes at the boundaries for the
two sets of unit cells.

Without any detailed knowledge of the real wave func-
tions, k p theory generally uses the integral over the unit
cell like a continuous variable (with respect to the en-
velope function). The same principle can also be applied
to the 2D system: The Bloch function integrals over the
unit cells on both sides of the boundary represent mean
values over a few angstroms. The transition between the
two media can therefore, in the k.p picture, be taken into
account by a continuous function h (z) leading from the
GaAs values to the GaA1As values:

y= g f)(z)[u( ' '[1—h(z)]+u( ' ' 'h(z)I .
I

(12)

The transition is, of course, not an abrupt one, since mean
values have to be formed. The description by an abrupt
step function is therefore only justified if the penetration
of the electronic wave function into the barrier material
significantly exceeds the unit cell diameter.

At this point it is useful to mention that, although for
the ternary alloy GaA1As a simple unit cell does not exist
in principle, the averaging procedure over several GaAs-
and A1As-atom pairs leads to a well-defined band struc-
ture. Deviations from the average composition can be
described as alloy disorder scattering. This illustrates that
also the transitions from the GaAs band structure to the
GaA1As band structure can be analogously described by a
relatively smooth function h (z).

The exact band-edge functions u~o as well as the de-
tailed change of the s- and p-type functions from the
GaAs band structure to the GaA1As band structure are
unknown. Therefore it is assumed that the s-type wave
functions are similar in both materials, and that the main
changes occur in the p-type functions.

In the following derivation a magnetic field H normal
to the interface is also included, working in the Landau
gauge. Using the nomenclature of Zawadzki' (see Ap-
pendix A) and using the band-edge equations for the
Bloch functions of both materials, the k p matrix is ob-
tained as Eq. (13), shown at left.

P, = iAB, and P—+ (P»+iP&)/v 2 are genera——lized
momentum operators. a.=i (s

I 8, I p, ) denotes the
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M=e —Ug .
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0

FIG. I. (a) Energy band structure at the I point in five-level
approximation. (b) Band edges in a heterostructure with abrupt
interface (the higher conduction band is not indicated).

In the energy denominators X,M, the kinetic term
P ~/2mp has been neglected. The diagonal term Hp
determines the basic band structure. It can be seen that
the Harniltonian is Hermitian. The form P[1/2m (z)]P is
identical to that obtained by Ben Daniel and Duke, ' who
derived it from current conservation.

The local effective mass m (z) still depends self-
consistently on the separation of the energy eigenvalue e
from the z-dependent valence band edges U„and Ua.
The same is true for the local effective g factor g*(z).
The nondiagonal terms H~2 and H2& contain the ladder
operators P+, which means that only adjacent Landau
levels are coupled. For zero magnetic field, these contri-
butions lead to a finite spin-splitting for nonzero parallel
wave vector.

EFFECTIVE MASS

U, (z) = V(z)+5, h (z),
U„(z)= V(z) Ep 5,—h (z)—,
Ug(z) = V(z) —Ep —6—5gh (z) . (16)

The matrix equation (13) is resolved by substitution, end-
ing up with two coupled equations for the spin-up and the
spin-down conduction band:

0+% s—

where

momentum matrix element of the Bloch functions. U„
U„and Ua represent the potentials of the conduction
band, the valence band, and the spin-split band, including
the potential step:

Neglecting spin splitting, the Schrodinger equation for
the electron motion in the conduction band is

U, +P P el%—) =0.
2m (z)

(25)

(26)

In a three-level model, m (z) is simply given by Eq. (19).
However, since we are interested in a more exact approxi-
mation to obtain reasonable quantitative results, we in-
clude also the contributions of the higher lying energy lev-
els. Following Weisbuch and Hermann the next higher
p-type conduction band is explicitly included in a five-
level approximation, whereas the influence of the remain-
ing energy bands is included in a constant factor C~:

~0 Pu 2 1 Pe 2 1
2 2

=1+Cm+
m (z) 3 N M 3 N' M'

A =U +P P,
2m (z)

(18) Here the band edges of the higher conduction band have
been denoted by U,

' and U~.

1 ~ 2 1 1

2m (z) 3 N M 2mp
—+ + (19)

N'= U,
' —e, U,

' =E)+5,'h (z)+ V(z)

M'= Ua e), Ug E)+b,)+5—gh (z——)+V(z) .

(27)

(28)

fi 1 1A, =IJ,~g*(z)H =@AH
3 l2

. fi dg*(z)
A]2 ———i-= Pv'2 dz

~21 ~12 ~
+

N =e—U„,

(20)

(23)

The momentum matrix elements have been transformed
into P„=2~„mp, P, =2K&mp for the valence and the
higher conduction band, respectively. In the present pa-
per interface grading is not discussed, and the transition
function h (z) will be replaced by the step function
e( —z).

For better analytic handling, the z dependence of the ef-
fective mass is rewritten in the form

1 1 1 —[e—V(z)]a(z)+O[(e V)a]—2

m (z) mp 1+5me( —z)

where for a semiconductor with e—V(z) &&Ep the last expression can be neglected and the other parameters are given by
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~o &U 2+ fag +
3 Q

+
p2 2 1+E) E)+6) (30)

p2
5m = 1+C

3
+Eo+5, Eo+ao+5

P,' 2 1+ , +E)+5,' Ej +6)+6g
(31)

a(z) =a 6( —z)+a+6(z),
r

Pl o 1 2 2 1
a+ —— P„2+ +~, , + 23mp E&& (E&&+go) «&+~i)

(32)
\

(33)

m p (1+25m +5m )

3' o

2 2 1 2 1~V, + +~
~ 2+ 2(Zo+ 5. ) (Zo+ ao+5~) (E)+5,') (E)+b,)+5g)

(34)

mp is the three-dimensional band-edge mass of the bulk semiconductor, 5m is the variation at the interface, and a(z) de-
scribes the additional influence of the nonparabolic band mixing. The factor 5m 6(—z) does not represent the discon-
tinuity to the effective mass of the barrier material, but is only dependent on the steps of the neighboring band-edge ener-
gies.

For the (x,y)-dependent part of the wave function, harmonic oscillator solutions
~

n ) are used:

(35)

Multiplying Eq. (25) from the left with &&o' and integrating over x space, one obtains the following expression for an elec-
tron in the nth Landau level (where cp, =eH/m pc denotes the bulk cyclotron frequency):

..=&U. &+~.&. +-,'&(
"'

)+(P.,
'

P) (36)

The brackets ( ) denote the expectation value with respect to the envelope function y(z). The electron energy e„ is given

by

Rro, &a+ —, &

( )+& Va& +&U, &+, (P, +Va P,
)

I+~,(.+-,')( )+
mo

(37)

The kinetic energy terms are corrected with respect to their "bulk" values. This correction can be either positive or
negative, depending on the signs of the neighboring band discontinuities. This result is in contrast to the phenomenologi-
cal assumption of a loca1 effective mass, which varies proportional to the barrier material values.

Besides intersubband experiments, the best information on the energy levels is obtained from cyclotron-resonance ex-
periments. The relative change of the energy separation between adjacent Landau levels is interpreted as a variation of
the effective mass:

~c
m*(n ~n +1)=mp

&n+1—&n
(3g)

Inserting Eq. (36) into Eq. (38) and keeping only the leading terms of the nonparabolicity, the effective mass in a hetero-
structure can be written as

1+(2n +2)fuo, (a) + (P,aP, )
vl o 2fPl o

1 —p
8-

1+5m

+ . P, P l+&a&ap +& V&&a& —&Va& .
2pyzo

' 1+5m6( —z)
(39)

The contributions to the effective mass are easily identi-
fied: The expression p =(6(—z)) is the amount of
charge density penetrating into the barrier. The kinetic
terms show the typical nonparabolicity behavior, where
the factor (a) corresponds to an effective gap. The
direct influence of the potential ( V) is very small, since

the last expression cancels. The present result demon-
strates that the kinetic terms, represented by differential
operators, couple the s- and p-type bands together and are
responsible for the nonparabolicity. In other words, the
smooth potential V(z) mainly quantizes the motion and
thereby increases the kinetic contributions.
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VARIATIONAL SOLUTION
AND MATCHING CONDITIONS

which are proportional to the ladder operators P+.

Until now, the exact wave functions have not been
determined. It should be kept in mind that, although the
single-particle Schrodinger equation (25) holds, the total
energy of the system that has to be minimized is given by

dg*(z)~p+A s E t~. P

i P+dg (z)
V2 dz

2

Etot g ei ,"«). (40) ,' pgg—*(z)H,

p2

(49)

In principle, Eq. (25) has to be integrated numerically. In
the present paper, appropriate variational wave functions
are used, which have been demonstrated by Ando' to
yield very accurate energies for the zeroth electric sub-
band. Thus, our task is to evaluate the expectation values
( ) and to minimize the total energy with respect to the
variational parameters.

Before doing that, however, we investigate the match-
ing conditions at the interface. Morrow and Brownstein'
have pointed out that since the right-hand side of

—1=
2

p2

3 Pf I ~l g

In analogy to the local effective mass Eq. (26), also the
contributions of the higher conduction bands (including a
constant factor Cg) to the local g factor g*(z) are taken
into account. The g factor is now rewritten in the form

y(z) =, (U, e)tp(z—)
1 d 2

dz m z dz

g'(z) =gp +5g'6( —z) —P(z) V(z),
(41) where

is finite for all z, the left-hand side must be similarly well
behaved. This implies that, integrating from —5 to +5
and taking the limit 5~0, the expression

P,
go ——2 1+Cg— 1

Ep+ Ao+e

1

m (z) dz
(42) P, 1+

3 EI —e E)+AI —e
(52)

is continuous at z =0. In other words, although the abso-
lute value of the envelope function y(z) is continuous, the
derivative dip(z)/dz is discontinuous, where the step is
determined by the abrupt variation of the effective mass:

5g =2 1+Cg- P,
Eo+6, + e Eo+ao+5~+e

(z =0 ) =(1+5m ) (z =0+) .
dZ dZ

(43)

The nondifferentiability of the envelope function at the
interface is due to the step-function approximation,
whereas a more realistic graded interface would yield an
adequately smooth behavior.

Finally, the trial wave functions are given by'

v'Bb (zb+k)e '~, z )0
m(z)= '~C„-n (44)

Using the matching conditions at z =0 and requiring nor-
malization, three of the five parameters can be directly ex-
pressed in terms of the two remaining trial parameters b
and k:

and

P(z) =P 6( z)+ f3+e(z—),
2 2 1

P, (Ep+e)'
1

(Ep+ b,p
—e)

2 1 1+Pc 2 2(Et —e) (Et+A, t —e)

P, 1+
EI +5,' —e EI +6)+5g —e

(53)

(54)

(55)

c =b (2—k)(1+5m )/k,
B =c/[bk +c(2+2k+k )],
C =Bbk /c .

The expectation values ( ) are listed in Appendix B.

(45)

(46)

(47)

2 2 1P
(E,+ 5„+e)' (E,+bp+5i, +e)'

2 1 1+P, 2(Et+5,' e) (E—t+At+5i, e)—
(56)

SPIN SPLITTING

The spin splitting is, determined by the Pauli-spin term
H, and by the nondiagonal parts of the Hamiltonian,

If the spin splitting is not too large, the energy e can be
kept constant in the denominators.

For the envelope functions (ft,f2), the following ansatz
is chosen:
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ci in)
~

„+1) y(z),

where the separability of the (x,y)-dependent part greatly
l

E„=(U,)+(P, P, )+Rro, (n+1)+
2 &ted z

simplifies the calculation. The z-dependent part is again
represented by the variational wave function y(z).

Taking expectation values ( ) with p(z), two linear
equations are obtained for the coefficients ci and cz. The
resulting energy levels are given by

1/2
1/2,

and the spin splitting is determined by subtracting:

2 4' 2
2

e„+, „e+=—2(A, )+ ~
v'n+1(vn +v'n+2)/(fico, —2(~, )) .

8~o dz I
(59)

At zero magnetic field the Pauli-spin term vanishes, the
oscillator functions

~

n ) must be replaced by
exp(ik„x+ik~y), and the residual spin splitting is given
by

2mo dz
(60)

The loss of inversion symmetry leads to a finite spin split-
ting also at zero magnetic field, at least for nonzero paral-
lel wave vector kz. This result is in good agreement with
recent spin-resonance experiments of Stein and Klitzing. '

The variational matrix elements for the diagonal term
(A, ) are listed in Appendix B. The evaluation of the ex-
pectation value (dg*(z)/dz) can be performed without
detailed knowledge of the wave function. For a bound
state the mean value of the electric field vanishes and the
relation

de dV z de —z
(61)

holds. The expectation value for the slowly varying elec-
tric field d V(z)/dz is given by

(
d V(z) 4n.e

dz Icg
d+ p ei (62)

(
de( —z) 4~e

d+ 2 inv (63)

The matrix element (dg*(z)/dz) contains the same ex-
pressions as the above equations, only the conduction-
band potential is replaced by the valence-band potential.
The nondiagonal spin-splitting factor can therefore be
evaluated to be

5g* Nd +%elx +13 +p (0 13 )—
C N

(64)

Therefore also the derivative of the transition function
(de( —z)/dz) can be obtained by combining Eqs. (61)
and (62):

DISCUSSION

A k.p Hamiltonian has been derived to describe the
electronic structure of two-dimensional systems in semi-
conductor quantum wells. Many-body effects are includ-
ed in the Hartree approximation, where the single-particle
Hamiltonian is diagonalized within the framework of k p
theory. The kinetic energy is of the form

&I I/[2m(z)]IP. m(z) is a local effective mass, which
depends on the energy separation of the electron from the
neighboring p-type bands. Analogously, a z-dependent g-
factor g*(z) is defined. The spin splitting is increased by
a nondiagonal contribution, which couples adjacent Lan-
dau levels and remains finite even for zero magnetic field.

The calculations are performed with the help of varia-
tional wave functions. If the interface is approximated by
an abrupt step function, the slope of the envelope function
is discontinuous at z =0, and the variation is proportional
to the local effective mass variation.

Cyclotron- and spin-resonance experiments measure to
a high accuracy the nonlinearities of the energy separation
between neighboring Landau levels and spin levels. The
nonparabolic energy fine structure is usually described in
terms of an effective-mass and g factor variation.

The theoretical results ' are discussed for GaAs-
Gao 7Alo 3As heterostructures, where the theory can be
tested by high precision experimental data. In the GaAs-
GaA1As system the energy gap is so large that the quanti-
ties e and V(z) can be well expanded when appearing in
the denominator. Therefore all the relevant matrix ele-
ments can be evaluated analytically and the numerical
work is reduced to the total-energy minimization with
respect to the variational parameters. However, it is
necessary to mention that for very-low-gap materials,
such as InSb, these approximations are misleading and
Eq. (25) must be integrated numerically. Another advan-
tage of the GaAs system is that at low temperatures and
not-too-high electron densities only the lowest electric
subband is occupied, which greatly simplifies the calcula-
tions.

The band-structure parameters for the GaAs and the
Ga07Alo3As are given in Table E. The constants C~
and Cz are taken to be C~= —1.8 and Cz ———0.01. The
momentum matrix elements P„=28.9 eV and P, =6 eV
and the static dielectric constant a, =12.8 are assuined to
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TABLE I. Band-edge parameters Eo, E~, bo, A~ (all in meV), effective mass mo (in units of mo),
and effective g factor go for GaAs and Gao 7Alo 3As (Ref. 20).

GaAs
Gao.~Alo. 3

1519
1900

Ei

3140
2842

bo

341
310

—171
—171

fPl o

0.066
0.086

go

—0.44
0.4S

be equal for the two materials.
The exact barrier height for the conduction band is not

very well known. Furthermore, it can be sample depen-
dent, since the epitaxial formation of a barrier depends on
the growth conditions. For high-quality samples, the usu-
ally accepted value is 85%, whereas some new experi-
ments with p-type channels indicate a lower value. ' In
the following also the possible determination of the bar-
rier height from the energy fine structure and the nonpar-
abolicity sum rules will be discussed.

A. Effective mass

The dependence of the effective mass on the material
parameters and on the charge densities is derived in Eq.
(39). With respect to the bulk value, it is mainly changed
by two contributions: First, the electron penetrates into
the barrier material and "feels" the local variation of the
band-edge parameters. The conduction-band step always
leads to an increase of the effective mass. The influence
of the valence band and of the higher conduction-band
discontinuities can be either positive or negative, depend-
ing on the material parameters. Altogether, these contri-
butions are similar, but not equal to the variation of the
bulk effective mass. Second, the kinetic terms contribute
similarly as in three dimensions. The direct influence of
the slowly-varying potential V(z) is negligible. This is
qualitatively explained by the fact that the potential only
quantizes the electron motion, whereas the increase of the

kinetic energy couples the s- and p-type bands together.
Figure 2 shows the amount of charge density penetrat-

ing into the GaA1As barrier as a function of the barrier
height, which is normalized with respect to the fundamen-
tal gap difference 5E& ——Eo(Gao7Alo3As) —Eo(GaAs) of
the two materials, for N, ~

——3X10"/cm and for two de-
pletion charge values. The increase of p with decreasing
5, is significant, but the absolute value is just a few per-
cent. A stronger background (depletion) field also in-
creases the penetration into the GaA1As.

Figure 3 shows the effective mass for the (0—1)
cyclotron-resonance transition at H =6 T as a function of
the electron density for two depletion charge densities and
5, /5E~ =85% (solid line) and 5,/5' ——60% (dashed
line). It can be seen that the effective mass is more sensi-
tive to the depletion charge than to the inversion charge,
whereas the 5, dependence is very weak. The absolute
value of the effective mass agrees well with the experi-
mental value of Seidenbusch et al. ' Unfortunately, the
experimental uncertainty of the depletion charge density
makes the determination of 5, via the effective mass prac-
tically impossible. However, the dependence of the effec-
tive mass on the potential is important if other fine-
structure effects such as polaron interaction are studied.

B. Effective g factor

A local g factor g (z) has been defined which depends
on the potential variation of the valence and the higher
conduction band in the z direction. At high magnetic
fields the Pauli term p~(g*(z))H dominates the spin
splitting. The nondiagonal term is proportional to
( dg (z) /dz )P+ and couples adjacent Landau levels.
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I I
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FIG. 2. Charge density p penetrating into the GaA1As as a
function of the barrier height, for Xd ——3&(10"/cm and for
two depletion charge densities.

0.0675
1 3 4

N~~ (10 /crn2)

FIG. 3. Effective mass for the (0—1) cyclotron resonance
transition as a function of electron density, for two X~ values
and 5, /5E~ =SS% (solid line) and 5, /5E~ =60% (dashed line).
The experimental value (+ ) is taken from Ref. 16.
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Therefore the nondiagonal contribution to the spin split-
ting is stronger at low magnetic fields, where co, becomes
small. For k& &0, the splitting remains finite even at zero
magnetic field. The present theory is more general than
the results of Okhawa and Uemura, ' who derived a zero-
field splitting proportional to (dV/dz) and obviously
neglected the influence of the interface electric fields
-5g (6(—z)/dz). Ando's argument that the average
electric field in the conduction band vanishes
((dU, /dz ) =0) and that the spin splitting should be very
small is not correct since only the derivatives of
U„(z), Ua(z), . . . appear in (dg/dz).

In Fig. 4 t'he splitting for kt =kz 't/n. N——is plotted as a
function of the electron density for two 5, values and
Nd=10'/cm (solid line) and N~ ——3X10' /cm (dashed
line). Although the depletion charge dependence is again
relatively strong, the influence of the barrier height is con-
siderably stronger than it was for the effective mass. A
higher valence-band discontinuity results in a stronger
splitting. Therefore a detailed experimental study of the
spin splitting at zero field can be used to determine the in-
terface parameters.

Stein and Klitzing' performed electron-spin-resonance
experiments in GaAs-GaAlAs heterostructures at H ~ 2.5
T and found a significant deviation from the three-
dimensional values. Their extrapolation to zero magnetic
field yields a splitting of the order of our theoretical
values. However, the extrapolation to H =0 is not
unique, so that this comparison cannot be considered as
reliable. Figure 5 shows a direct comparison of the data
of Stein and Klitzing (the magnetic field perpendicular to
the surface) with our theory. The spin splitting is plotted
as a function of the magnetic field for
X,~

——4.6& 10"/cm, %d ——6X 10' jcm, 5, /5Eg ——o.6
(solid hne), and 6, /5Es =0.85 (dotted line). The dashed
line indicates the bulk GaAs value. The "diagonal" spin
splitting at high magnetic fields depends only weakly on
the barrier height, and a stronger penetration into the bar-
rier reduces the splitting, since 6g* is positive.

Although about 60% of the deviation from the bulk
GaAs value are well described, there remains an unex-
plained discrepancy between our model and the experi-

40

N+l=4.7~10 /crn

Nd = 6x10 /cm
10

bulk GaAs value

I

2.5 7,5

H (T)
FIG. 5. Spin splitting versus magnetic field for electrons in

the first Landau level, for 6, /5Eg =60% (solid line) and
6, /5Eg =85%% (dotted line). The present theory explains about
60% of the experimental deviation from the bulk GaAs value.

0.5— expt. /17/
0

mental results. An improvement is expected from more
exact wave functions including exchange and correlation
effects in the energy calculation, warping effects, and
from a more detailed investigation of the Bloch function
matching at the interface.

Stein and Klitzing also observed an increase of the reso-
nance energy when the carrier concentration was in-
creased by light illumination. The present theory can
unambiguously explain the origin of the additional charge
in the channel. In principle, this charge can be due to a
transfer either of depletion charges or of charges from the
GaA1As across the barrier. In the first case the potential
V(z) becomes considerably weaker; in the second case it
becomes stronger. Only a weaker potential will result in

N

C3

20 N

H=6.81 T
(c)

Nel(10 /cm )

FIG. 4. Spin splitting at zero magnetic field versus charge
density for electrons at the Fermi surface with wave vector k+,
for two barrier heights and for Xq ——10' /cm (solid lines) and
X~——3X10' /cm (dashed lines).

Nel (1010lcm2)

FIG. 6. Variation of the spin-resonance frequency when ad-
ditional charges hX, l are introduced in the channel by light il-
lumination. The experiment (Ref. 17) can only be explained if
the new charges are taken from the depletion layer [curve (a)].
Cases (b) and (c) show for comparison the result if 50% and
100% of the charges come from the GaAlAs. Before illumina-
tion, the electron density was Xd ——4.66&10"/cm and the de-
pletion density was Nd ——6&(10' /cm . The barrier height is
6, =0.6/5Eg, and a higher value yields the same result.
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an increased spin splitting, since in the GaAs-GaA1As
heterostructure the nonparabolicity reduces the effective g
factor. In Fig. 6 three cases are compared with the exper-
imental results. The magnetic field is 6.81 T and
5, /5Eg ——60%. The electron and depletion charge values
at the beginning of the experiment are N, ~

——4.66
&&10"/cm and N~=6&&10' /cm . Curve (a) describes
the situation when all charges are taken from the de-
pletion layer. In case (b) 50% and in case (c) 100% of the
charges are taken from the GaAIAs material. It is seen
that only a reduction of the depletion charges can explain
the experimental data.

As a conclusion, I can state that a careful analysis of
cyclotron-resonance and spin-flip experiments reveals new
information on the band structure in two-dimensional sys-
tems. From a detailed study of the energy fine structure,
band-edge discontinuities as well as the mechanisms of
charge transfer at light illumination can be determined.
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where R+ (X+——i F)/~2 and the symbols W( t ) and
P( 1 ) mean spin-up and spin-down functions, respective-
ly. The angular momentum is quantized in the z direction
and the zero of energy is chosen at the bottom of the con-
duction band. S and (X, I;Z) are periodic functions
which transform like atomic s and p functions under the
tetrahedral group at the I point.

For the magnetic field in z direction, generalized
momentum operators are defined:
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APPENDIX A

I' ==p+ —A,
C

which obey the following commutation relations:

[E'„,Py j= i,—[P„P„j= [P„Py j=0 .

(A9)

(A10)
For the band-edge Bloch features u~p the following

states are chosen, which include the spin-orbit interaction
to first order of perturbation theory:

In Landau gauge vector potential is A=( H~, O, O) a—nd
l =v'Pic/eH is the Landau radius.

u )
——iSW( t ), e(p ——0

u 2 iSW(——L ), e2p ——0

u 3 =R+P'( t ), e3p ———Eo

~(1), e4o= Eo—

(Al)

(A2)

(A3)

(A4)

APPENDIX B

The different expectation values that must be evaluated
are split into the two contributions from the integral
smaller and larger than zero:

u5 —— R W(t)+( —', )' ZW(l), e5o ———Eo (A5)
3
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