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Rale of conduction-electron —local-moment exchange in antiferromagnetic semiconductors:
Ferrons and bound magnetic polarons
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We present a theoretical description of the influence of conduction-electron —local-moment ex-
change on the properties of free carriers in antiferromagnetic semiconductors, with explicit applica-
tion to EuTe. We conclude that the ferron, an electron self-trapped in a potential well formed by
exchange-induced ferromagnetic polarization of the matrix, does not exist at low temperatures in
real three-dimensional antiferromagnets, though it is stable in quasi-one-dimensional systems. An
electron bound to a donor site induces a ferromagnetic moment near the donor, and we find that
such bound magnetic polaron states account for the ferromagnetic clusters attributed to ferrons in
previous studies.

I. INTRODUCTION

The study of the exchange interaction between conduc-
tion electrons and localized spins has been a fundamental
topic in condensed-matter physics for years. Most studies
consider electrons in metals where the strength A of the
exchange interaction is very small compared to the Fermi
energy EF. The effects of the exchange coupling are then
modest in magnitude, though subtle as illustrated by the
Kondo effect.

In magnetic semiconductors, the exchange coupling is
very strong, and at the same time characteristic kinetic
energies of the free carriers are small, simply because the
carrier concentration is small. One may then realize the
limit E~ &A. The influence of the exchange interaction
can be very large and influence numerous properties of
the crystal in a dramatic fashion. An example is provided
by the temperature variation of the absorption edge in fer-
romagnetic semiconductors, such as EuO and EuS. The
onset of magnetic order shifts the edge to the red, ' an ef-
fect that may be attributed to the influence of the ex-
change interaction on the self-energy of the free carriers.
If the exchange coupling has the form AS.s with S and s
the local moment and conduction-electron spin, respec-
tively, the lowest-order contribution to the self-energy is
+ —,A(S, ) for up and down spin electrons, respectively.
The exchange-induced shift of the band edge amounts to a
substantial fraction of an electron volt.

This paper addresses influences of the local-
moment —conduction-electron exchange in antiferromag-
netic semiconductors, .with emphasis on application to one
much studied material, EuTe. Here, with AS a measure
of the conduction-electron —local-moment exchange again,
we have A »J, where J is the strength of the local-
moment —local-moment exchange responsible for the anti-
ferromagnetic order. Then, if a conduction electron with
spin up is placed in the crystal, and if its wave function is
furthermore localized in space, it can induced ferromag-
netic order in its near vicinity. This induced order gen-
erates a potential well, and in fact the electron may be
self-trapped in this fashion to form a magnetic analog of a

self-trapped polaron. At low temperatures, where the
local-moment spin arrangement in the undoped crystal
closely approximates that in the ground state, this possi-
bility for self-trapping exists only in antiferromagnets (or
in other arrangements where the full ferromagnetic mo-
ment fails to be realized in the ground state). We then
have a new type of quasiparticle, intrinsic in character,
first introduced by de Gennes. This entity has been the
topic of a number of theoretical studies, and has been
given the name "ferron" by Nagaev.

There is clear experimental evidence for the existence of
ferromagnetic clusters in the antiferromagnetic materials
EuSe and EuTe. These clusters have been attributed to
ferrons, a view supported by theoretical studies ' ' which
predict that the ferron state is stable at T =0, in EuTe.

In the first part of this paper, we investigate this issue
once again. Previous studies confine attention to the case
where the external magnetic field is zero, while we include
an external Zeeman field Ho. We may then calculate the
magnetization of the system explicitly as a function of
external field. The model we use is the same as that em-
ployed in earlier studies, but our approach is somewhat
different. We introduce certain simplifications which we
believe have only modest influence on the quantitative
predictions of the theory; we are then able to appreciate
its overall structure more clearly, and we may draw cer-
tain general conclusions as a consequence. In the end,
with use of parameters currently believed appropriate for
EuTe, we conclude that the ferron state is not stable at
T =0, in low magnetic field. It is also clear that in one-
dimensional antiferromagnets, the ferron state is indeed
realized for arbitrarily weak conduction-electron —local-
moment exchange.

In these materials, as in any semiconductors, electrons
may be trapped at donor sites, bound by the Coulomb po-
tential. Here, however, such bound states lead to an in-
duced ferromagnetic moment in the near vicinity of the
donor site. One refers to this entity as the bound magnet-
ic polaron. Earlier work has explored these states in the
ferromagnetic semiconductors EuO and EuS, and here
we apply our approach to the case where the ground state
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is antiferromagnetic. Our calculations show that the fer-
romagnetic moments induced near donor sites account
nicely for the magnetization data in EuTe. The earlier
analysis of the data required that one assign an enormous
moment (14000@~) to each ferron. Because nearly all the
free carriers are frozen out on donors at low temperatures,
a much more modest (but still very substantial) induced
moment about each donor suffices.

The organization of this paper is as follows. Section II
discusses the physical picture we have in mind, the model,
the general structure of the theory, and certain con-
clusions that may be reached, independent of the choice of
variational wave function. Section III presents our varia-
tional study of the intrinsic ferron state and the properties
of the bound state with application to EuTe. Section IV
consists of brief concluding remarks.

II. BASIC MODEL

A. Greneral formulation

%(r;Sb. . . , Sz ) =4'(r; I S; I )

=P, (r; I S; I )@(I S; I ), (2.1)

where the symbol I S; J denotes the set of quantum
members required to label the states accessible to the sys-
tem of local moments.

Consider for the moment an electron placed in a state
of spin up, confined to a finite volume V. With the elec-
tron spin along z, each local moment within V is subject-
ed to an effective magnetic field of strength proportional
to H„parallel to z. We ignore anisotropy effects on the
local moments. In europium chalcogenides, this is justi-
fied because the 4f shell of the Eu + ions is half filled so
that, in agreement with Hund's rule, the magnetic ions
carry a spin S = —,

' and are in s states of spherical symme-
try (l. =0). Since H„»HE, the local moments within V
will want to assume a spin-flop configuration; since the
easy axes of magnetization of the antiferromagnet are the
transverse axes, the local moments will adjust themselves

There are three energy scales in the problem of interest.
The first is set by the strength of the exchange interac-
tions between the local moments. We assume nearest-
neighbor, antiferromagnetic exchange of strength J be-
tween local moments of spin S. A measure of the
strength of the exchange interactions is then provided by
the exchange field HE ——zJS exerted on a given spin by its
z nearest neighbors. The conduction-electron —local-
rnoment exchange is written —AS.S, with s the electron
spin so H =AS/2 is a measure of this energy scale. Fi-
nally there is W, the width of the conduction band. The
discussion presented below assumes that the three energies
are ordered in the following sequence: HE «H„« W.
This assumption is reasonable for EuTe.

Since H »HE, the conduction electron may adjust
rapidly to the arrangement of the local moments, and
motions in the latter system are very slow. We may then
invoke the adiabatic approximation, and write the wave
function of one electron moving among the spins in the
form

B. Variational calculation

The model Hamiltonian is written, in appropriate units
(fi= 1),

V + V(r)+ —,
' g JJS;.Sq2'

CJ

—A V, g S;.s5(r —R;)

—)'sHo&. —)'sHo g S;, (2.2)

where m' is the effective mass at the bottom of the con-

so that z is a transverse axis, in order to minimize the in-
direct exchange energy. The local moments then each
have a longitudinal component, in the plane normal to z.
The sign of this longitudinal component alternates as one
moves from local moment to local moment, in the manner
characteristic of the spin-flop state. Since W»H„, the
electron hops very rapidly from site to site and averages
over the transverse moment. The average transverse mo-
rnent it samples is then zero, while all local moments have
a positive projection on the z axis (assuming the local-
moment —conduction-electron exchange is ferromagnetic
in character).

The electronic part g, (r, IS; I ) of the system wave func-
tion in Eq. (2.1) is then well approximated by a spin-up
state and we need not consider an admixture of spin down
character in our variational ansatz. In their study of the
ferron in zero magnetic field, Umehara and Kasuya al-
low for such an admixture. If P measures the tilt of the
electron spin away from z, these authors find that when
H~ && W, P-=(AScos8/W) where 8 is the canting angle
of the local moments. In the limit of interest here P =0.

One may appreciate this point in another manner. Let
E(k) describe the conduction band, with A =0, the con-
sider motion of an electron through a helicoidal state of
the local moments, characterized by the wave vector q.
The S+s terms mix the spin-up state k with the spin-
down state k+ q, and the renormalized energy bands (in a
reduced zone) have the form'

E+(k) = —,
' [E(k) +E(k+q)]
+ —, I[E(k)—E(k+q)] +(AS) I'i

As q —+0 and we have a ferromagnetic array of local mo-
ments, one finds E+(k) =E(k)+ —,AS exhibiting the large
self-energy correction responsible for the shift of the opti-
cal absorption edge described earlier. For an antifer-
romagnet, for wave vectors k of electrons near the bottom
of the conduction band, E(k)-0 and E(k+q) —W, so we
have E (k) —=E(k) —(AS) /2W. The renormalization of
the band edge, which has its origin in the longitudinal
spin polarization of the ground conduction states, is now
very small when H && 8' and the dectron is spin polar-
ized along the transverse z axis,

There is one last point. This is that in the Eu chal-
cogenides, S=—,', so we are also in the limit S»1. Be-
cause of this, we treat the spins in a classical manner.



8026 A. MAUGER AND D. L. MILLS

where h (i) is an effective magnetic field, parallel to z, de-
fined by

h (i)= —,
'

A v,
I P, (R; )

I

Also,

(2 5)

duction band, JJ is the (positive) quantity J when i and j
refer to nearest-neighbor sites in the lattice, V, is the
volume of the unit cell (associated with the paramagnetic
state), and y, and ys are the Lande g factors of the
conduction-electron and local moments, respectively, mul-
tiplied by the Bohr magneton pii. So long as the function
P, in Eq. (2.1) describes an electron in a spin-up state, the
term y, Hos, simply adds a constant to the energy, and
this will be dropped in what follows; in addition, we set
y~ equal to unity. Finally, when we examine the possibili-
ty that ferrons may exist, we set V(r) =0, while a descrip-
tion of the bound magnetic polaron follows by choosing
V(r)= e /eor, —where eo is the background dielectric
constant of the crystal. With g, (x) always normalized so

1 d "x ttj*, (x)g, (x)=1 (2.3)

(we suppress explicit reference to the dependence of P, on

I S; J henceforth), where i) is the dimensionality of the sys-
tem considered, we have

&+ IH I
+& =

& T)+ & v&+ i y J~ &@
I
s sg I

~'&
lJ

—g &~
I
S,'I 4)[Ho+h(i)], (2.4)

This relation holds if the right-hand side of Eq. (2.8) is
less than unity. When Ho+h(i)&2zJS, the local effec-
tive field is sufficiently strong to fully align the local mo-
ments along z. If we then choose HO~H, =2zJS, the
spins are fuHy aligned along z everywhere in the sample.
The ferron state is then not possible, since a potential well
cannot be created by inducing a ferromagnetic moment,
and the donor binding energy is uninfluenced by the
conduction-electron —local-moment exchange for the same
reason.

We then have the following picture of the spin configu-
ration which surrounds a localized electron state. Far
from the center of the state, where

I f, (x)
I

is negligible
in amplitude, we have the normal spin-flop state in the
external field Ho, with canting angle given by the stan-
dard expression sin8=HO/2zJS when Ho ~H, . As we
move in toward the core of the localized state, h (i) be-
comes nonzero, the canting angle increases, and we have a
region of enhanced ferromagnetic moment. If (for an s
state)

(2.9)

then the spin configuration is everywhere of spin-flop
character, once again with enhanced amplitude near the
core of the state. We call this a type-I localized state (fer-
ran or bound magnetic polaron).

For an s state, there may be a critical radius r, for
which.

& T) = —Jd"x p,
' (2.6)

with a similar expression for & V).
For a particular choice of P, (r), Eq. (2.4) describes an

antiferromagnet subjected to a spatially uniform, external
Zeeman field Ho, supplemented by the spatially varying
piece h (i). Both fields are parallel to z. In the absence of
anisotropy, the antiferromagnet is in a spin-Aop state,
with a canting angle that varies with position, in regions
of space where h (i) is nonzero. We let the spins lie in the
yz plane, with 8; the angle between & @

I S;
I
4) and the y

axis. In our classical treatment of the spin system, at the
absolute zero of temperature we have

(b) TYPE X LOCALlZED STATF:

REG lON OF

0 MOMENT

e
I
s, .s, I e& = &e

I
s, I

e& & e
I s, I

c'
ETlG

and we suppose
I i', (r)

I

varies sufficiently slowly in
space that for nearest-neighbor sites, we may ignore the
difference between 8; and 8~ for nearest-neighbor spins.
Then

&+ IH I
+& =&H) =&»+ & V& —~S'icos(28, )

OF
ED
T

—Sg [Ho+h(i)]sin(8;) . (2.7)

Ho+h (i)
2zJS

(2 8)

If we fix g, (r), then require 8&H )/B8; =0, we are led
to a condition which fixes 9;:

FICx. 1. A schematic illustration of the types of localized
states. (a) For the type-I state, one has a region of enhanced fer-
romagnetic moment in the region where

I it I &0, and the spin
configuration has spin-Aop character. everywhere. (b) For the
type-II state, one has a ferromagnetic core surrounded by a halo
of enhanced moment.
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H, + —,'WV,
~ y, (r, ) ~'= H—, , (2.10)

and then it follows that for r, & r & oo we have a spin-flop
configuration, but when 0&r &r„ the core has a fully
saturated ferromagnetic moment. The state may then be
described as a ferromagnetic "bubble, " surrounded by a
halo within which the ferromagnetic moment is enhanced,
associated with the spin-flop configuration. We call this a
type-II localized state. These two different situations are
illustrated in Fig. 1.

We may now write expressions for the energy of the lo-
calized state. It is useful to consider the type-I and type-
II states separately, and here we confine our attention to
only states of s symmetry.

1. Type Istate (u-nsaturated core)

In the expression for the total energy, we may use Eq.
(2.8) to eliminate the canting angle everywhere. Then the
total energy of the system is

N, = f,d"x .
c x&r

After a bit of algebra, we find
2

bE» &T)+—& V)+ ,'N, H—,S 1—
H,

(2.15)

2S f„,„d"x
I C. I

' —
2H

SA V f„„d"x
I C. I

' (2.16)

which may be rewritten to read
2

Hp
hE» ——AEg+ —,X,H, S 1—

number of spins N, inside the ferromagnetic core. This is
given by

& H &,=Eo+bE, , (2.11)

where Eo is the energy of the infinite crystal, with all
spins in the spatially uniform spin-flop state, and bE the
incremental energy associated with the introduction of the
excess electron in the matrix, in the localized state. We
have, with H, =2zJS, the critical field required to fully
align the moments in the infinitely extended crystal,

b, Eg ——
& T) + & V) — g I [HO+A(i)] —HO I .

2Hc

(2.12)

In the spirit of our continuum model,

fd&x,1

V,

so we may also write

SHpA
bEt ——&T)+& V) — fd"x

~ g, ~

—=, (2.13)
2Hc

where, to simplify the notation, we have introduced:" de-
fined by

SW'Vc
fd"x f@, [

c

The integral in the third term of Eq. (2.13) equals unity by
virtue of normalization of the electron wave function, so
in fact we have simply

1 — f d"x [@, /'

SA V
(2.17)

We conclude this section with some general remarks on
the properties of ferrons and bound magnetic polarons,
then we present results of a variational study and applica-
tion to EuTe.

C. General remarks on the properties
of ferrons and bound magnetic polarons

When the excess electron is at the bottom of the con-
duction band, we have the limit of the uniform state, in
which case g, = V '~ with V the volume of the crystal.
Substituting this expression in the integrals entering
AE&», we find that in the limit V~oo, these integrals
vanish so bE»&~ SHoA/(2H, )—. This energy [added to
the term y,Hos'= y,—HOI2 alrea—dy dropped in Eq.
(2.2)] represents the Zeeman shift of the conduction band
in the spin-flop state in the presence of the molecular
magnetic field generated by the external field. The energy
of formation of the nonuniform state (either ferron or
bound magnetic polaron) is thus

SHpA
+I,» bEI,»+

2Hc

bE, = &»+ & V&-=--—1 SHpA

2 H,
(2.14)

i.e., we must recognize that the bottom of the conduction
band shifts, and the energy of interest is measured relative
to the shifted band edge.

a functional whose properties have been discussed very
elegantly elsewhere. " We turn to its properties shortly.

2. Type-II state (saturated core for r & r,)

Here we may use Eq. (2.8) only for r & r„and then for'
0&r &r, we must take t9;=m/2. The resulting expres-
sions for the energy is written conveniently in terms of the

1. The ferron

Here we have & V) =0, and the question is then whether
the conduction electron can be self-trapped in the poten-
tial well it creates through the ferromagnetic moment in-
duced by the local-moment —conduction-electron ex-
change. One must treat the discussion of the type-I state
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T o
-(0)

8'q(R) =
R2 R" (2.18)

a. Three dimensi-onal case For . g=3, 8'&(R) fails to
have a minimum for any finite value of R. Since g,' '(x)
can be any function, it follows that we cannot find a func-
tion which yields a minimum in the energy functional.
We conclude that in three dimensions, type-I ferrons do
not exist. According to Eq. (2.18), as R~0, 8'(R)~ ao,
suggesting the possibility of a "small ferron. " We must
remember, however, that there is always a finite value of
R below which the magnetization is saturated in a core re-
gion, so Emin-Holstein scaling breaks down and detailed
study is required to address the questions of whether or
not such states exist. We turn to such a study later.

b One d.imens-ional case. Note that for a conduction
electron in a one-dimensional antiferromagnet, we do ob-
tain a minimum in 8'&(R ) for a finite value of
R =Ro=2&T&o/:-' ', and we have

R, =2&T&o/:-"',

(
(0) )28' (R

4 &».

(2.19a)

The ferron binding energy —8',(Rp) is thus positive, with
the consequence that in one-dimensional antiferromag-
nets, we find that type-I ferrons are stable, contrary to the
three-dimensional case. Any convenient choice of g,' '(x)
may then be used in Eq. (2.19) to provide a variational es-
timate of the ferron binding energy. We can choose g
with a Gaussian profile which describes the spread of the
wave packet in one dimension:

1/4
2 (x/xo)2

g(x) = 1
e

(x )
1/2

with xp the variational parameter. In this case, Eq.
(2.19a) gives

32JA'
XQ—~'/2maa2 '

(2.19b)
3 ir RIM A2 4

1024 g2J2

This discussion assumes that 8(x) &n/2. The core begins
to saturate if A =A, such that, according to Eq. (2.9),

separately from that which applies to the type-II state.
Emin and Holstein" have presented a very simple but

elegant analysis of the functional in Eq. (2.14), though
they were interested in a rather different physical situa-
tion. We repeat their argument here since it is quite brief.
Suppose we evaluate b,E& (with & V&=0 for the moment)
for some particular function g,' '(x). We then repeat the
calculation for

g, (x)=R " g,' '(x/R),

where P, (x) is normalized if g,' ' is. Let & T &p be the ki-
netic energy and:-' ' be the value of the integral:-, calcu-
lated with g', '. Then as one scales the variational func-
tion in the manner described, one finds

~p+ —
I @,(0)

I
'=~, ,

where a is the lattice parameter. With our choice of g, ,
I f, (0)

I
=(2/rr)' xp . Then taking Eq. (2.19b) into ac-

count, we find

1—'256 Q Jg Hp
v'2 ma' H

1/3

Note that fi /(ma ) is the order of the conduction band-
width 8'. For A =A„Eq. (2.19b) gives the radius xp.

1/2 ' 1/3 1/3 1/3
1 2 &2 IVXp= a
8 7T 256 J 5 1—Hp

H,

The numerical factor is small, namely, 0.017. Therefore,
for any reasonable value of W/J, one finds that xp «a,
so that when A )A, , one has the picture of an electron
self-localized on a single site where the local moment is
fully spin polarized along the z axis.

In Sec. III, we report a variational study of the possibil-
ity that type-II ferrons exist in the three-dimensional anti-
ferromagnetic Eu Te.

2. Bound polaron

Now we have & V&&0, and, in fact, V= e /epr —For.
the type-I state, this, case was also considered by Emin
and Holstein. In three dimensions, the scaling argument
now gives for a type-I bound polaron

8'q(R) = R' R' R
(2.20)

This function now admits a minimum at finite R, and we
assume g,' '(x) is chosen so this minimum is at R =l.
We then find an algebraic relation between &T&p, =' ',
and

I
& V&pI:

I
& V&o

I

=
& T &o+(& T &o 3 '

I
& V&o

I

)'

=Kg(1) 167TH' as
3m* V,

1/2

(2.22)

If A is increased beyond A,'" (assuming the bound pola-
ron remains of type-I character) the function 5',(R) no
longer has a minimum at a finite value of R. The only

When =' '=0 (A =0), we have the result

I
& V&p

I
=2& T&p, well known from the virial theorem.

The ground state is the hydrogenic 1s orbital
g, (r) =exp( r/rp)(harp) ',w—ith rp Reo/m*e——=a~, —
the effective Bohr radius.

Suppose we increase A. Then Eq. (2.21) requires & T&p
to rise above the virial theorem result

I
& V&p

I
/2. This

means that the radius of the bound state contracts. As 3
continues to increase, the ratio &T&p/I & V&p does also
until we hit the point where

I & V&p
I

= &'r&o. The square
root in Eq. (2.21) vanishes at that point, so we also have
:"' '=&T&p/3. If we continue to use the hydrogenic Is
orbital as the basis of the variational calculation, the
square root vanishes when rp ——az/2, and when A reaches
the critical value 3,'" given by
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possibility is a small bound polaron, with radius equal to a
lattice constant. As A increases beyond A,' ', the bound-
state radius thus collapses.

The above remarks assume that the bound polaron al-
ways retains type-I character, and in practice this need not
be the case. As the bound-state radius shrinks

~ g, (0)
~

increases, and near the center of the bound state h (i) may
become large enough to saturate the core. Then once
again Emin-Holstein scaling breaks down. If we require
A to be such that the core just saturates when ro ——az/2,
and again employ the hydrogenic orbital, we find from
Eq. (2.9) that saturation occurs when A =A,",where

Hp ma~3H,
A '= 1 — . (223)

Hc 4Vc

When A,"~A,' ', then as A increases the bound ma-
netic polaron is always type I until the critical value A, '

is reached, after which the collapse described above will
occur. This is equivalent to the situation described b~
Emin and Holstein. But in the opposite limit A,' '& A,',
a different behavior is found. As A increases, ro de-
creases from az to a value r& ~a&/2 where core satura-
tion begins, and conclusions reached from the scaling ar-
gument break down. Further increases in A produce a
more modest decrease in r p because the loss in kinetic en-
ergy is offset less efficiently by the increase in binding en-
ergy. A detailed calculation is required to explore this is-
sue.

This concludes our discussion of the general properties
of the ferron and the bound magnetic polaron. What

I

remains is to explore the possibility that in three-
dimensional antiferromagnets, type-II ferrons may exist,
and also to explore the bound magnetic polaron with at-
tention to the type-II region where A,' '

& A,".We turn to
this in Sec. III, with application to EuTe. '

III. EXPLICIT CALCULATIONS AND
APPLICATIONS TO EuTe

We begin by exploring the properties of type-II ferrons
within the framework of a variational calculation based
on use of the hydrogenic 1s orbital:

1
P&, (r) = 3, exp( r/ro)—

r 3 )1/z
(3.1)

with rp the variational parameter. With EuTe in mind,
we consider a fcc lattice for which the volume V, of the
unit cell is V, =a /4, where a is the lattice parameter.
Then, if r, is the radius of the saturated core', the number
of spins X, within the core is X, =(16'/3)(r, /a) .

The radius of the core is found from Eq. (2.10) and we
have

exp( 2r, /ro) =—8m(H, —H() ) ro

A a

3

(3.2)

for any choice of rp.
With the hydrogenic orbital, the right-hand side of Eq.

(2.16) (with ( V) =0) may be evaluated in closed form:

3

8a ~c

2Etl P'p

2

1—Hp

H,
"2

Pp

A S
1

c cI r r
2S6&H p p PQ

——,AS 1—
H,

exp( —4r, /ro) .

rc rc. 1 — 1+2 +2
rp Pp

2

exp( 2r, /ro) . —

(3.3)

Some useful dimensionless parameters are
k=(1 Ho/H, ), b, =(8—mH, A/A)', d =(2m a ASK/
A' b, ), R'=(ro/a)b„and for the energy we use as a di-
mensionless measure e =(2m*a 8'n/fi b, ). We may then
regard R as the variational parameter, and if R (1 we
have after some algebra in Eq. (3.3)

e(R') = ——+ dR' [ —7 lnR'—+9(lnR—')
&2 2 16 7

—6ln(R') ] . (3.4)

In these units Eq. (3.2) becomes exp( —2r, /ro)—:R', and
the constraint R'& 1 confines our attention to the type-II
ferron with saturated core.

At this stage we see clearly the effect of the saturation
of the magnetization, implying that the Emin-Holstein
scaling prediction E (R)~—oo as R ~0 breaks down, as
noticed earlier. Since the scaling length of the problem is
rp, to which R' is proportional, the limit R~0 amounts
to taking the limit R ~0 in Eq. (3.4). Since the spin po-

larization along z cannot diverge but can only saturate to
unity, the deformation energy of the system = does not
diverge at R =0 but saturates to a value which contri-
butes —d/2 in Eq. (3.4). Then only the kinetic energy
diverges [term 1/R' in Eq. (3.4)] implying that e~+ oo

as R,R' —+0.
The parameter d now provides a dimensionless measure

of the strength of the local-moment —conduction-electron
exchange. The variations of e as a function of R' are il-
lustrated in Fig. 2 for several values of d. We find the
condition for a minimum in E(R) at negative energy is

d &21.86, (3.5)

and from this result we can obtain an estimate of the criti-
cal value A, of the exchange parameter A above which
the ferron is stable:

3/5 ' 1/3
21 86A

( )zn Hc
(3 6)2m'a'S ' H, —Hp
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FIG. 2. The reduced energy of the type-II ferron, as a func-
tion of the variational parameter R, which necessarily lies in
the range 0&R'&1. The curves are calculated for various
values of the dimensionless coupling strength d: d =18 (curve
1), d =21.85 (curve 2), and d =24 (curve 3).

2/3

=0.48a c

m'a 2SH, H, —Ho
(3.7)

With these results in hand, we next turn our attention
to the properties of EuTe, which is the only material in
which ferrons have been conjectured to exist. For this
crystal, S = —,', and the Eu + ions are S-state ions. The
Neel temperature T&- ——9.6 K is affected only slightly by
doping with small concentrations of donor impurities.
But the magnetization curves M(H) are influenced
dramatically ' by such doping, when T & T&. In partic-
ular, a ferromagnetic component Mo is superimposed on
the magnetization curve of the pure antiferromagnet. Vi-
tins and Wachter assume the origin of Mo is due to fer-
rons, and write

Mo ——nMF, (3.8)

where n is the concentration of ferrons and MF the mag-
I

When 3 =3, we have the minimum at R'=0.565, so the
radius of the ferron is ro ro", where-—

r 1/3

r o' ——0.565a()
8 H, A

netization associated with one isolated ferron. This as-
sumes the ferrons do not interact. Two samples with dif-
ferent donor concentration Nd have been investigated in
Ref. 8, but the authors note that interactions between the
ferromagnetic entities are important in the more heavily
doped sample. Attention has thus been focused on sample
399, for which Nn is believed small enough to make Eq.
(3.8) valid. Since the ferron carries an electric charge, n is
also the electron concentration deduced from transport
measurements. From measured values of Mo and n, Vi-
tins and Wachter deduce that MI; ——14000pz, correspond-
ing to clusters which contain 2000 Eu + ions. Of course,
this requires the radius ro of the ferron to be very large.

In EuTe, a =6.6 A. The field H, at which the transi-
tion from the spin flop to the fully aligned ferromagnetic
state is, for the bulk material, 7.5 T at low temperature. '

When this is converted to energy units, recalling that we
have set the gyromagnetic ratio equal to unity and used
2p~ (the electron moment) as the scale for magnetization,
we have H, =0.86 meV. If mo is the free electron mass,
m*=0.4mo. With S = —, and Ho &&H„Eq. (3.7) gives
ro' ——7.4 A, not far from the lattice constant. Therefore,
unless A exceeds A, by a very large amount (this is not
the case), any ferrons present in this material will have a
rather small radius, and will be unable to provide the large
moment required to account for the data. The variational
calculation upon which the above estimates are based
could be improved, but in our view it is unlikely that an
improved version would remove the very large discrepan-
cy between the model predictions and the value of M~ in-
ferred from the data. Moreover, from Eq. (3.6) again with
Ho &&H„we estimate A, =0.26 eV actually larger than
the value 0.15 eV deduced from magnetoreflectivity' and
Faraday rotation' data implying that the ferron should
be unstable in EuTe.

It is natural to inquire if electrons bound to donors
(bound magnetic polarons) in a material such as EuTe can
account for the data. In fact, at low temperature nearly
all the electrons are frozen out on donor sites, so the mo-
ment required for each bound electron will clearly be very
much smaller than that required for the hypothetical fer-
ron. In EuTe the donor sites are associated with either
iodine impurities or tellurium vacancies. In EuTe the
Bohr radius is not large. One has eo ——8 for the dielectric
constant, ' so the Bohr radius az ——eoA /m*e =10.6 A.
If we use this as an estimate for ro in R'=rob, /a, and
choose 3=0.15 eV, then R' is smaller than unity even in
the absence of an external field. The core of the bound
magnetic polaron in EuTe is thus expected to be saturat-
ed.

We have calculated, again with the hydrogenic 1s wave
function as the variational function, the energy of the
bound magnetic polaron as a function of R, given by

e(R') =(R') ——+ ,'6
dR' [—,—71nR'+9(lnR—') —6(lnR') ]—2a/(a~b, R')

with the last term, added to Eq. (3.4), representing the
Coulomb potential. The results are displayed in Fig. 3 for
the parameters given above and compared with the analo-
gous curve calculated for the simple -hydrogenic level with

I

2 =0. Note how the orbital radius has shrunk, consistent
with the qualitative discussion of Sec. II. The minimum
in the energy occurs now at ro ——6.72 A, and we find
r, =0.994ro ——6.7 A.
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FIG. 4. Magnetization curve of EuTe for a pure sample
(curve 1) and doped sample 399 (curve 2); the data are reported
in Ref. 8, and the solid lines display the field variation expected
from the bound magnetic polaron picture.

FIG. 3. Energy of the bound magnetic polaron in EuTe, as a
function of the variational parameter R', related to the radius

ro of the variational wave function by the relation

ro (A)=12.5R' (curve labeled 0.15 eV). The curve labeled
A =0 is that appropriate to the simple hydrogenic impurity, for
comparison. The calculations are for zero applied field.

The magnetization of the bound magnetic polaron may
be written

d'r . Hp
Mb p

——2Sp N, + sin8(r)—mp p& c H,

=2Sp~ N, + j d r
~ P, (r) ~, (3.9)

C

exchange enhances the contribution from the canted spin
array. We then find an additional contribution to the mo-
ment of 0.36pz per unit cell, which is in good accord with
the data.

The calculations reported above apply specifically to
EuTe. In principle, bound magnetic polarons of the sort
described here may influence the properties of many ma-
terials. We conclude with a "phase diagram, " constructed
with the simple hydrogenic function as the basis for a
variational calculation which outlines the regimes within
which one has a saturated core (type-II bound magnetic
polaron) or an unsaturated core (type-I). We show this in
Fig. 5; as A is increased with the ratio of the two initial
values A,'" and A,' ' held fixed, when one crosses the solid
line in Fig. 5, there is a sudden collapse of the bound state
from a "large" to a "small" state. As one crosses the

M =Mp++Hp, (3.10)

where Mo NDMb~~ is indep——endent of the field Ho, and
Xo=2SIJ,~N/H, is the magnetic susceptibility of pure
EuTe. In Fig. 4, we compare the prediction of the form
in Eq. (3.10) with the data. '

The calculation shows each bound magnetic polaron
contributes 545p~ to the anomalous magnetization. This
is equivalent to the contribution from the moment of
roughly 75 Eu spins. The saturated core contains roughly
20 spins, so roughly 70%%uo of the moment associated with
the bound magnetic polaron comes from the halo around
the core, where the conduction-electron —local-moment

and the anomalous contribution to the magnetization is
then N~Mb ~, if we associate this with bound magnetic
polarons.

At low temperatures one may evaluate XD by relating it
to the free-carrier concentration n through the relation
n =NDexp( Ez/k~T), wi—th Ez the activation energy
deduced from transport measurements. Vitins and
Wachter have determined n =4&&10' cm, Ez.——0.022
eV at T=300 K, so one has XD -—9~10' cm . For
Ho/H, && 1, when the contribution from the background
material is added to that in Eq. (3.9), the relation between
the magnetization M and the Zeeman field Hp has the
orm
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FIG. 5. A phase diagram for the bound magnetic polaron, as
a function of 3, deduced as described in Sec. III. With increas-
ing 3, when (2,"/A,'")~1, there is a sudden collapse of the
state from "large" to a "smail" bound magnetic polaron as the
solid line is crossed. When ( 2,"/A,'") & 1, the core saturates as
one crosses the dashed line, but there is no discontinuous change
in the character of the state.
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dashed line where (A,' /A, ' ') & 1, core saturation sets in
in a gradual and smooth fashion.

IV. CONCLUDING REMARKS

Until now, EuTe has been the only material within
which it has been argued" that experimental evidence
for ferrons exists. As we have seen, the present study con-
cludes that these entities in fact are not stable, and in-
stead, bound magnetic polarons with their large induced
ferromagnetic moment are responsible for the anomalous
contribution to the magnetization measured in doped
EuTe. It is perhaps worthwhile to comment in a bit more
detail on our choice of parameters and the relationship of
the present theoretical study to earlier work.

First of all, the electron effective mass m* has been in-
ferred by more than one method in Ref. 8. Also, H„ the
field at which the transition from the spin flop to the ful-
ly aligned state occurs in bulk material, has been mea-
sured directly, as noted earlier. ' In our numerical appli-
cations, our value A =0.15 eV has been justified by mea-
surements of the splitting of Faraday rotation and peaks
in EuTe, giving —,AS=0.27 eV. The study of the red
shift of the absorption edge in the ferromagnet EuO pro-
vides the value —,AS=0.27 eV', and tunneling transport
experiments give —,

' AS=0.24 eV for the ferromagnet EuS.
Since the value of A should be quite similar for all the eu-
ropium chalcogenides, our choice should not be that far
off.

We may also compare our results with the previous
study of this state by previous workers, most particularly
those by Umehara and his colleagues. ' Their results are
summarized in Fig. 4 of Ref. 6. These calculations as-
sume a tight-binding model for the conduction electrons,
allow for an admixture of spin-down as well as spin-up
character in the electron wave function, arid then solve the
resulting self-consistent equations of the model without
use of the hydrogenic variational function. We include
the finite magnetic field, and view our discussion as pro-
viding useful insights into the ferron problem, but one can
inquire if there are appreciable quantitative differences be-
tween the two studies. In the notation of Ref. 6, IS corre-
sponds to our —,AS, optical experiments show the
conduction-electron bandwidth (Eo in Ref. 6) to be 2.5
eV, and JS =75)&10 eV. Then, in reference to Fig. 4
of Ref. 6, Eo/IS=9. 25, while JS /IS=0. 0029, and the
conclusion of the earlier studies is also that the ferron is
unstable.

Recently, Umehara' has argued that electron-phonon

interactions may stabilize the ferron, but still finds that
for Eo) 2 eV (note earlier we refer to the conduction-
electron bandwidth as W) the ferron remains unstable in
EuTe. He also investigated the cases Eo ——1 eV and 1.5
eV, with IS =0.35, parameters we view as unrealistic for
this material. If we assume, in our picture, that m* scales
inversely with bandwidth, the value A =0.2 eV, deduced
from Umehara's choice of IS, leads also to a stable ferron,
and to conclusions compatible with Fig. 4 of Ref. 6
(which also indicates a stable ferron). The point of the re-
marks in this paragraph is that our calculation leads to
the same conclusions on the stability of the ferron as the
earlier works.

Note finally that, in contrast to pictures advanced else-
where, our calculation shows that the dominant contribu-
tion to the magnetic moment of the bound magnetic pola-
ron comes not from the ferromagnetic core, which we
find is indeed present, but instead from the halo which
surrounds this core within which the ferromagnetic mo-
ment is enhanced over that in the bulk material far from
the donor site. Also, the bound state is quite compact, to
judge by the value of ro we find, which is substantially
smaller than the Bohr radius (10.6 A) of the "bare" donor
level in this material. The physical picture we offer thus
differs considerably from that discussed by earlier au-
thors.

Finally, the existence of ferrons in three-dimensional
systems is unlikely since it requires large values of A.
Therefore, if any ferron is to be observed, it is presumably
in one-dimensional antiferromagnetic semiconductors.
Indeed, our model predicts their existence, but some ap-
proximations we have made, valid in three dimensions, be-
come questionable in one dimension: We have neglected
zero-point spin fluctuations by treating the local moments
classically. It is known, however, that such fluctuations
are strong enough to destroy the one-dimensional antifer-
romagnetic ordering. Such an ordering is made possible
either by an anisotropy field or by. small "interchain" in-
teractions. Both of them have been neglected in our
model. Therefore, a quantum-mechanical treatment of
the spin assembly including anisotropy fields is required
before any definite conclusion is drawn on ferrons in anti-
ferromagnetic chains.
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