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A simple and unified description of conduction- and valence-band confinement states in a quan-
tum well is developed. In particular, the lowest confinement states in GaAs/Ga;_,Al,As (0<x < 1)
are accurately described. From a detailed comparison with a much more involved, 20-band, tight-
binding description, the accuracy is estimated to be better than a few percent in the confinement en-
ergies. The description is easily numerically implemented.

I. INTRODUCTION

The present paper aims at a simple, precise, and unified
model description of conduction- and valence-band con-
finement states in a quantum well. Our main interest is
GaAs/Ga;_,Al,As, but the model may also be applied to
other quantum wells where charge transfer -across the in-
terface is irrelevant, i.e., to type-I quantum wells. In the
past several models have been proposed for the description
of these states. Dingle! has used a simple “particle in the
box” description with different effective masses for the
particle in the well and in the barrier and with a confine-
ment potential determined essentially by the different
electron affinities of the well and barrier materials. The
model is physically appealing because of its simplicity and
transparency. It has been used by Mukherji and Nag?
and, more recently, by Vojak et al.® to describe the
GaAs/Ga,;_,Al,As quantum well.

A most elaborate description of confinement in a quan-
tum well has been given recently by Schulman and
Chang.* They describe the complex band structure of the
well and barrier materials using an s,p,s* nearest-neighbor
empirical tight-binding model.> The confinement states
are obtained by expansion in terms of the well and barrier
eigenstates at the confinement energy. The method is in
our opinion the most precise existing semiempirical
description of confinement. A comparison of the results
of the simple Dingle model and the elaborate Chang-
Schulman model shows that the simple model is only
applicable for very small confinement energies, i.e., for
large well widths and/or small potential steps. This is
still true® if the incorrect envelope derivative continuity in
this model is replaced by the more appropriate continuity
condition as derived by White and Sham’ and Bastard.}?
Apparently the simple model is too simple. A model of
intermediate complexity is due to Bastard.’ It uses a
Kane!® envelope function description involving six bands
(including spin): two bands describe the bottom of the
conduction band and four bands describe the top of the
valence band. The spin-orbit split-off band is disregarded
as well as, except for the heavy holes, the coupling to oth-
er bands and the free-electron dispersion part. The latter
effects are included by Altarelli,!! but the split-off band is
still disregarded. Indeed the description is mainly intend-
ed for the quantum wells InAs/GaSb and HgTe/CdTe,
where the spin-orbit splitting is large, and not for
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GaAs/Ga;_,Al, As, our main interest. A further disad-
vantage of the Bastard’ approach is that only one adjust-
able parameter is available to describe the electron (el) and
light-hole (lh) bands; the parameter is the matrix element
of the momentum operator between a top valence-band
state and the bottom conduction-band state. As a conse-
quence this parameter must be given different values to
describe the different effective masses in the el and lh
bands. The approach by Altarelli,!! containing more ad-
justable parameters relating to the coupling with other
bands, does give a unifying description of these bands.

In this paper we present a simple Kane-type model
which includes the el, 1h, heavy hole (hh) and spin-orbit
split-off (so) band and, perturbatively, the coupling to the
other bands. The model contains for each material, four
adjustable coupling parameters which are fixed by the el,
1h, hh, and so effective masses in the I" point. A unified
description of the dispersion of the four bands is thereby
achieved. The model is then further simplified. For the
el and hh confinement a Dingle-type particle in the box
description is derived. However, the el effective masses in
well and barrier will be energy dependent according to our
Kane model. For the lh confinement, a similar descrip-
tion pertains unless the confinement energies become
comparable to the spin-orbit splitting. In the latter case
we use a simple Kane-type model in which only the 1h
and so states are coupled. The so-hole confinement will
not be dealt with.

The results from our simple model description are in
excellent agreement with the results from the much more
accurate Chang-Schulman analysis when our I'-point el,
hh, 1h, and so effective masses are chosen in accordance
with the corresponding masses in their s,p,s* tight-
binding analysis.

In the following, we discuss the el, hh, lh, and so Kane
model and the problem of spurious solutions (Sec. II), the
reduction of the model to the particle in the box descrip-
tions and the lh-so Kane model (Sec. III), the comparison
with the Chang-Schulman results (Sec. IV) and the prob-
lem of the choice of the effective masses when application
to experimental spectra is intended (Sec. V). Results are
summarized in Sec. VL.

II. KANE MODEL

We describe each constituent material of the quantum
well with an eight-band Kane model. The set of I'-point
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basis states includes the s-like spin-up and spin-down con-
duction band states, the fourfold p-like j =+ valence
band states and the twofold j=+5 spin-orbit split-off
valence band states. All the other bands are taken into ac-
count perturbatively using a Lowdin renormalization pro-
cedure.!® We take the quantization axis of the angular
momenta to be perpendicular to the quantum well inter-
faces and call it the z axis. As usual we set the Kane B
parameter equal to zero, smce B=£0 yields only a minor
k3 contribution to the bands.!® We also dlsregard the k-
dependent part of the spin-orbit coupling, since the corre-
sponding term linear in k in the dispersion of the bands is
extremely small.'® Inversion symmetry is then effectively
restored in the materials and the eigenvalues occur in de-
generate pairs, the Kramers doublets. The eight I'-point
basis states in the Kane-type k-p analysis then decouple
into two sets of four states, i.e., the set

and the set Ku,, Kuy,, Kuy,, and Kuy,. Here K corre-
sponds to the product of inversion (s— —s,p—p), com-
plex conjugation, and reversion of the spin. As usual, the
designations s, x, y, and z refer to the corresponding sym-
metry properties under operations of the tetrahedral
group. For k,=0 and k, =0, the only case we deal with,
we write the wave functions as

=3 Flzulr), )
J

where u;(r) is the periodic Bloch part and Fjl(z) describes
the envelope of the wave function which is slowly varying
on the scale of the lattice constant a. The designation /
refers to the well material (I =1) or the barrier material
(I1=2). The label j runs over the states from Eq. (1) as
well as over the other I'-point states. When the effect of

ug=|3,3)=1s1), (1a) the latter is included in the Schrodinger equation by
303 . Lowdin renormalization we obtain
uhh='7y—2_>:——z_l(x+ly)T>7 (lb)
1 ) ~ (H'—[(l —1)8E,+E]L}F'=0, 3)
up=| 5,30 =T= [+ =1V F]z1), (o) ’
. 1 where F' is the column vector (FII ,Fé,Fé,F‘I;), I is the
Up=|3,3)= 7 [(x+i)1)+[z1)], (1d) unit matrix, H'is the matrix operator,
|
Eltvsle  —/Zipk /Lipik 0
l V' 2Pk —(i+uhe 2yl 0
I_J = ~ ~ -
-V LiPk  2V2yle  —Al_yle 0 @
0 0 0 —(yl—2¢h)e
T
k stands for —id/9z, Egl is the gap of material / and A’ from the secular equation,
its spin orbit splitting. The zero of energy is at the PPN
valence-band edge in the well. The operator €=#2k2/2m. [|[H(k=k)—[(I —=18E, +E]IL||=0. (8)

The valence-band discontinuity is denoted by 8E,. The
coupling between s and p, states is described by
po_7

m ¥ unit cell

dxglir) o= gh (x) 5)

m self-explanatory notation. The parameters s, yl, and
yz describe the combined effect of the free-electron term
in the Kane ap?roach and the coupling of the s states (s’)
and P, states ( ‘;/ and *yz to the other bands. The parame-
ters yl and yj are modified Luttinger parameters Thelr
relation to the true Luttinger parameters ¥} ; and y5 '

is given by
o —rh=LpE] ©)
om YLL V=73 ,

ﬁZ
E(yé_L —y)==+(PY2/E}. @)

We now first discuss some properties of the bulk ma-
terials. The bulk wave functions are obtained from the
ansatz Fjl o« e’ where k labels the wave functions in ac-
cordance with translational symmetry along the z direc-

tion. The energy-dispersion relation E (k) then follows

The hh band is completely 'decoupled from the other
bands and its dispersion is purely parabolic with an effec-
tive mass satisfying

m/mi=v1—275 . O

For k near zero, the dispersion of the other bands is also
parabolic and the corresponding effective masses are

m/mby=s'"4+ (145D, (10)

m/miy=yi+2y3+A", ‘ (11)

m/ml =yl 410, (12)
where

M=4m(P"?/(3#E]) , (13)
r'=E; /(E{+ A" . (14)

It is now clear that knowledge of the four TI'- pomt effec-
tive masses mél, mlllh, mfh, and m, assuming E and A/
to be given, completely determlnes the four couphng pa-
rameters P!, s 7/1, and 7/2, and thus yields a unified
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description of the el, hh, lh, and so bands

In the approach of Bastard s/, ¥}, and 7} are set equal
to zero in the el and 1h band and the limit A" oo is tak-
en, having materials with large spin-orbit splittings in
mind. The ([-point) effective masses of el and lh bands
are then automatically equal. Setting s/, ¥}, and y} equal
to zero for the case we have in mind is physwally unreal-
istic. For example for the well material the dispersion re-
lation of the el, 1h, and so bands then becomes

E(E —E\V"NE +A"Y)
(1)y27,2 __ g
(P2 2= Eilal , (15)

yielding infinite k2 values when E approaches —+A").
Moreover, m’, mfh, and m!, are determined by one pa-
rameter only, A. it is easily verified that this is not con-
sistent with the expenmental values of the effective
masses. Finally, setting 7/, and 72 equal to zero in the hh
band is clearly unrealistic since it yields a dispersionless
hh band.

Having established a simple model for the bulk band
structure as determined by the gap, the spin-orbit splitting
and four effective masses, we now turn to the quantum-
well problem. The envelope functions F'!’ and F‘? must
then be joined across the interfaces by suitable boundary
conditions. Since we are dealing with type I quantum
wells, potentials arising from charge redistribution across
the interfaces will be disregarded; we work in the so-called
“flat-band” approximation.’* From the structural simi-
larity of the isoelectronic materials in the quantum well,
the approximation is invoked in which the basis wave
functions u JI , j =el, hh, 1h, so, are the same in the materi-
als 1 and 2 This then also implies P'V'=P»=P. Later
on when s/, P/, ';/1, and 7} are determined from the four
given effective masses in each material we will check for
the continuity of P’

The continuity of the u part of the wave function is ac-
tually a troublesome assumption: It cannot be correct ex-
actly. The excellent agreement between the results from
our approach, using that assumption, and the Chang-
Schulman nearest-neighbor tight-binding approach, not
containing the assumption, is an a fortiori demonstration

of the usefulness of invoking the continuity of u, at least’

for GaAs/Ga,_,Al,As. Our results are consistent with
the outcome of a recent analysis by Zhu and Kroemer,*
who derive interface connection rules similar to ours when
a nearest-neighbor tight-binding description is used for
two very similar semiconductors.

Continuity of the wave function now implies

F(l):F(l) (16)

at the interfaces. The further boundary conditions on the
envelope functions are obtained as follows. Equations (3)
and (4), with say / =1, can also be considered as the equa-
tions describing the quantum well as a whole when s, P,
71, and ¥, are considered as functions of z. For such
“effective-mass-type” functions to be defined they must
change slowly on the scale of the lattice parameter. At
the interfaces they will change rapidly on the scale of the
envelope changes. Of course the Hamilton operator H
must be suitably modified to ensure its hermiticity; cf.
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Bastard.? Integration across the interfaces of the resulting
equations then yields

Qmaaz ZQm%Fm 17
at the interfaces. The matrix D’ is given by
-st 0 0 0
0 yi+2y; —2v2y, 0
D'= 0 —2v3y " o . (18)
0 0 0 yi—2/}

Note that for interfaces with monolayer sharpness, the ap-
proach, strictly speaking, does not hold. However, studies
by Schulman'® have shown that the dependence on gra-
dients in grading interfaces is very weak. Note also that
the boundary conditions (17) are of the same type as de-
rived by Altarelli.!! However, we do not use continuity of
the current to derive these conditions. The currents asso-
ciated with the well part and the barrier part of a confine-
ment state are zero because the corresponding parts of the
state are real valued.

Obtaining the confinement wave functions and energies
is now in principle simple. At a given energy E the
dispersion relation (8) is a polynomial of degree 4 in k?
and so it yields eight solutions, k E ), a=1,...,8. The
corresponding eigensolutions are F (E). A confinement
state is then formed out of the linear combination of eight
well and eight barrier solutions. Equations (16) and (17)
at the two interfaces determine the 16 coefficients in-
volved in the linear combination by means of a secular
equation involving a 16X 16 secular matrix. Solving that
equation yields the confinement states and energies.

At this stage of the discussion it is important to make
two observations. First, the problem to be solved is still
rather complicated. This is annoying from a physical
point of view, especially since many approximations have
been' invoked already. Second, there is something wrong
with the description given. For each energy E there are
four solutions k2. Three of them are physically realistic
and the corresponding complex band structure'® is depic-
ted in Fig. 1 for the set of parameters to be used later on.
The hh band is completely decoupled from the other
bands and corresponds to imaginary k (k2 negative) for
energies above the top of the valence band. The el and lh
bands are coupled across the gap by an “imaginary” band.
The fourth k? solution, not depicted in Fig. 1, is a physi-
cally unrealistic and thereby spurious solution. Numeri-
cally it corresponds to k values outside the Brillouin
zone. Basically the spurious solution has its origin in the
incompleteness of the set of basis functions in the Kane
approach, which makes it impossible to satisfy the period-
icity relation E(k)=ZE (k +2mn /a) in the Brillouin zone;
a is the lattice constant, n =0,1,2,.... The spurious
solution corresponds to a solution outside the Brillouin
zone which is not, but should actually be, a periodic con-
tinuation of the solution inside the Brillouin zone. The
problem is now that the spurious solutions are taken com-
pletely seriously in the construction of the confinement
wave functions as given before. Although this may not be
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FIG. 1. Complex band structure of GaAs and AlAs describ-
ing energy E versus complex k perpendicular to the quantum-
well interfaces as calculated from Eq. (8) using the parameters
of Table L.

of significant influence on the confinement energies and
states finally obtained, it seems at least dangerous to base
the calculations on a model containing physically unreal-
istic solutions. In view of these observations, i.e., the lack
of simplicity and the presence of spurious solutions, we
propose much more simple and physically realistic models
in the next section.

The spurious solutions are related to the wing-band
solutions discussed by White and Sham.” Both types of
solutions correspond to k? values outside the Brillouin
zone. However, the wing-band solutions are rapidly de-
caying whereas the spurious solutions are oscillatory in
nature. In contrast to the oscillatory solutions, the decay-
ing ones do not strongly influence the determination of
confinement energies. However, the two-band, electron-
light-hole-type, Kane matrix proposed by White and
Sham’ is not consistent with the actual matrix appearing
in a Kane-type description of GaAs in the limits A=0
and A= «. This is easily verified tracing back the origin
of the modified Luttinger parameters in the two-band
model. The actual two-band matrix for GaAs (or AlAs)
does yield spurious- and not wing-band solutions.

III. SIMPLE MODELS FOR CONFINEMENT

The hh band is completely decoupled from the other

bands. According to Egs. (3) and (4), the heavy holes
satisfy a particle in the box description according to
# ]
—————5—(l—1)8E,—E |Fy;,(2)=0, (19)
2m {,h oz 2 v hh

with the boundary conditions

Fii)=F, (20)
1 9 ,.m 1 9 .=
= —F 21
il 2
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at the two interfaces. ‘Equation (21) follows from (19) by
means of direct integration across the interfaces as
described in the preceding section.

Since the gaps in the well and the barrier material are
large compared to the confinement energies, it seems
reasonable to hope that a separate description of electrons
and (Ih + so) holes is possible. For the electrons one may
then also take a particle in the box description according
to

—Li+E’ (1—1)8Ey—E |FL(z)=0, (22)
zmel( )a 2 V el ’
with the boundary conditions
Fi'=FY, 23)
1 3 (D 1 3 L
———F ' =————F (24)
m(E) @'(E) oz

The energy-dependent effective mass m’j(E) is chosen in
such a way that
#2k?
E—E!+(—-1)8E,=—F—, 25
& v 2m é](E) 25

where, for a given energy E, the wave vector k is chosen
to be on the (complex) electron branch of Fig. 1. One may
actually “derlve” Eq. (22) from Egs. (3) and (4). For E
close to E ), we may disregard the terms mvolvmg 7
and 72 compared to E, or better still, replace k? in these
terms by an energy-dependent expression in accordance
with Eq. (25). The envelope functions Fy, and F,, may
then be eliminated and we end .up with Eq. (22). Note
that this procedure implies that the dominant contribution
to the column vector (Fg,Fy,,F,,) is of the form
exp (+ikz), where k*(E) describes the electron branch of
Eq. (25). In the next section we will see that Egs.
(22)—(24) provide an excellent description for the electron
confinement states. ,

The description of the lh confinement states is more
complicated. The confinement potential step may be
comparable to the spin-orbit splitting. An example is
GaAs/AlAs (see the next section). The confinement ener-
gies may then also be comparable to the spin-orbit split-
tings and so the lh-so coupling cannot be disregarded.
The question is then how to cope with this problem
without having to deal with a spunous solutlon We must
realize that the parameters s’, 7/1, and ‘}’2, descrlbmg the
effects of bands not exphcltly described in the model,
strictly speaking, depend on energy. The Lowdin renor-
malization gives expressions for them with an energy-
dependent denominator, such as E — E for s, ignoring
the free-electron part. Here E! is the energy of the I'js
state closest to the conduction band edge. For
E E +(I —1)8E, we find the expression usually quot-
ed!® and which is a good approximation for energies close
to the conduction band edge. For E close to the valence
band edge s’ will be considerably smaller. However, for
such energles the dispersion relation is not sensitive to the
value of s'. Thls is understandable as — s'€ is then much
smaller than Eg —E. We have numerically verified that
this is indeed true for the examples we have studied. An



ultimate consequence of this is that we may put s’'=0
when we are interested in the determination of the hole
confinement energies. The envelope function F’; may
then be eliminated from Egs. (3) and (4) and we end up
with

{G'—[I—1)8E, +EIL}f'=0, f'= ﬁ*‘ , (26)
where
i |TaE 27)
cle —ble
and the quantities a', b', and ¢! are given by
a'=1yl+yl+ 1, (28)
b'=(yi+1"/2, (29)
c=yi+mh V2, (30)
where I’ depends on energy according to
II'=2mP?/{3#[E} — (I 1)8E, —E]} . 31)
‘The dispersion relation as given by
||G'—[(I—1)8E,+E]I||=0 (32)

now describes the 1h and so band dispersion, and, being of
the second order in k2, contains no spurious solution.
Along the lines described in the preceding section we
derive the continuity relations

f—f@ ‘ (33)
d i)
A(l)_ f(l)=A(2)_f(2) ,
= 0z - 9z (34)
where the matrix 4/is given by
—al ¢!
I_
dl=| & (35)

This leaves us with a simple description of lh confinement
involving no spurious solutions.

When the confinement potential step of the light holes
is considerably smaller than the spin-orbit splittings, the
confinement energies will also be smaller than these split-
tings. In the next section we will see that examples are
furnished by GaAs/Ga;_,Al,As with x <0.4. A treat-
ment similar to that of the electrons is then possible, i.e.,
the Egs. (22)—(24) with el replaced by lh, and where
ml,(E) satisfies

27.2
E+(l—-1)8E,,=——-ﬁ,k— , (36)
2m ]h<E )

for a given E the wave vector k is chosen to be on the
(complex) 1h branch of Fig. 1.

The confinement energies resulting from the particle in
the box descriptions for a=el, 1h, or hh are well known to
be given by

1

cos(ki,”w)‘i‘z sin(k'w)=0, 37

1
[ga_ §

a

where
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ESE)=kPmY /kPm? . (38)

k!, (E) is the a- branch solutlon of Eq. (8) (Fig. 1) and
ml(E) follows from Egs. (9), a=hh, (25), a=el, and
(36) a=1h. The well width is denoted by w.

When the lh and so bands are coupled according to Eq.
(26), the evaluation of the lh confinement states is a bit
more complicated. As an example we evaluate the even
confinement states For a given value of E let Eq. (26) be
solved by (kj) =1, 2) and f! —vj Define
ki=(|k} |2)l/2 and let (k)< (k%)% An even confine-
ment state is then described in the well (—w /2 <z <w/2)

by
F=a{"cosh(k{"z)v{" +a'Vcos(k ' 'z)vi (39
and in the barrier (z > w /2) by
(2
F= 3 ae 52, (40)
j=12

Substitution into the boundary conditions (33) and (34)
determines the four coefficients aj’ and the confinement
energy. For odd confinement states the procedure is easi-
ly modified.

We have now arrived at a simple and unified descrip-
tion of el, hh, and lh confinement. The unification is im-
portant for the determination of energies or wavelengths
of transition between electron and hole confinement
states. Separate adjustments of parameters for electron
and hole states may yield bad transition wavelengths,
especially when the nonparabolicity of the bands becomes
important.

IV. NUMERICAL RESULTS

We are now going to apply our simple model to a
GaAs/Ga,_,Al,As quantum well and to compare the re-
sults for confinement states w1th those from the Chang
and Schulman (CS) approach.* These authors have optim-
ized® their tlght bmdlng parameters, not only with respect
to certain energies in the band structure but also in such a
way that a certain given set of I'-point el, hh, lh, and so
effective masses is reproduced well in GaAs and AlAs.
The two sets of effective masses are given in Table I. Us-
ing our Kane descn thIl we have calculated from these
masses the sets s/, v}, yz, and P!, 1=1,2. They are also
given in Table I. We note that in line with our assump-
tions the parameter P' is approximately the same in the
well and the barrier. The dispersion relation obtained
from our Kane analysis is in excellent agreement with the
CS dispersion, as is shown in Fig. 2. More precisely, for
electron confinement energies less than 300 meV and hole
confinement energies less than 200 meV, the difference in
dispersion can rarely be of influence on the differences in
confinement energies to be obtained from the CS and our
approach.

The comparison of. confinement energies is done for
GaAs/AlAs and GaAs/GaggAlg36As. The quantum-
well GaAs/AlAs provides a severe test of our model in
view of the large confinement potentials for the electrons
(1.36 eV) and for the light and heavy holes (0.236 eV); cf.
Table I. For the electrons we restrict ourselves to confine-
ment energies below 300 meV since otherwise admixtures
with the X state in AlAs will occur. As Fig. 3 shows, the
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TABLE 1. Gaps, spin-orbit splittings, effective masses, and input coupling parameters to the Kane model.

4mp
37 _
E; (eV) A (eV) meg/m mpn/m my/m mg,/m (eV) s Y1 72
GaAs 1.430 0.343 0.067 0.454 0.070 0.143 18.80 —3.52 1.67 —0.26
AlAs 3.002 0.281 0.222 0.751 0.150 0.267 17.66 —4.07 1.06 —0.14
Gag.sAlp 36ASs 1.995 0.320 0.107 0.535 0.099 0.188 18.84 —4.16 1.27

—0.30

CS results for the confinement energies!” are reproduced
to an accuracy of 3% for the electrons, 2% for the heavy
holes, and 5% for the light holes in the lh-so coupling
model. It is seen that the lh particle in the box descrip-
tion is worse than the lh-so coupling model. This is to be
expected since spin-orbit splittings and hole confinement
potential are of comparable magnitude, cf. Table I. Our
simple model does not describe the coupling between the
second hh confinement state and the first light-hole con-
finement state as observed by Chang and Schulman.'®
This occurs for well widths around 90 A. The relative er-
rors obtained are then slightly larger than 5%. We expect
the results for well widths above 100 A to be equally good

05 T v T
(eV) e
04 GaAs 7
03t :
T 02k 41
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E Rekl—= @
0
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FIG. 2. Band structure energies E of GaAs and AlAs versus
k? as calculated from Eq. (8) using the parameters of Table I.
Thé bands shown are the relevant ones for the construction of
the well and barrier wave functions. In GaAs, this means real k
values. In AlAs imaginary k values. The bands in GaAs are
shifted in energy so that the k=0 energies are at the zone
center. The dashed lines are calculated using the Chang-
Schulman tight-binding analysis (Ref. 6).

when we restrict ourselves to the energy ranges discussed
earlier. For GaAs/Gag ¢4Alj 36As, our confinement ener-
gies compare even more favorably with the CS energies.
All relevant parameters of Gag g4Alj 36As are listed in
Table I. The gap, spin-orbit splitting, and the effective
masses are taken from the CS code. We note that m, and
my,;, do not interpolate linearly with the Al concentration
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AE | . ]
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FIG. 3. Difference AE in the confinement energy obtained
from the extensive Chang-Schulman tight-binding analysis and
the confinement energy as calculated from the simple theory
presented in this paper is plotted versus the latter confinement
energy. The specific points correspond to a quantum well con-
sisting of 10, 14, 18, ..., 34 monolayers of GaAs cladded by
AlAs. The various closed symbols refer to different n quantum
numbers of confinement states considered, and the simple
theory refers to a particle in the box description with a well-
chosen energy dependent effective mass. The open symbols
refer to n =1 light-hole confinement energies as calculated from
a simple model in which only the coupling between light holes
and spin-orbit split-off holes is retained.
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x. The hole confinement potential (0.085 eV) is now con-
siderably less than the spin-orbit splittings. We expect the
Ih particle in the box description to be appropriate. In
contrast to AlAs, Gag g4Aly 36As is (barely) direct. This
means that only for electron states very close in energy to
the top of the potential well (480 meV) the X minimum of
the barrier material will be involved in the el-confinement
states. The CS results for the confinement energies are
reproduced to an accuracy of 3% for the electrons, 1%
for the heavy holes, and 2% for the light-hole particle in
the box model. The lh-so coupled model gives slightly
worse results in the latter case.

The energies or wavelengths corresponding to transi-
tions between electron and light or heavy hole confine-
ment states are accurate to 0.5% for confinement energies
in the range of up to 300 meV for the electrons and 200
meV for the holes. For well widths smaller than ~10
monolayers the CS approach, as well as our approach,
may not be very accurate. The relative importance of the
interfaces increases with a decreasing number of mono-
layers in the well. The particular approximations in-
volved in the description of the atoms at the interfaces in
the CS tight-binding approximation then begin to play an
important part. It is also hard to visualize our simple-
envelope-function-type description still working for wells
that are that thin. ‘

V. APPLICATION TO EXPERIMENTS

The application of our simple model to describe experi-
mental absorption or luminescence spectra  of

GaAs/Ga;_,Al,As quantum wells requires an accurate -

knowledge of the T'-point el, hh, lh, and so effective
masses as well as of the electron and hole confinement po-
tentials. For GaAs, the information on the effective
masses is available with reasonable accuracy, but for AlAs
the situation is worse. Different from GaAs, the el, hh,
and lh bands in AlAs are anisotropic around the I" points.
Experimental determinations'® have yielded directionally
averaged effective masses, but we need the effective
masses along the [100] direction. Theoretical evaluations
yield conflicting results.’’=2* The set of effective mass
parameters used by Chang and Schulman, and in this pa-
per, is based on the theoretical work of Lawaetz.?! More
recent work of Hess et al.?3 yields a completely different
set: mg=0.15, my,=0.48, my; =0.21, and m,,=0.30
for AlAs. Fortunately the dependence of the confinement
energies on the barrier effective masses is rather weak.
We have estimated this dependence from particle in the
box descriptions with constant effective masses. For the
n=1  confinement levels we find (AE ¢/
E onp)/(Am /m) to be ~—0.2 for the electrons and heavy
holes and ~—0.3 for the light holes. The higher confine-
ment levels appear to be a factor of 2 less sensitive to the
barrier effective mass. The estimate applies both to
GaAs/AlAs and GaAs/Gag g4Alg 36As. For GaAs/AlAs,
the Hess set yields 6% lower el and hh confinement ener-
gies and 12% higher lh confinement energies than the
Lawaetz set. This effect is certainly much bigger than the
inaccuracy due to the simplification in our approach as
compared to that of Chang and Schulman. At present, we
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are clearly no longer limited by inaccuracies in the
theoretical description but by the lack of knowledge of ef-
fective masses in the barrier material.

An energy-dependent el effective mass in the well has
been introduced. earlier by Kolbas** and used by Vojak
et al.? to interpret luminescence spectra. Kolbas’s m(E)
is an optical effective mass, i.e., a mass weighted with the
Fermi-Dirac distribution, as described by Cardona.?’ This
is not the energy-dependent effective mass that should be
used in a calculation of confinement energies. However,
we note that the dispersion E (k) corresponding to
Kolbas’s m. (E) only starts to deviate from the CS disper-
sion for energies larger than 200 meV above the
conduction-band edge.

The confinement potentials in GaAs/Ga,_,Al As
quantum wells are commonly taken according to the
85/15 rule: the conduction- and valence-band edge
discontinuities are 85% and 15% of the gap difference,
respectively. The rule is based on Dingle’s’ analysis of ex-
perimental spectra using a particle in the box description
with constant effective masses and invoking the incorrect
continuity of the derivative of the envelope function.
Direct measurements using core level spectroscopy?® lack
the precision to test the rule, as does the theoretical
work.?” Very recent experiments by Miller et al.,?®
Watanabe et al.?° and Dawson et al.** provided evidence
for ratios considerably smaller than 85/15.

A further complication in the comparison of experi-
mental and “theoretical” luminescence spectra arises from
the two-particle effects giving rise to bound and free exci-
tons.’! We feel that the present knowledge in this field?
no longer limits the comparison, at least not for the lowest
confinement energies.

VI. CONCLUSIONS

We have presented simple particle in the box descrip-
tions for a calculation of the confinement energies in a
GaAs/AlAs-type quantum well. Energy-dependent effec-
tive masses determined from a Kane-type description of
the well and barrier material have been used. In each ma-
terial the four Kane coupling parameters are adjusted to
the el, hh, 1h, and so I'-point effective masses. This leads
to a unified description of el, hh, lh, and so dispersion.
For hole confinement potentials close to the spin-orbit
splitting, we have used a model in which the lh and so
bands are coupled along the lines of the Kane model.

Our confinement energies are in excellent agreement
with those obtained from the Chang-Schulman 20-band
tight-binding approach; accuracies have been described in
Sec. III. It should be stressed that the Chang-Schulman
approach has many more potential capabilities. For ex-
ample, it is capable of describing the n» =2 hh and n =1
1h coupling'® and the admixture of Ga,_,Al,As X-point
derived states when the confinement energies approach
that point.

The virtue of our analysis lies in its simplicity, making
it directly available to any experimental physicist dealing
with quantum wells. The accuracy is at present mainly
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limited by the lack of knowledge of barrier (AlAs) effec-
tive masses. Experiments to determine these quantities,
for example along the lines of cyclotron resonance, are
thus called for.
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