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The direct force in electromigration is investigated within the linear-response formalism. Expres-
sions derived by Rimbey and Sorbello are shown to simplify considerably. The result is that the
direct force can be obtained from the one-particle Green's function at the Fermi level. Model calcu-
lations for hydrogen interstitials in metals indicate that the direct force exerted by the macroscopic
electric field on the hydrogen atom may be on the order of 70—90%%uo of the force exerted by the
macroscopic field on a bare proton. These results show some similarity to Landauer's theory of the
carrier-density —modulation effect, and are in contradiction to the theory of Bosvieux and Friedel.

INTRODUCTION

The migration of impurity atoms in a metal that is sub-
jected to an electric field is the phenomenon known as
electromigration. ' It has long been realized that there are
two essentially distinct contributions to the driving force
exerted on the impurity. First, there is the force associat-
ed with the electronic current that accompanies the elec-
tric field. This force, which is known as the electron-
wind force, is due to the momentum transfer from the
electrons to the impurity during collisions. ' Second,
there is the electrostatic force due to the applied, or mac-
roscopic, electric field acting on the impurity. This force,
which is known as the direct force, has been a subject of
great controversy. '

The direct-force controversy was spawned by the
pioneering work of Bosvieux and Friedel (BF), who ob-
tained the result that there is no direct force on an inter-
stitial impurity. One one level, the BF result is physically
appealing. An impurity is, after all, a locally screened
neutral entity in a metal, and thus it should not be subject
to a direct force from a uniform electrostatic field. This
is a favorite argument of those who would deny the ex-
istence of the direct force. Further study reveals that the
argument is flawed, however. It has been pointed out,
for example, that the same argument can be applied to an
electron and its accompanying exchange-correlation hole,
which is also a neutral entity. One would then be led to
conclude that an electron is not subject to force in an elec-
tric field, and thus, electron current could not occur. In
any case, it should be pointed out that the BF derivation
is not based on the argument that the impurity is locally
neutral. Rather, BF derive their result from some seem-
ingly general quantum-mechanical considerations. The
error in their analysis is in assuming that the direct force
arises from an equilibrium electrostatic polarization
response. As I discuss in Sec. IV, this assumption is not
valid. My conclusion is that there is no basis for the BF
result despite its continued use by some workers.

An analysis of the direct force is complicated by the
presence of the electron-wind force and the accompanying
electron-polarization effects. A general, self-consistent

approach is needed to deal with all effects on an equal
footing. Such approaches have been provided by Das and
Peierls and by Landauer from semiclassical points of
view. They found that in the formal limit in which the
impurity's bare charge is weak (Z && 1), the direct force is
given by the macroscopic field acting on the bare charge.
That is,

Fd ——ZeE+0(Z ),
where F~ is the direct force, Z is the bare valence, e is the
magnitude of the electron charge, and E is the macro-
scopic or average field in the metal. To lowest order in Z,
Eq. (1) states that there is no screening of the electric field
as it acts on the bare charge Ze. This is in contrast to the
BF result Fd ——0.

Landauer goes further to derive an approximate expres-
sion for Fd based on his carrier-density —modulation ef-
fect. The idea is that an attractive impurity potential in-
creases the local density of carriers in the vicinity of the
impurity. Continuity of electron current then requires the
local electric field to be diminished in the region of higher
carrier density, analogous to the situation for macroscopic
inhomogeneities of high conductivity. The net result is
that the effective valence is diminished. Landauer's result
1s

ZeEFd—
1+ ,' 136,n Ino—

where An is the local increase in electron density due to
the impurity, no is the average electron density in the
metal, and P is an unspecified parameter on the order of
unity. Since hn=Z/00, where Qo is an appropriate
atomic volume, Eq. (2) is consistent with Eq. (1).

The use of semiclassical concepts is not expected to be
accurate on the atomic scale. Details of electronic wave
functions and their polarizability are expected to be im-
portant in electromigration, and these are omitted from
the analyses by Das and Peierls and by Landauer. To deal
with these effects, a general self-consistent quantum-
mechanical approach is needed. This was provided by the
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introduction by Kumar and Sorbello of linear-response
theory in electromigration. Subsequent development of
the linear-response theory of electromigration by Sham'
and by Schaich" was particularly important. These pa-
pers provided a good deal of insight into the electron-wind
force, but did not adequately treat the direct force. The
result obtained was Fd ——ZeE, which is correct only to
lowest order in Z. The reason for the failure to obtain the
higher-order corrections to Fd was given by Rimbey and
Sorbello' (RS), who showed that the direct force is con-
tained in some off-shell T-matrix terms neglected by
Sham. RS also pointed out that it may be difficult to
separate the direct force from some formally higher-order
corrections to the wind force. This aspect is not so impor-
tant, however, because in nearly a11 practica1 cases these
higher-order corrections are small. (They are of order
1/eFr times the wind force, where e~ is the Fermi energy
and v. is the electron relaxation time. Typically, this ratio
is on the order of 10 at room temperature. )

The RS expression for the direct force was too compli-
cated to permit evaluation, except for a rather crude
separable-potential model which gave rise to some un-
physical results. ' In this paper I show that the RS ex-
pression for the direct force can be greatly simplified.
The result is a tractable expression for the direct force in
terms of the Green's function at the Fermi energy Exp. li-
cit calculations are performed for hydrogen impurities in
a metal, where the potential is modeled by a three-
dimensional square well with s-wave scattering being
dominant. It is found that the direct force is typically
10—30% smaller than ZeE, as one might perhaps expect
from Eq. (2), but occasionally Fd can be larger than ZeE.
Such deviation of Fd from the nominal value ZeE may
soon be experimentally measurable as more sophisticated
measurement techniques are being devised. '

II. GREEN'S-FUNCTION EXPRESSION
FOR DIRECT FORCE

As shown by Kumar and Sorbello, the a component of
the driving force F acting on an impurity whose bare

charge is Ze and coordinate is R can be written as

being treated as an externally applied field. In reality, E
is a self-consistent field set up dynamically through the
conduction process. This is accomplished via "residual-
resistivity dipoles" as described by Landauer' for the case
of defect scattering. Further investigation of this
point' ' has indicated that the use of the macroscopic
field in Eq. (3) is justifiable, however. The point is that
one can focus attention on a very small region A' contain-
ing the impurity, and within this region the electrons are
driven as if E were externally applied. Subsequent
scattering by the impurity and its local environment are
contained in the response function (4). The dimensions of
A' should be smaller than the electron mean free path if
the theory is to be consistent. There is no difficulty in
imagining such a region containing the impurity, so ex-
pression (3) is reasonably "exact."

The model to be considered here is the impurity in jelli-
um model, which is the same model treated by RS in their
strong-coupling theory. ' Following Sham's diagram-
matic analysis of the response function (4), RS showed
that the driving force F can be written in the usual form,

p —p +pd

where F is the wind force, and Fd can be expressed in
terms of off-the-energy-shell contributions to the response
function (4). It is customary to write

Zd=Z+1 — Imgk G(k, k, ez),
3&Pl

(7)

where m is the electron mass and Im denotes imaginary
part. G(k, k, ez) is the diagonal part of the Green's func-
tion (operator) in the plane-wave representation, i.e.,

G(k, k', e)=(k
~

(e+iO+ —H) '
)

k '),
where H= —V /2m+V, and U is the screened electron-
impurity interaction. The expression for I is

Fd ——ZdeE,

where Zd is the effective valence associated with the
direct force. The RS expression (3.1) gives

F =ZeE + g lim [X p(co+i')/ico]E~,
p 6)~0

q~0+

(3) 1 = — Im g k.k' f deG(k, k', e)G(k', k e) .
3&Pl

k, k'

where X p is the force-current response function given by

X =i dt e""+'et(—aP
itVtti

& tot )az. ' ~

Here, V(t) is the interaction potential (operator) between
the bare impurity and the electrons, and J is the
electron-current operator. Both operators are in the
Heisenberg representation. The angular brackets denote
the statistical ensemble average of the commutator. Units
with A'= I are assumed.

Expression (3) is formally exact within the context of
the Kubo linear-response theory, ' but it should be point-
ed out that there is an underlying assumption in the
theory. That is, the macroscopic, or average, field E is

(9)
t

It was pointed out by RS that, in expression (7), Z
should be taken as the number of protons in the nucleus
of the impurity. RS also showed that the integral over
negative energies in expression (9) corresponds to bound-
state contributions which cancel out the corresponding
nuclear charges. Thus one can take Z to be the net-ionic-
charge number (number of protons minus the number of
core electrons) if one takes the lower limit of the e integral
in Eq. (9) to be zero, which is the energy of the bottom of
the conduction band.

The last two terms on the right-hand side of Eq. (7) are
the new contributions to the direct force found by RS.
Unfortunately, the complicated nature of expression (9)
prevented RS from applying. their result to realistic
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I = —Z+ Imp k Gp(k, k,ep),
377P1

k

where Go is the free-electron propagator, i.e.,

Gp(k, k, e)=(k
~

(e+iO+ —Hp) '
~
k),

(10)

models for the impurity potential. It turns out, however,
that is is unnecessary to calculate the multiple integrals in
expression (9) using the explicit form of G(k, k', e) for
the impurity potential of interest. In the Appendix it is
shown that

Expression (14) is very practical because the Green's
function G( r, r, e~) can be readily determined numerically
from the differential equation (15) for any given spherical-
ly symmetric impurity potential u =u(r). In that case, the
standard partial-wave analysis simplifies the calculation
of G. This is illustrated in the next section for a simple
square-well model for hydrogen interstitials in metals. In
this model, the differential equation (15) for the Green's
function can be solved analytically.

III. MODEL CALCULATION

and Hp ———V' /2m.
Substitution of expression (10) into Eq. (7) yields

Imgk g(k, k, &F),
37TPPl

k

(12)

In this section, expression (14) is evaluated for the sim-
ple model of a three-dimensional square-well potential.
The model is used to estimate the direct force for the case
of hydrogen interstitial impurities in metals. The poten-
tial is taken to be

where g=G —Go is the change in the Green's function
due to the impurity, and thus u(r)=

—UO for T (7O
0 fOr r ~rO,

g(k, k, ep. )=G(k, k, ep) —Gp(k, k, e~) . (13)

Expression (12) is a great simplification over the origi-
nal RS expression because of the elimination of the multi-

ple integrals. The summation over all k values is incon-
venient, however. A more practical result can be obtained

by expressing the k summation, or trace, in the coordi-
nate representation. The result is

Im f [u(r) —e~]g(r, r, ez)d r
377

where up is a positive constant for an assumed attractive
impurity potential (Z & 0).

Substitution of this potential in expression (14) gives

Zg =
3 6y AnT(Fp ) + 3 upknL (E'p )+ 9 mvpkgr p/1T, (17)

hnT(E~)= ——,Im f g(r, r, EF)d r

where hnT(e~) and An@ (ez) are, respectively, the changes
in the total and local densities of states at ez due to the in-
troduction of the impurity. Explicitly,

f u(r)Gp(r, r, eF)d r (14)

where bnL(ez)= ——Im f g(r, r, eF)6(rp r)d r, —(19)

and

g(r, r, ez)=G(r, l e'y') Gp(r, r,eF)—

G(r, r,e„)=(r
~

(e„+iO+ H) '
~

r)—,

V +u(r) e iO+ G(r—, r —', e~)= —5 (r —r '),
2m

(15)

and similarly for Gp when u is set equal to zero.
It should be pointed out that to lowest order in Z, ex-

pression (14) reduces to Z~ =Z'. Although this fact is not
immediately apparent from expression (14), it can be de-
duced from the original expressions given by Sham and by
RS. These expressions, which were used in obtaining the
result (14), show that X~p is of order u, or, equivalently,
of order Z' . It then follows from Eq. (3) that
Z~ ——Z+O(Z ), which is in agreement with Eq. (1).

and similarly for Gp(r, r, E+) with H replaced by Hp. To
obtain Eq. (14) from Eq. (12), one uses the fact that k is
the diagonal element of the operator —7 in the plane-
wave representation and makes use of the differential
equations satisfied by G and Go, namely

where 6(x) equals unity for x )0 and vanishes for x &0.
In obtaining Eq. (17), use was made of the standard form
of Gp in terms of spherical Bessel functions and Hankel
functions. This allowed the last term on the right-hand
side of Eq. (14) to be evaluated, resulting in , mupkp'r p/77, —
where kz (2mez)' is the Fe——rmi wave vector

Self-consistency is imposed in this model by use of the
Friedel sum rule, which states that

CC

Z =—g (2l+ 1)5((e~),
j=o

(20)

where the 5~(e) are the phase shifts at energy e. The
phase shifts can also be used to determine AnT(EF ) by the
usual expression,

00 d5i(e)
Anr(eF) = g (2l+1) (21)

E=O e= eF

The local density of states, unlike the total density of
states, is not simply related to 5~(e). According to Eq.
(19), the Green's function G(r, r, eF) needs to be calculat-
ed for r &ro. This is readily accomplished by the stan-
dard technique of matching the homogeneous solutions to
the differential equation (15) using the Wronskian. After
some tedious algebra, one can obtain analytical results.
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TABLE I. Calculated values for square-we11 model of hydrogen interstitials in metals. The well radius ro is chosen to equal the

Thomas-Fermi screening length. Atomic units assumed.

Metal

0.4816 1.277 0.25
0.50
0.75
1.00

5o(eF )

(deg)

8.44
221
44.0
72.5

Anl (eF)

0.225
0.624
1.160
1.263

hn~(eF )

0.303
0.578
0.368

—0.827

Z

0.094
0.245
0.489
0.806

Zd

0.105
0.309
0.628
0.788

1.12
1.26
1.28
0.98

Pd 0.7176 1.046 0.25
0.50
0.75
1.00

9.70
24.3
45.0
68.8

0.154
0.384
0.606
0.592

0.133
0.207
0.032

—0.450

0.108
0.270
0.500
0.763

0.117
0.311
0.543
0.630

1.08
1.15
1.09
0.83

0.7962 0.993 0.25
0.50
0.75
1.00

10.0
24.8
45.0
67.6

0.138
0.332
0.503
0.479

0.106
0.152

—0.004
—0.383

0.111
0.275
0.500
0.751

0.120
0.390
0.521
0.594

1.08
1.12
1.04
0.79

0.8532 0.959 0.25
0.50
0.75
1.00

10.2
25.0
45.0
66.8

0.128
0.301
0.443
0.414

0.090
0.122

—0.022
—0.345

0.113
0.278
0.500
0.743

0.122
0.307
0.506
0.572

1.08
1.10
1.01
0.77

0.92/73 0.920 0.25
0.50
0.75
1.00

10.5
25.4
44 9
65.9

0.116
0.266
0.378
0.345

0.074
0.092

—0.037
—0.303

0.116
0.282
0.499
0.732

0.124
0.304
0.488
0.546

1.07
1.08
0.98
0.75

The expressions are rather unweildly. Consequently, I
have restricted by numerical calculations to cases where
only the I =0 phase shifts are appreciable. This is the sit-
uation that is to be expected for the strong, localized po-
tential characterizing a hydrogen interstitial impurity in a
metal.

The well radius ro is 'chosen to equal the Thomas-
Fermi screening length, A zF, where A ~F——(6m n oe /
e~) ' . For each value of Uo there is a definite value of
Z determined by the Friedel sum rule (20) at the assumed
Fermi level of the metal of interest. The calculated values
of Z and Zd are shown in Table I for a series of host met-
als with uo/v, =0.25, 0.50, 0.75, and 1.00, where
U, =H/Smr( is the critical value of Up for which a bound
state forms. (The uo/U, =1.00 case actually refers to a
vo/u, value that is very slightly less than unity, so as to
avoid the bound-state formation. ) Values of kF were
chosen between 0.4816 and 0.9273 a.u. , corresponding to
the cases of sodium and aluminum, respectively. Between
these limits, the kF values chosen correspond to e~ values
appropriate to band-structure calculations for palladium,
copper, and niobium. ' The Pd and Nb results should be
regarded only as rough estimates for these metals with
complicated band structures, since band-structure effects
are not contained in the jelliurn model. The intent here is
primarily to examine a reasonable spread of kz values
rather than to claim quantitative accuracy for transition
metals.

Our numerical results show that both Z and Z~ vary
smoothly and essentially monotonically with vo. As
Uo/U, approaches zero, the ratio Zd/Z approaches unity,

which is the general result for the weak-charge limit.
This ratio increases somewhat as Uo/U, increases, then be-
gins to decrease for Uo/U, values between 0.50 and 0.75.
The relevant choice of Uo/U, for a hydrogen interstitial
should give a value of Z as near to unity as possible, if the
use of only s-wave contributions is to be reasonable. The
appropriate value of uo/v, is thus the largest value con-
sistent with no bound-'state formation, i.e., Uo/U, should
be just less than unity. For Na this choice gives
Z =0.806, with Zd being within 2%%uo of this value. At the
other extreme of kF values, the Al result is Z=0.732
with Zd about 25% lower than this.

The values of 5O(eF) for the cases of Pd, Cu, and Nb
with vo/v, near unity are within a few percent of values
obtained by Lodder' from impurity-potential calculations
for hydrogen in these metals. This lends further support
to the choice of Uo/U, just less than unity as the relevant
potential strength in modeling hydrogen interstitials.
(Stronger potentials would create a bound state, and this
would result in a negative ion, which is not expected to be
the case for hydrogen interstitials in the metals considered
here. )

To provide an indication of the sensitivity of the results
to ro, the calculations were repeated with ro taken to be
twice as large as before. These results are shown in Table
II. In all calculations, only the s-wave contributions were
considered. Although this is an excellent approximation
for the case that ro =A,rF (Table I results), the approxima-
tion is not so good for the ro =2k,~F case. In the former
case, 5&(ez) is no more than a few percent of 5o(eF),
whereas in the latter case, 5~(eF) is on the order of
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TABLE II. Same calculation as in Table I except that ro is chosen to be twice the Thomas-Fermi screening length.

Metal

Na 2.554

Vo /Vc

0.25
0.50
0.75
1.00

5O(eF )

(deg)

12.0
26.2
41.4
55.8

b,nz(eF)

0.593
1.018
1.034
0.631

Any(ep )

0.087
—0.163
—0.781
—1.542

0.133
0.291
0.460
0.619

Zd

0.133
0.266
0.359
0.390

Zd /Z

1.00
0.91
0.78
0.63

Pd 2.092 0.25
0.50
0.75
1.00

12.0
24.8
37.4
48.8

0.211
0.268
0.143

—0.102

—0.044
—0.228

0.511
—0.805

0.133
0.276
0.416
0.542

0.133
0.248
0.326
0.367

1.00
0.90
0.78
0.68

1.986 0.25
0.50
0.75
1.00

11.8
24.2
36.1

46.8

0.144
0.153
0.024

—0.187

—0.056
—0.219
—0.447
—0.677

0.131
0.269
0.402
0.521

0.134
0.246
0.323
0.370

1.02
0.91
0.80
0.71

1.919 0.25
0.50
0.75
1.00

11.7
23.8
35.2
45.5

0.106
0.091

—0.037
—0.227

—0.061
—0.210
—0.407
—0.602

0.130
0.264
0.392
0.506

0.134
0.245
0.324
0.375

1.03
0.93
0.83
0.74

Al 1.841 0.25
0.50
0.75
1.00

11.5
23.1

34.1

43.8

0.067
0.031

—0.093
—0.261

—0.064
—0.197
—0.362
—0.521

0.128
0.257
0.379
0.487

0.134
0.245
0.326
0.383

1.05
0.95
0.86
0.79

10—30%%uo of 5p(Ey ). The smaller values of 5p(ep) for the
case rp 2A, TF result——in smaller values of Z and Zd, but
the Z~/Z ratios are similar to those for the rp =ATF case.
Again, it is found that Zd is on the order of 20—30%
smaller than Z at the maximum 5p(E+), although the
Zd/Z ratio for Na is considerably smaller than this.

The importance of the impurity-induced change in the
density of states is also apparent from the general expres-
sion (12). Were it not for the k factor in Eq. (12), Zd
would be proportional to AnT(ez), since the latter equals

—(2/m. )lm gg(k, k~eF) .

IV. DISCUSSION

The numerical results showing that Z~ ~Z for
up/u, &1 are consistent with Landauer's expression (2).
However, for smaller values of up/u, and for rp=ATF
(Table I), it is found that Zd & Z, which is in conflict with
expression (2). It is possible that Landauer's result, being
based on a semiclassical viewpoint, is more appropriate to
a long-range potential, i.e., large ro. For the larger choice
of rp (Table II), the calculations give Zd &Z, with Zd ap-
proaching Z in the vo~0 limit. This is consistent with
the Landauer expression (2).

The contributions to Z~ from each of the three terms in
expression (17) are of comparable magnitude, and if the
changes in the local and total densities of states are posi-
tive for an attractive potential, each of the terms in ex-
pression (17) is positive. It is apparent from Tables I and
II, however, that hnT(e~) is often negative, thus dimin-
ishing Zd. [The correlation between negative AnT(eF)
and smaller Z~/Z values is apparent in the tables. ] Ac-
cording to Eq. (21), negative b,nz(e~) for an s-wave po-
tential occurs when 5p(e) vs E has a negative slope at eF.
For an attractive impurity this can only occur outside the
weak-scattering (first-order perturbation-theory) regime.

The k factor gives stronger weight to the local density of
states because the kinetic energy is larger in the region
where the impurity potential is deepest. This weighting
effect is more obvious in expression (14).

It would be useful to evaluate Z~ for impurity poten-
tials more realistic than the square-well model. This can

' be accomplished with expression (14) once G(r, r, eF) has
been determined. The latter could be readily obtained as a
by-product of impurity-potential calculations. Lacking
G(r, r, eF), one might resort to a cruder approximation if
AnT(er) and hnL (e~) were available. Here one might use
the square-well-model result (16) with up being estimated
by averaging a screened Coulomb potential over an ap-
propriate atomic volume.

Although the model calculations were performed for in-
terstitia1 impurities, the same calculations could have been
performed for substitutional impurities. In that case, Z
would refer to the difference in ionic-charge number be-
tween solute and host atoms. The situation becomes more
complicated, however, as the impurity atom migrates.
There are then atomic-configuration effects to consider
during the diffusion jump, as, for example, in the vacancy
mechanism of diffusion where the solute is at some posi-
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tion R between two vacancies. As a first approximation,
one could regard the solute as an isolated interstitial when
it is halfway between the vacancies. A numerical average
could then be performed to obtain an effective Zd value.
Such complications do not occur for interstitial electromi-
gration.

The role of band structure is more difficult to assess.
The original RS expression (7) and the resulting expres-
sion (14) were obtained within a jellium model. The latter
expression, however, involves Green's functions and im-
purity potentials which could be calculated beyond the jel-
lium model. It is tempting to use Eq. (14) with the
Green's functions obtained for a realistic model of a crys-
talline lattice. Determining whether or not this procedure
is justified requires further study A. n analysis of the
response function (4) within a Bloch representation would
be required.

A fundamental aspect of the direct force deserves em-
phasis. The basic point is that Zd is a dynamic entity and
cannot simply be ca'lculated from the static response to an
electric field. This is obvious from Landauer's discussion
of the carrier-density —modulation effect, but it can also
be deduced from the form of Eq. (7). The I contribution
in Eq. (7) formally corresponds to the electrostatic screen-
ing response to the applied field. This fact emerges when
a disguised version of the response function for electro-
static polarizability is recognized to be lurking in Eq. (9).
This function is

X(r, r ') = ——Im J G(r, r ',e)G( r ', r, e)de .
00

(22)

For the static-polarizability problem, the induced electron
density 5n is related to the electrostatic potential P ac-
cording to

5n(r)= J X(r, r')P(r')d r'. (23)

The cancellation of Z with the part of I" that depends on
the impurity potential as expressed by Eq. (10) can be
shown from Eqs. (22) and (23) to be a reflection of the fol-
lowing fact: A uniform electric field [P(r)= —r E] ex-
erts no force on an isolated neutral entity under conditions
of static thermodynamic equilibrium. This statement ties
in with the popular argument that is invoked for the van-
ishing of the direct force and explains why the BF ap-
proach is incorrect. The point is that the last term on the
right-hand side of Eq. (7} (or, more precisely, the part of
that term which depends on the existence of the impurity)
is the only surviving contribution to Zd. This term ap-
pears only in a dynamic calculation, and is therefore
missing in static-equilibrium calculations such as that of
BF.

The special dynamic nature of Zd has also been appre-
ciated by Huntjngton, ' Froberg, Landauer, '2 Das and
Peierls, and Sorbello and Dasgupta. ' In the present
work, I have presented a tractable theoretical expression
that permits a quantum-mechanical calculation of Z~.
According to expression (14), or the square-well-model re-
sult (17), accurate experimental determination of Z~ can
provide important information on alloy potentials in
Inetals.

V. SUMMARY
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APPENDIX

Expression (10) is now derived. To do this, I recast the
defining equation (9) for I into the following form, which
is independent of representation:

EFI'= — I Im TrpG(e}pG(e),
m'nz

(A 1)

where Tr stands for trace, p= i(B/Bx—) is the x com-
ponent of the momentum operator, and G(e) = 1/
(e+i0+ H) is the opera—tor form of the Green's func-
tion. It is convenient to express the trace in Eq. (Al) in
the representation in which H is diagonal. This gives

TrpG(e)pG(e) = g p„„G„(e)p„„G„(e),
n, n'

(A2)

where p„„=(n ~p (n') and G„(e)=(n
(
G(e)

( n), and
similarly for G„(e). The eigenstates of H are denoted

~
n) and

~

n')
The relation p = im [x,H]—implies 'that

p„„= im(e„—e—„)x„„,where e„and e„are the energy
eigenvalues, i.e., H

~

n ) =e„~ n ). Substitution of this p„„
form into Eq. (A2) gives

TrpG(e)pG(e)= im Q [G„'(—e)—G„'(e)]
In, n

XG„(e')G„(e)p„„x„„, (A3)

where

and similarly for G„'(e).
Using 6 '6=1 and introducing the commutator rela-

tion [p,x]= i in the —
~

n ) representation, one can easily
obtain, from Eq. (A3), the result

The direct force has been related through Eqs. (6) and
(14) to the one-particle Green's function for impurity
scattering at the Fermi energy. Expression (14) allows the
direct force to be calculated from quantities that are
readily available from impurity-potential studies. Model
calculations for hydrogen interstitials in metals give
values of the direct force that are on the order of
70—90% of ZeE. These results show some similarity
with Landauer's result, Eq. (2), which he obtained from
an analysis based on his carrier-density —modulation ef-
fect. In Landauer's analysis and mine the direct force
arises from dynamic contributions which are not con-
tained in a standard electrostatic-polarizability calcula-
tion, such as that of BF. The major limitation of my
analysis is that it is based on the model of an isolated im-
purity in a jellium background. Further work is needed to
determine the effects of band structure and atomic config-
urations for general defect complexes.
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Im TrpG(e)pG(e) = —m TrG(e) . (A4) the
~

n ) representation. Instead of Eq. (A4), one finds

Substitution into Eq. (Al) yields

2 2I =—f Im Trg(e)de+ —f Im TrGp(e)de, (A5)

where g(e) =G(e)—Gp(e) and Gp(e) = I l(e+i0+ —Hp)
is the free-electron propagator (Hp ———V /2m ).

The first term on the right-hand side of Eq. (AS) is the
negative of the net change in the number of occupied
states due to the introduction of the impurity [compare
Eq. (18)]. Local neutrality in a metal guarantees that this
equals —Z. That is,

Im TrpGp(e)pGp(e) = —m TrGp(e), (AS)

I = Imp k Gp(k, k, ep),
3Am

(A9)

which will finally prove expression (10). To derive Eq.
(A9), I recast Eq. (A7) in the k representation as follows:

which establishes the fact that the last term on the right-
hand side of Eq. (A5) equals I p.

It is now simple to obtain the desired relation

~FZ= ——f Im Trg(e)de . (A6)
Im f g k„Gp(k, k, e)de .

m.m OO

(A 10)

The desired result (10) is thus proved if the second
terms on the right-hand sides of Eqs. (A5) and (10) can be
shown to be equal.

To establish this equality, one can parallel the develop-
ment from Eqs. (Al) —(A4) starting with the quantity

EFf Im TrpGp(e)pGp(e)de, (A7)
mm

Io=—

and using the plane-wave representation
~

k ) in place of

Note that

G p(k, k, e)= — Gp(k, k, e), (A 1 1)

which allows the e integration of Gp(k, k,e) in Eq. (A10)
to be trivially performed to give —Gp(k, k, ez). The
desired relation (A9) is now obtained upon replacement of
k by —'k .
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