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We model the phonon spectra of the diamond-structure compounds C, Si, Ge, Sn and the zinc-
blende-structure compounds GaP, GaAs, and ZnS. We use a four-parameter valence-force model
consisting of first- and second-neighbor forces plus the very important coplanar angle-angle interac-
tion introduced by McMurry et al. Although formally "fifth neighbor, " this interaction follows
bond stretching and bond bending in importance. In agreement with the remarkable spread of
screening charge along (110) bond chains this interaction highlights the physical importance of
these chains. Two-parameter fits to the spectra are quite successful using only bond bending and
bond stretching but with much smaller values of bond bending than found by Martin, who fitted the
elastic constants. In zinc-blende compounds two bond-stretching parameters are available corre-
sponding to the two distinct vertex atoms. The extra degree of freedom gives little improvement and
produces such wildly different values as to call into question the degree of localization implied by
the intuitive picture of bond bending. We introduce long-range Coulomb interactions through a
"bond-tilt" model yielding dipole-dipole and quadrupole-quadrupole interactions. These interac-
tions further improve the fits given by the valence-force model, yielding an LO-TO splitting for the
zinc-blende compounds. The interactions are manifestly rotationally invariant, satisfying a serious
question raised by an earlier model due to Lax. Our models give a different perspective on the phys-
ics of covalent phonon spectra which we feel is complementary to the bond-charge models of Martin
and Weber. The accuracy of our best fits is comparable.

I. INTRODUCTION AND CONCLUSION

The phonon spectra of semiconductors have been exten-
sively studied. A good review and discussion of the phys-
ics of covalent phonon spectra is given by Weber. ' A very
comprehensive bibliography of experimental and theoreti-
cal phonon spectra of insulators is given by Bilz and
Kress. Most of the phonon work has been empirical in
nature although, recently, first-principles calculations .

have also been successful. The latter do not replace the
former, however, for many purposes because the physics
of the phonon interactions is often revealed more clearly
by the empirical models. In addition, applications to
problems of lower symmetry, such as the distortion pat-
tern around an impurity, are still too difficult for a priori
methods and must be treated empirically or, most accu-
rately, by a combination of first-principles calculations of
first-neighbor displacement energies coupled with an
empirical treatment for more distant neighbors.

Empirical models are vitally concerned with the range
of the effective interaction. Early work determined that
interactions coupling first and second neighbors were
inadequate to describe the pronounced Aattening of the
TA modes in (100) and (111)directions. It was specu-
lated that long-range forces due to quadrupole-quad-
rupole interactions might be crucial in obtaining a satis-
factory model.

The adiabatic bond-charge model of Martin and
Weber' introduced long-range Coulomb forces through a
specific model based on the physical picture of a bond.
charge attached by springs to nearest neighbors. It is
quite successful in describing the phonon spectra in terms
of a small number of parameters.

At about the same time McMurry et al. (hereafter
MSBN) introduced a valence-force model involving six
parameters which gave an equally good fit to diamond
and silicon phonon spectra. An important element in
their success was the introduction of a fifth-neighbor in-
teraction described in Fig. 1 which we call the MSBN in-
teraction after the authors of Ref. 7. The competition be-
tween this model and the bond-charge model then depends
in part on the number of parameters involved, six versus
four, which tends to favor the bond-charge model by the
criterion of simplicity.

We first became involved in this problem through an
entirely different approach based on the following idea.
The Pauling hybrids on a given atom are mutually orthog-
onal and complete in the sense that any hybrid in any
direction can be described as a linear combination of this
set. In a sense then, the usual interpretation of the bond-
bending interaction is misleading since it implies that the
bond remains straight and the angle between bonds
changes. A better picture might be that of tetrahedrally
oriented hybrids on each atom which are rigid but free to
rotate. The distortion energy would then be proportional
to the square of the deviation from colinearity of the two
hybrids making up a bond. Unfortunately, this descrip-
tion was more difficult to implement than the convention-
al one and did not lead to superior results so it was aban-
doned. The possibility remains, however, that the charge
distribution is more correctly described in this model.

Recently we discovered that the charge disturbance
due to an impurity at the origin in the diamond lattice
spreads with striking directionality along coplanar chains
of bonds. This observation provides a rationale for the
importance of the MSBN interaction which consists of
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FIG. 1. Interactions U~, U~, Uz, U~, and U~ defined in
Eqs. (6), (8), (11), (14), and (16) are depicted graphically. U is
bond stretching, Up is Keating s bond-bending interaction, U~
is contiguous bond stretching, U& is second-neighbor stretching,
and U~ is the MSBN interaction introduced in Ref. 7. The an-
gles P', P2 in UM are coplanar in the (110) plane.

the product of consecutive angles along a coplanar chain.
(See Fig. 1.) Instead of being considered merely as a
"fifth-neighbor" interaction, it appears as one of the most
likely candidates to consider after all second-neighbor in-
teractions are investigated. With this perspective we have
reanalyzed the valence-force model and considered only
the four independent first- and second-neighbor interac-
tions plus the MSBN interaction.

We follow the most common convention in defining
our interactions to be bond stretching, bond bending,
second-neighbor "bond" stretching, fourth degree of free-
dom, MSBN interaction, or U~, Up, Uyy Ugp U~ See the
mathematical description in Sec. II. With U, Up, U& de-
fined, all choices for the fourth degree of freedom are
equivalent. We have then ordered the interactions accord-
ing to successively optimal 1-, 2-, 3-, 4-, 5-parameter fits
to the experimental phonons. The ordered sequence is
U, Up, U~, U&, U~. U~ gives only a slight improvement
to the fit, hence it may be said that a satisfactory
valence-force model can be defined in terms of only four
interactions without any long-range Coulomb interactions.
For many applications it is very convenient not to have to
consider Coulomb interactions.

A further point in favor of our model is that the bond-
charge model requires five parameters to fit diamond
which for us is not a special case. The relative accuracy
of the two four-parameter descriptions is not easy to as-
sess without using the same fitting procedures for both
models. The two are comparable. Ours appears to be less
accurate but easier to implement. In terms of physics, the
two models are complementary. Our model focuses atten-
tion on the MSBN interaction whereas Weber's model
focuses on the bond charge.

Our model can be further improved by adding dipole-
dipole and quadrupole-quadrupole interactions in the spir-
it of Lax's original suggestion. Every bond possesses a
dipole and a quadrupole moment in the perfect crystal. A
distortion of the crystal may lead to a change in this mo-
ment proportional to the stretching or the tilting of the
bonds. Formulated in this way, our interactions are mani-
festly rotationally invariant, which we believe is not true
of Lax's original model.

We find that the bond-tilt model gives a better fit than
bond stretching. Furthermore, the multipole interactions
can be modified by a smearing of the r-space interaction
which leads to better convergence in k space. In addition
to the computational convenience, the smearing also im-
proves the fits. The importance of the quadrupole-
quadrupole interaction increases monotonically from dia-
mond to tin.

We have also used our bond model for the dipole mo-
ment together with the valence-force interactions
U~, U~, Ur, U~ to fit the phonon spectra of the zinc-
blende-structure compounds GaAs, Gap, and ZnS. The
interactions Up, Ur are different in the zinc-blende lattice
depending on the vertex atom, leading to a total of six in-
teraction parameters. (The dipole-dipole interaction is
fixed to give the correct LO-TO splitting at k =0.) The
fits are slightly less good and the number of parameters is
greater than the fits to the diamond-lattice phonons. We
also give two parameter fits to the spectra for
U~, Upt ——U~. The magnitudes of the fitting coefficients

p&, p2 have the opposite sign and are much larger when al-
lowed to differ than when constrained to be equal.

Our two-parameter fits for both diamond and zinc-
blende materials are quite different from Martin's results
who fitted bond stretching and bending to the elastic con-
stants. Our values of bond bending are significantly lower
than Martin's because of the strong flattening of the TA
phonons away from the origin. For applications such as
calculating the distortion pattern around an impurity our
numbers are to be preferred because the low Fourier com-
ponents of the distortion pattern have little weight.

- In Sec. II we describe the models that we use for the
phonon energies including the valence-force models (Sec.
IIB) and the Coulomb interactions (Sec. IIC). In Sec.
IID we describe our empirical models for obtaining the
phonon-induced multipole moments. In Sec. II E we
describe the Ewald method used to perform the multipole
lattice sums. In Sec. IIF we discuss the LO-TO splitting
of the ionic compounds.

In Sec. III we describe our empirical parameter fitting
techniques and give some detailed discussion of the indivi-
dual parameter values. Tables and graphs of the fitting
functions are presented.

II. PHONON ENERGY CALCULATIONS

A. Dynamical matrix

For a given phonon k there are six independent degrees
of freedom corresponding to the two vector displacements
r(0), r(rt). All other displacements r(a~), r(~t+al) are re-
lated to these by the phase factor exp(ik a~).

We write the potential energy in the form
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I,i=1 t]t2=O, ~) aE, ad ),ad2

~'j(tl+ad1 t2+ad2)ri(tl+ad 1+al)rj(t2+ad2+al)

ai are vectors belonging to the fcc lattice; and ad, ,ad2 are
members of a subset of fcc. O, rl are the basis vectors of
the diamond lattice. It is easy to show that the dynamical
matrix can be written'

4

Upm= 8 g (13n ,ln 2+Pn
2,

n&) ~

n&, n2 ——1

nt, &n2
aE

——fcc

m =0, 1

8 U 1
Dij(tl, t2) =

1/2ar,*(t,)arj(t, ) [~„(t,)M„(t,)]
U'j(t 1 +ad I t2+ ad 2)

/f„„,= [r(r„,+ai) —r(ai)] r„, ,

P„"„=[r(rl+ai) —r(r, r„+—ai)].r„, . (10)

i,j,t&, t2,

d 1' d2

&& [& (tl+ad 1)&j(t2+ad2)

We define second-neighbor "bond stretching" in a
manner completely analogous to Eq. (3):

12

Urm ———, g (5cn ), m =0, 1,
n=1

aE =fcc

+r'(tl+ad 1)~j (t2+ad2)]

r;(t+ad)=e r;(t),
&;*(t+ad ) =e r,*(t) .

(2)

5c„' =r(a„+ai) r(ai ),—
5c„"=r(a„+rl+ai) r(r, +a—i),
al ——(0, 1, 1)aL /2, etc. ,

(12)

(13)

In Eq. (2) r;* and r; are to be treated as independent
variables. Use has been made of the relations

where a„ is a unit vector in the direction of a„.
For the final valence-force interaction between second

neighbors we choose the following:

r;(tl+ai) =e 'r;(t, ),
U'j ( t 1 +ad 1 +ai t2 +ad 2 +ai ) Uij (t 1 +ad 1,t2 +ad 2 ),

(2a)
Usm —— g 5b„' 5b„', m =0, 1

nl &n2
aE =fcc

(14)

which follow from translational invariance.
The eigenvalues of the 6&&6 dynamical matrix give co, '

where co =2mv and v is the phonon frequency.

where

5b„'=r(r„+ai ) —r(ai ),
5b„' =r(rl+ai) —r(rl r„+ai), —1,I

B. Valence-force model

We follow Keating's" model in defining the bond-
stretching and bond-bending interactions U~ and U~, but
we expand his expressions to keep only quadratic terms.
The higher-order terms lead to anharmonic effects which
have not been shown to be satisfactorily treated by this
model. We then find for bond stretching

4

(5bn, i)' (3)
n =1,4
aE ——fcc

(16)

+5b„; (r„,+ —,
' r„,)], m =O, n, (17)

in complete analogy to Eqs. (4) and (5).
We define the MSBN interaction according to

UM rg 5(b„——'"
, „,5p„' „

nl, n2 ——1,4

nl~n2
aE

—fcc

5b„ 1
——r(r„+ai ) —r(ai ),

6b„ I ——51„I.~„,
&n =nn&L, ~4=&n&

r„=n„/~3,
nl =(1,1, 1), n2=(l, —1, —1),

n3=( —1, 1, —1), n4 ——( —1, —1,1) .

Bond bending is given by

(4) 5b„' =r(r„+ai) r(r„—r„+a,), —sin2PO ——,
'

The seven interactions U~, U~, U~1, Uzp, U&1, Ugp, Ug1
constitute all the independent valence-force interactions
between first and second neighbors in the zinc-blende lat-
tice. In the diamond lattice U~ ——Up1, U&p ——U», and
Usp= Ug

C. Coulomb-interaction moment expansion

We write the Coulomb interaction between two charges
e and eb as
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E=e,ehl
~
R, +sr, —Rb —ob

~

(19)

where cr„orb are the locations of e„e& referred to their
respective lattice sites, R, and Rb.

We then expand Eq. (19) in a Taylor series in o., cr—b
to fourth order, assuming R, &Rb. We thus obtain

the Ewald transformation.
We also sum over all pairs of lattice sites R„Rb to give

the total energy. We ignore M,M,M . The total ener-
gies E,E become

E = — g F;2j(R, R—b)M (Ra)Mi'(Rb),

E—EO+E1+E2+E3+E4

E =VMS
E = gF; (M;Mb+M, Mb;),

4 1

4

i,j,R,Rb
R ~Rb

i j,k, l, R,Rb
R ~Rb

F~jkiM~j(R, )Mki(Rb ) .
(24a)

(20)
Then writing

17J
3 & 3 3 0 3 0

6 p Fijk(MaijkMb ™bijkMa
i,j,k

—3M,ijMbk +3M„Mbjk ),
4 1 4 4 0 0 4 3 1

24 g Fijki ( Maij kiMb ™aMbij ki 4Maij kMbi
i j,k, l

4M;—Mbjki +6M,jMbki ),

R, =&, +al +a~, Rb ——&b+ al (24b)

and using Eqs. (1) and (2), we obtain the form E * yield-
ing the dynamical matrix

3E'*= — g F,'(t. tb+—ad )
i j =1

f )fb 0)vl
a~ ——fcc

X I M,'(t. )[M,-'(tb ) ]*e

F; =x;V',
Fj ——x;xj( V —V'Ir)+5j V'r,

3V 3VI',Jk
——x x xk V — +

y r 2

V2
+ (5;kxj +5jkx; +5ijxk )

4 4 6V 15 V
+~kl =x;xJxkxl V — +r y

15V
r 3

(21)
+ [M,'(t. )]*M,.'(tb )e "j,

which can be simplified to

E'*=—2 g G,', (t. —t„)M,'(t. )[M,'(t, )]*,
1)J

t tb =0 v'l

G, (t. —tb) = g F,(t. tb+a„)e—

(24c)

(24d)

(24e)

+ (5ii xj xk +5ij xixk +5ikxixj +5ikxj xi +5jkxi xi Similarly we find

V3
+5;jxkxi)

r
3V 3V'

2 5r r

3

E *= g Gi2jk(t, —tb)[ M~j(ta)Mk—(tb)*
i j,k =1,

tb ——O, tj
V2

+(5 k5ji+5jk5i+5ij5ki)
r

V1

r +M; (t. )M,'k(t, )"], (24f)

X;=(R„Rb;), r =Xi+—Xz+X3, x;=X;Ir,
V"=d"V(r)/dr",

0 1 2Ma ea ~ Mai ea ~ai ~ Maij a ~ai ~aj

3 4
Maij k eaoai~aj ~ak~ Maijkl eaai ~aj ~ak~al

(22)

(24)

3

E = —, g Gjki(t, —tb)Mi2j(t, )Mki(tb)*,
i,j,k, l =1
t tb —0)v)

G jk(t, —tb)= g Fzk(t, —tb+ad)e
a~ ——fcc

(24g)

Then, in order to obtain the total Coulomb energy of
the charge distribution, we sum over all the charge per-
taining to sites R, and Rb. Equations (24) then give the
monopole, dipole, quadrupole, and octupole moments.
M can be taken to be a traceless tensor since the trace
does not contribute to the Coulomb interaction.
V(r)=1/r, but more general forms will be used later in

G~4jkl(t tb ) y F ki(t tb +''ad )e
Rg =fCC

D. Empirical multipole models

We need to calculate the multipole moments of Eq. (24)
in the presence of a phonon distortion. It is now possible
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to do such calculations by a priori methods but we will
introduce an empirical model which ignores multipoles
higher than quadrupole.

In the undistorted lattice there are no dipole or quadru-
pole moments. There are monopole moments in zinc
blende but not in diamond. The phonon interaction is
quadratic and we assume that the individual moments
M„Mb are separately linear. (A quadratic multipole
combined with a monopole seems possible in zinc blende
but we ignore this possibility. )

The simplest model for the zinc-blende lattice, follow-
ing Kellermann, ' is to assume that the phonons rigidly
displace the lattice charge distribution

III. BOND-STRETCH AND BOND- TILT
MULTIPOLES

We now proceed to develop two phenomenological
models for the dipole and quadrupole moments in the dia-
mond or zinc-blende lattices. We imagine that all of the
valence charge has been assigned to the four bonds around
each atom and that the charge in each bond has been di-
vided between the two atoms forming the bond. In the di-
amond lattice a logical choice would be to assign the
charge to the closer of the two atoms. We then expand
the charge in monopole, dipole, and quadrupole moments
about each lattice site.

For the unperturbed bond dipoles we write
0o.„=o„+r;(R,), (25) d'„=D (a)r„, (27)

where r;(R, ) is the phonon displacement of lattice site,
R, . This leads to dipole moments of the form

(26)

Substitution of (25) in M„M, in Eqs. (24a)—(24g) gives
zero to first order in r since M,',M, are zero in the perfect
lattice. M, is a property of the undistorted lattice in this
model but we use it as an empirical constant. Charge neu-
trality requires M = —Mp. 5d'„=D'(a)r„5b„' /r (bond stretch) . (28)

where d'„ is the dipole moment at lattice site R, associat-
ed with bond n = 1,4 and ~„ is a unit bond vector defined
as in Eqs. (6) and (7). The phenomenological constant
D (a) depends on whether R, is on the R, =0 or R, =r&
sublattice. In the diamond lattice D (r~) = —D (0).

In the "bond-stretch" model we assume that the dipoles
in the distorted lattice are proportional to the bond
lengths. The dipole-moment change is then given by

TABLE I. Diamond. Fits to the experimental phonon spectrum of diamond with varying numbers of fitting parameters.
Columns 1 and 2 give the k vectors and frequencies of the experimental phonons. Column 3 gives the weights used in the least-
squares fitting including the degeneracy of the level. The remaining columns give the errors in the fits, experiment —theory, for in-
creasing numbers of parameters 5„. The maximum percentage error (Max % error) of the fit is also given. The difference with the
largest percent error in each column is indicated by an asterisk. The parameter values corresponding to column 5„are given in row n

below in units 10 ergs/cm .

k
(units of 2m/aL)

(0.4,0,0)

(10' Hz)

13.66
37.73

Weight

10
2

1.53*
—1.67

0.86*
0.43

0.52
—0.21

0.17
0.13

(1,0,0) 24.09
32.32
35.82

10
2
2

—0.45
—0.81

1.90

—0.42
—1.07

0.91

0.09
1.03

—0.93

0.11
0.67

—0.16

(0.5,0.5,0.5)

(0.0,0.6,0.6)

16.56
31.04
36.30
37.25
20.86
25.79
27.70
34.23
37.25

10
1

2
1

10
2
2
2
2

—0.79
1.07

—1.10
1.86
1.00

—0.34
1.27

—0.77
—1.34

0.34
1.62
1.03

—1.26
—0.29

—0.41
—0.38

0.10
—0.23

0.15
—1.42*
—0.02

—0.40
—0.21

0.19
0.48
0.04

00+
0.78
0.26

. —069

Max % error 6.3 5.5

108.13
98.83
80.50
67.23

59.24
47.53
40.81
35.97

. 0.0
3.83
5.29
6.87

0.0
0.0
7.56
8.26

0.0
0.0
0.0

—16.15
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FIG. 2. Phonon dispersion curves for diamond. The open
circles and dashes correspond to fits 6l and 54 in Table I ~ The
solid circles are experimental data from Ref. 14.

FIG. 3. Phonon dispersion curves for silicon. The open cir-
cles and dashes correspond to fits 6& and 5& in Table II. The
solid circles are experimental data from Refs. 15 and 16.

The change in bond length 5b„' is given by Eq. (15) if we
identify a =0 and a=v with 0 and 1. D'(a) is a new
phenomenological constant analogous to D (a).

In the "bond-tilt" model we assume that the bond di-

pole moment follows the unit vector 1'„defined by

1'„=r„+[51„(51„'r—„)~„]/~ (29)

5d'„=D (a)[51'„—(51'„r„)r„)./z (bond tilt) . (30)

using definitions in Eqs. (15). The dipole moment change
is then found by substituting b'„for r„ in Eq. (27):

k
(units of 2m/aL) (10" Hz)

TABLE II. Silicon. See Table I.

Weight

(0.4,0,0) 3.47
6.10

14.65
15.15

0.69'
0.98

—0.30
0.55

0.17
0.65

—0.47
—0.12

—0.03
0.17

—0.10
0.18

0.08
0.03

—0.11
0.08

0.02
0.32'

—0.14
0.12

(1,0,0) 4.51
12.32
13.90

10
2
2

—0.41
1.0

—0.49

—0.08
0.56
0.20

—0.04
0.08

—0.03

—0.06
—0.15

0.12

—0.04
0.03
0.19

(0.5,0.5,0.5) 3.41
11.35
12.60
14.68

10
1

1

2

—0.07
1.8
0.02

—0.12

0.17
1.12
0.62

—0.21

0.20
0.90*

—0.19
—0.01

0.18
0.64*
0.21
0.03

0.10
0.07
0.24
0.07

(0,0.7,0.7) 4.54
6.76

10 0.16
0.75

—0.04
—0.26

—0.05
—0.34

—0.02
—0.24

0.03
—0.18

(0,0.75,0.75) 10.85
11.15
14.40

0.11
—0.32
—0.03

Max Jo error 20

47.64
43.23
.41.47
44.46
41.31

5.56
4.84
1.58
2.75
2.74

0
0
1.06
0.68
0.64

0
2.03
2.19
1.99
1.91

0
0
0
4.18
0

C4

0
0
0
0
0.001 33
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In the undistorted lattice the sum over all four bonds
must lead to zero net dipole and quadrupole moments by
symmetry.

For the unperturbed bond quadrupoles we write

q '"=Q (a)( —,'r„;r„J——,'5J), (31)

which is a symmetric traceless tensor with an axis of rota-
tion in the direction v„. In the diamond lattice the empir-
ical constants satisfy the symmetry relation Q (ri)
=Q (0).

We proceed to define stretch and tilt quadrupole mo-
ments in complete analogy to the dipole definitions.

5qi~j'" Q——'(a)( —,&„,.r„1——,5,J )5b„'lr (bond stretch),
(32)

5qi'"= —,'Q (a)(r„;5b'„i+r„~5b'„;) (bond tilt) .

I I I I i I I I

0
08— 0
0

tV

6—AJ

O

c'

I i I I I I i I I I I ( I I I I

()
0

W

X Z r

r

0

I I I I I I I I I I I I I I I

The total dipole and quadrupole moment at the site a is
obtained, of course, by summing Eqs. (28), (30), and (32)
over all bonds n =1,4.

A. Emald method

The quantities G,G, G in Eqs. (24e) and (24g) involve
sums over all fcc Bravais lattice points. We calculate
these sums using an Ewald method. ' We divide the
Coulomb interaction in two sections:

1/r =Fq(r)+Fz(r),

Fq (r) = ( 1 lr)erf( fr ) .
(33)

F~(r) is Fourier analyzed and summed in k space, Fz(r) is

FIG. 4. Phonon dispersion curves for germanium. Open cir-
cles and dashes correspond to fits 6& and 65 in Table III. The
solid circles are experimental data from Refs. 17 and 18.

.k
(units of 2m. /ai)

V

{10' Hz)

TABLE III. Germanium. See Table I.

Weight

(0.4,0,0) 1.96
3.42
8.56
8.95

10
1

2
1

0.43
0.43

—0.28
—0.35

0.09
0.24

—0.38
—0.05

—0.02
—0.03
—0.13

0.16

0.04
—0.06
—0.15

0.10

0.01
0.06

—0.18
0.10

(1,0,0) 2.40
7.21
8.26

10
2
2

—0.29
0.59

—0.30

—0.07
0.31
0.10

—0.04
0.06
0.01

—0.05
0.001
0.10

—0.05
0.008
0.12

(0.5,0.5,0.5) 1.90
6.66
7.34
8.70

10
1

1

2

0.002
1.18

—0.13
—0.07

0.15
0.77
0.22

—0.12

0.17
0.66*

—0.21
0.03

0.17
0.56

—0.16
0.05

0.10'
0.019
0.03
0.07

{0,0.7,0.7) 2.49
3.66
6.10
6.58
8.29
8.63

10
2
2
2
2
2

0.10
0.38
0.26

—0.03
—0.27

0.26

—0.03
—0.30

0.01

—0.02
—0.25
—0.09

0.04
—0.17*

0.04
—0.19

0.02
0.04

Max % error 22 12 10

43.56
39.64
37.73
39.69
37.87

4.29
3.63
0.80
1.87
1 ~ 88

0
0
0.91
0.57
0.52

0
1.80
1.96
1.83
1.63

0
0
0
2.74
0

C4

0
0
0
0
0.001 49
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summed in r space. The Ewald parameter, f, is selected
to optimize convergence.

Taking the Fourier transform of Fz(r),

F&(k) = exp( k /—4f ),
k

we obtain the lattice sum

(34)

C(r~) =0; C(0)= lim F~(r—) .
r~O

(36)

The correction term compensates for the fact that the lat-
tice site a~ =0 is omitted on the left-hand side of Eq. (35)
when r=0. We can then differentiate both sides of Eq.
(35) with respect to r two, three, or four times to obtain
6,6,6 in Eqs. (24e) and (24g).

The contribution to 6,6,6 from Fz(r) in Eq. (33) is
evaluated directly in r space. The contribution from
F~(r) is evaluated in k space using the right-hand side of
Eq. (35) after differentiation. The result should be in-
dependent of f in Eq. (33) which provides a very good
check.

In the diamond lattice the condition D(r&)= D(0)—
for the dipole moments leads to an approximate cancella-
tion at large distance. In fact, the two dipoles cancel to

Q F&(a~+ r)e '= g Fz(K —k)e'~ k"+C(r),
vol K8)

(35)

I I ) I I t [ ) y

(Pg~ ga
0 ~ A0

O Q~
0 Pl

0 0
C3

UJ

UJ
CL
L 2—

ooo o

g Wo

o.P9 t, , I. . . i I i » I », » g

r' X z r'

FIG. 5. Phonon dispersion curves for grey tin. Open circles
and dashes correspond to fits 6& and 65 in Table IV. Solid cir-
cles are experimental data from Ref. 19.

the extent that they become equivalent to a quadrupole at
r/2. Hence, the long-range Coulomb interactions are
phenomenologically the same in either dipole or quadru-
pole models. In the zinc-blende lattice there is no relation
between D(r~) and D(0). We may break down the pa-
rameters into two terms D+ and D

k
{units of 2~/aI) {10' Hz)

TABLE IV. Grey tin. See Table I.

Weight

{0.4,0,0} 1.15
2.05
5.61
5.82

10
1

2
1

0.26
0.13

—0.19
0.20

0.15
0.07

—0.23
0.06

0.11
—0.09
—0.09

0.19

0.14*
—0.14
—0.11

0.11

0.074*
—0.08
—0.12

0.12

(1,0,0) 1.25
4.67
5.51

10
2
2

—0.30*
0.38

—0.15

—0.04
0.30

—0.02

—0.02
0.16

—0.09

—0.03
0.07
0.02

—0.010
0.02

—0.02

(0.5,0.5,0.5) 1.00
4.15
4.89
5.74

10
1

1

2

—0.10
0.70

—0.04
—0.02

0.09
0.62*
0.08

—0.06

0.11
0.56*

—0.18
0.03

0.10
0.42

—0.11
0.04

0.04
—0.05
—0.05

0.05

(0,0.6,0.6) 1.96
3.61
4.73
5.78

10
2
2
2

0.12
0.14

—0.04
0.18

—0.04
0.03

—0.03
—0.09

—0.009
—0.03
—0.01

0.03

Max /o error 15 13.5

1

2
3
4

31.15
29.79
28.82
30.69
28.57

2.34
1.62

—0.14
0.97
0.30

0
0
0.57
0.20
0.38

0
0.78
0.82
0.78
0.69

0
0
0
2.97
0

C4

0
0
0
0
0.001 30
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D(0) =D+ +D
D(r)) =D+ D—

(37)

D is equivalent to a quadrupole interaction at large dis-
tances as before while D+ leads to the well known
LO-TO splitting of the optical modes. ' This results from
the conditional convergence of the dipole sum.

The quadrupole constants Q(r) obey the symmetry re-
lation Q(0)=Q(r) in the diamond lattice. In the zinc-
blende lattice we may write

Q(o) =Q++Q-
Q(~) =Q+ —Q

(37a)

2 ik aIg E„,(a(+r)e.
I

aI

4m
2 k;kj+analytic (k) . (38)

vol k'

Equation (38) then gives a nonanalytic contribution to the
dynamic matrix from E *, namely

B. LO-TO splitting

The LO-TO splitting' comes entirely from the term
K=O in Eq. (35) for m =2 (m is the order of differentia-
tion) in the limit k ~0, namely

I g I I ( / I $ l
(

I I t (
t 4 I $ ( I

10— ooo
8 ~

0 )

CU 7 5O 0

~DO
ogWo

/ 0
~

ps /0 ~~ Q W
p/0 0

-go
p/s ) ) ( s s i s l i s ) I

r X Z

/o"

/o

/

I i I I l

r

In the limit k~0 we have the following expressions for
the dipole moments:

FIG. 6. Phonon dispersion curves for gallium phosphide.
Open circles and dashes correspond to fits 5~ and 54 in Table V.
Solid circles are experimental data from Ref. 20.

ENA=
i,J

tg tb 0, T')

, k, k,M,'(t. )[M, (t&)]*,
vol k'

in the limit k~0 . (39)

M (t) =M, r;(t) (Kellermann),

M (t) =D'(t) —,[r;(v~) —r;(0)]/r (bond stretch),

M; (t) =D (t) —,[r;(r~)—r;(0)]/r (bond tilt) .

(40)

k
(units of 2n. /aL)

TABLE V. gallium phosphide. See Table I.

Weight

(0.4,0,0) 2.40
4.24

10.83
11.61

20
1

2
1

0.42*
0.69

—0.48
0.47

O.SD*

0.71
—0.31
—0.06

—0.01
0.29

—0.18
0.67

0.01
0.27
0.07
0.16

(1,0,0) 3.23
7.51

10.60
11.01

20
1

2
1

—0.26
0.80

—0.34
0.94

—0.30
0.81

—0.25
0.95

0.04
0.38

—0.50
0.67

0.02
0.43*

—0.40
0.51

(O.S,O.S,O.S} 2.58
6.31

10.78
11.24

20
1

2
1

0.10
0.06

—0.43
1.06

0.15
—0.46
—0.27

0.81

—0.01
0.03

—0.25
0.54

0.01
—0.27
—0.03

0.06

(0,0.6,0.6) 3.04
4.19
6.13

20
2
2

0.21
0.09
0.17

0.25
—0.34

0.17

—0.07
—0.12

O.75'

—0.06
—0.03

0.33

Max % error 18 21 12

1

2
3
4

41.18
40.53
32.54
31.03

5.10
5.11

35.32
35.03

5.10
5.11

—25.86
—25.75

0
0
3.06
3.25

0
0

—1.72
—1.71

0
0
1.14
1.21

C2

0
0.0121
0
0.0121
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The right-hand side of Eq. (39) is zero for r perpendicular
to k. For r=rL parallel to k we use Eq. (2) and Eq. (39)
to obtain the nonanalytic contribution to the dynamical
matrix. The analytic contribution is the same for both
LO and TO modes. We then obtain the splittings

vol M„(0) Mg(v')

C =Mo (Kellermann),

C= , D'+ I—r (bond stretch),

C= 3 D+!~ (bond tilt) .

(41)

We treat C as an empirical constant which is taken to
satisfy Eq. (41) for the experimental values of coLQ cljTQ.

IV. EMPIRICAL PARAMETER FITTINCr

We have tested the theory developed here by making an
empirical fit to the phonon spectra of the diamond lattice
materials C, Si, Ge, and Sn. We have also fit the zinc-
blende compounds Crap, GaAs, and ZnS.

The fit was done by a weighted least-squares method
using iterated linear extrapolation of the phonon matrices
with respect to the interaction parameters. Approximate-
ly 20 separate phonons were fit. The k vectors, weights,
frequencies, and errors of the fits together with the values
of the fitting parameters are given in Tables I—VII.

I I I I [ I I I I i I I I I ) I I I I ) I I I I

O~
ai' ~ 'o 9 8 cr a 0 ~g-~8&8 c 0 Q g 0~)

e + QI ~ I ~ ~ ~ s~ 0

II
~ ~ ~8

0
0 0 ~to

P o 0
r

WO pw -'

+~0 . 0

r X Z I' A L

FIG. 7. Phonon dispersion curves for gallium arsenide. Open
circles and dashes correspond to fits 5~ and 64 in Table VI.
Solid circles are experimental data from Ref. 21.

We have assumed that the phonon potential energy
could be written in the form

U=«a+PoUpo+13t Upi+'VoUyo+'Y&Uyt

+5oUso+5)Us)+luU~+Eq(+, f)+Eq(+,f), (42)

The first eight interactions are defined by Eqs. (3), (8),

k
(units of 2m/aL, ) (]0' Hz)

TABLE VI. Ciallium arsenide. See Table I.

Weight

(0.4,0,0)

(1,0,0)

1.88
3.30
7.66
8.42

2.36
6.80
7.22
7.56

10
1

2
1

10
1

1

2

o.4o*
0.52

—0.49
0.47

—0.24
0.78
0.97

—0.30

0.48*
0.54

—0.38
0.11

—0.26
0.77
0.97

—0.25

—0.06
—0.07
—0.19

0.44

—0.01
0.16
0.29

—0.07

0.03
—0.04
—0.08

0.11

—0.05
0.25
0.26

—0.07

(0.5,0.5,0.5) 1.86
6.26
7.15
7.84

10
1

1

2

0.02
1.12
0.28

—0.23

0.07
0.54
0.31

—0.14

0.17
0.59

—0.08
—0.04

0.21
0.13

—0.12
0.05

(0,0.7,0.7) 2.38
3.48
5.65
6.44

10
2
2
1

0.06
0.30
0.26
0.12

0.10
0.01
0.25
0.14

—0.06
—0.34
—0.02
—0.12

—0.01
—0.52
—0.03
—0.14

Max % error 25 10 15

36.54
36.18
30.39
30.53

4.02
3.96
3.43
2.52

4.02
3.96

—4.61
—3.67

0
0
2.04
2.04

y2

0
0
0.65
0.65

0
0
1.76
1.56

C2

0.0099
0
0.0099



PHONON SPECTRA OF DIAMOND AND ZINC-BLENDE SEMICONDUCTORS 7875

k
(Units of 2m/aL)

V
(10" Hz)

TABLE VII. Zinc sulfide. See Table I.

Weight

(0.4,0,0) 2.05
3.57
8.63

10.31

20
1

2
1

0.37*
0.47

—1.12
0.73

0.85*
0.64

—0.55
—0.13

—0.06
—0.01
—0.30

1.35

0.03
—0.03
—0.02

0.11

(1,0,0) 2.69
6.34
9.47
9.90

20
1

2
1

—0.27
0.38
0.03
1.39

0.05
0.59
0.35
1.69

0.09
0.36

—0.16
0.45

0.02
0.13
0.05
0.64*

(0.5,0.5,0,5) 2.10
5.85
8.67

10.10

20
1

2
1

0.001
0.36

—1.00
1.43

0.44
—0.45
—0.48

1.08

—0.13
0.61

—0.43
0.25

—0.03
—0.27
—0.17
—0.28

(0,0.6,0.6) 2.53
3.56
5.50

10.06

20
20

2
1

0.13
0.07
0.23
0.34

0.60
—0.43

0.38
0.61

—0.06
—0.01

0.87*
—0.11

—0.01
—0.003

0.02
—0.14

Max %%uo error 16

30.95
29.17
21.61
20.72

3.54
2.56

24.76
26.45

3.54
2.56

—20.97
—22.30

0
0
3.42
3.27

0
0

—1.11
—1.11

0
0
0.62
0.80

C2

0
0.0224
0
0.0224

(11), (14), and (16), respectively. The long-range Coulomb
interactions E and E"are defined in Eqs. (24a) involving
dipole and quadrupole moments, respectively. The dipole
and quadrupole moments are given by Eqs. (30) and (32).

We treat the dipole and quadrupole moments as con-
stants to be determined empirically. We make the defini-
tion

I I I I ) I I I I / I I I I t I I I I ] I I I I

~«0 '~ 0

'~8@ ' —'«goo»o~o'o8»
0

0 o O 0 o (~ ~
N 8 II o o

M

6— ~ O 0 0
(3 0

0

e~ *'~"'
=

Oi, I I I I I I I I I I I I I I I I I I 5 I I I I

r b, X X I' A L

FIG. 8. Phonon dispersion curves for zinc sulfide. Open cir-
cles and dashes correspond to fits 5t and 54 in Table VII. Solid
circles are experimental data from Ref. 22.

Ek(+,f)=c2vh(k), Ef (+,f)=c4rjq(k),

c2 (D+) /air——, c4 ——(Q+ } /air
r=W3ai/4,

(43)

where g2, g& are k-dependent matrix forms yielding the
dynamical matrix of Eq. (2). With these definitions
c2,c4,a, P, . . . have the same units which we take to be
J/m or 10 ergs/cm in accord with Martin's convention.

The lattice sums are performed entirely in k space us-
ing Eq. (35). We have ignored the term Fq in Eq. (33) so
that the Coulomb interaction 1/r has been replaced by the
smeared interaction (1/r)erf(fr). This was done to im-
prove the fitting. The quality of fit had a broad max-
imum around f=3/ai where ai is the lattice constant.
The same value of f was used for all materials and for
both dipole-dipole and quadrupole-quadrupole interac-
tions. The bond-tilt model was found to give a better fit
than the bond-stretch model. An "equivalent quadru-
pole" model for the diamond lattice using Ek with
D (0)= —D (r~) was tested but found to be not as good
as the Ej,(+,f) model finally adopted. The "Keller-
mann" model for Ek was found not to be as good as the
bond-tilt model. The above conclusions were deduced
from a study of several materials but were not thoroughly
established.

In zinc-blende materials the parameter c2 was fit to
give the LO-TO splitting at k =0 exactly using Eq. (41).
c4 was set =0. In diamond lattices c2 ——0 by symmetry-
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and c4 was varied. Since c4 is implicitly a square it must
be positive to be meaningful. This was found to be true in
all cases except diamond where the improvement in the fit
from c4 was negligible in any case.

The detailed fits are given in Tables I—VII and Figs.
2—8. The two-parameter Keating model gives a surpris-
ingly good fit, even for the zinc-blende materials. The
bond-bending parameter (P) we find is distinctly different
from Martin's value which was determined by fitting the
elastic constants. His value gives TA phonons which are
much too high at the zone edges. For modeling short-
range disturbances such as the displacements around an
impurity our values are preferable since a Fourier analysis
of the disturbance would find most of the weight at large
k values.

Surprisingly, the addition of the constant cz to the
Keating model which gives the correct LO-TO splitting
does not improve the fit. For the less ionic material GaAs
(Table VI) the fit is not improved by cz even for the six-
parameter model. For GaP and ZnS (Tables V and VII)
the addition of c2 to the six-parameter model improves
the fit considerably. (We are not counting c2 as a "fitting
parameter" because it is determined uniquely by the
LO-TO splitting at k =0 and not by the least-square fit. )

Another unexpected result was the values of the bond-
bending parameters /3& and f32 in the zinc-blende lattice.
Although the Keating model with P~

——P2 gives a reason-
ably good fit, the relaxation of the requirement /3&

——f3&

gives hardly any further improvement. Also the values
usually have opposite signs and are very much larger.
This result suggests that the localization implied by the
intuitively appealing picture of "bond bending" is not
really true. We have a further theoretical objection to the
bond-bending model. The Pauling hybrids on a given

atom have no freedom to "bend" since they constitute a
complete set which may most conveniently be described as
a rigid tetrahedron. A better picture would seem to be a
set of rigid tetrahedra on each atom which would be free
to rotate relative to each other. This was the idea that
motivated this investigation. The model is relatively awk-
ward to implement, however, and did pot produce better
results than the Keating model so it was abandoned.

Another curious fact is that the more ionic compounds
(GaP and ZnS) are fit better than GaAs although the
model produces a good fit to the diamond-lattice com-
pounds C, Si, Ge, and Sn.

In the diamond lattice we find that the order of impor-
tance of the parameters is a,P,p, y, c4,5, except in dia-
mond where the order of y and p is reversed. y and p are
of nearly equal importance. In diamond c4 is nonphysical
(negative).

It is difficult to compare the quality of our fits to
Weber's without using the same fitting procedure. In gen-
eral it appears that our best fits (five parameter) are com-
parable to Weber's who also needed five parameters in di-
amond. Our five-parameter model appears to be less ac-
curate but has the practical advantage of not using long-
range (Coulomb) interactions. Our treatment features the
importance of the McMurry et al. interaction shown in
Fig. l. The physical importance of the coplanar atom
chains is emphasized by this result. The unusual spread-
ing of the screening charge along this direction is another
result that points to the physical importance of the chains.
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