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Solid-solid phase transitions and soft phonon modes in highly condensed Si
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The pseudopotential method is used to examine the structural transitions of Si from i3-Sn to sim-

ple hexagonal (sh) to hexagonal close packed (hcp). The calculated transition pressures, transition
volumes, and c/a ratios are in good agreement with the measured values. Furthermore, the phase-
transition pressure from hexagonal close packed to face-centered cubic is predicted to be 1.2 Mbar.
The phonon frequencies are also calculated with use of the frozen-phonon approximation for the P-
Sn, sh, and hcp phases. For both the P-Sn and sh phases, pressure-sensitive soft phonon modes ex-
ist. These are the longitudinal optic mode at the Brillouin-zone center for P-Sn and the transverse
acoustic mode at the Brillouin-zone boundary for sh in the [001j direction. These soft modes are
most likely associated with the phase transformations from P-Sn to sh to hcp. The metallic sh

phase has strong covalent interlayer bonding. This is opposite to the case for the graphite structure.
The weak bonding in the hexagonal plane of the sh phase causes the soft transverse mode for this
phase.

I. INTRODUCTION

Although silicon is the most studied semiconductor, its
high pressure metallic phases have only been actively ex-
amined in recent years. New developments in both
theoretical and experimental techniques, i.e., the ab initio
total-energy-pseudopotential method' and the diamond
anvil technique, have made it possible to investigate ac-
curately the high-pressure behavior of materials, e.g. ,
structural properties, solid-solid phase transitions, and
dynamical properties.

It is well-known that Si under pressure transforms from
the diamond to the metallic P-Sn structure at around 110
kbar. In previous calculations, ' the hexagonal close-
packed (hcp), face-centered cubic (fcc), and body-centered
cubic (bcc) structures have been examined as possible high
pressure phases of Si. These calculations predicted the
structural sequence cubic diamond to P-Sn to hcp for Si.
The hcp phase of Si was later found to be stable at about
400 kbar in diamond cell experiments. ' A rather in-
teresting result of these experiments is that a simple hex-
agonal (sh) phase of Si also exists. This phase has been
found at 160 kbar (Ref. 5) and 130 kbar (Refs. 6 and 7),
and it transforms into the hcp phase at about 400 kbar.
These experiments represent the first observations of a
monoatomic system in the sh phase.

The sh phase contains 1 atom per unit cell and has been
observed previously in alloys of Sn (Ref. 10) and in a Bi-
In allay. " This structure can be easily formed' fram the
P-Sn structure by displacing, along the tetragonal axis,
one of the interpenetrating body-centered orthorhombic
sublattices with a modification of the axial ratio (see Fig.
1). Similarly, the hexagonal close-packed structure can be
created from the sh structure by sliding every other hex-
agonal plane with respect to its neighboring plane.

It is generally believed that the group-IV elemental and
III-V compound semiconductors ' transform into metal-
lic phases with closely packed structures when they are

compressed. Si and Ge having tetrahedrally coordinated
bonding favor the highly coordinated P-Sn phase (coordi-
nation number is 6) under pressure. The bcc, hcp, and fcc
phases with coordination numbers 8, 12, and 12, respec-

. tively, appear at higher pressure. For the sh phase of Si,
the cia ratio was reported to be 0.936—0.947, and
thus in this phase the coordination number is 2. However,
the effective coordination number of the sh phase is 8
since the axial ratio is close to 1. Using the coordination
number as a guide, it is expected that the sh phase of Si
would be placed between P-Sn and either the bcc, hcp, or
fcc phases at high pressure.

In this paper we present the results of ab initio pseudo-
potential calculations for investigating the origin of the
structural stability for P-Sn, sh, and hcp Si under pres-
sure. We also used the pseudopotential-total-energy
scheme' to study the lattice dynamical behavior for each
of the P-Sn, sh, and hcp structures. We have found that
the phase transition from P-Sn to sh is caused by the soft
longitudinal optic mode along the tetragonal axis of the
P-Sn phase. For the sh phase, the bonding along the hex-
agonal axis appears to be stronger than the intraplane
bonding. This behavior is opposite to the graphite struc-
ture of Si.' The transverse acoustic mode for the sh
phase, in the [001] direction, is found to be soft compared
to the longitudinal one. Furthermore, this transverse
mode is sensitive to pressure and thus causes the phase
transformation into the hcp structure. For the metallic
P-Sn, sh, and hcp phases, the density of states appears to
be higher than that of normal metals, suggesting that
these metallic structures can be superconducting. Some
preliminary results of this work were published earlier. '

The results for the electronic properties, ' the electron-
phonon interaction, and the superconductivity' for f3 Sn, -

sh, and hcp Si will appear elsewhere.
In Sec. II, we discuss the method used and the accuracy

of the calculation. In Sec. III, the results of the calcula-
tions for the structural properties and the phonon fre-
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F&G. &. Structural relationships between (a) p Sn and sh and
between (b) sh and hcp structures for Si. The arrows indicate
the phonon displacements for (a) the LO(I ) and (b) the TA(A)
modes.

quencies are presented and discussed. The relation of the
phase transitions to the phonon modes is also discussed.
In Sec. IV concluding remarks are made.

Ir. METHOD

The calculations are based on the pseudopotential-
total-energy scheme. ' The Wigner interpolation formula'
is used to approximate the exchange and correlation func-
tional. This total energy method using ab initio pseudo-
potentials has been successful in predicting the structural
and dynamical properties for solids ranging from insula-
tors ' ' to metals. ' The nonlocal ab initio pseudo-
potentials having s, p, and d symmetry are generated
from the scheme proposed by Hamann, Schluter, and Chi-
ang. The potentials used here were successfully em-
ployed in previous calculations for the structural and
dynamical properties of Si.

The crystal total energies are calculated self-
consistently in momentum space. A plane-wave basis
set with a kinetic energy cutoff up to 11.5 Ry is used to
expand the wave function. For the summation over the
Brillouin zone, a uniform grid of k points is used for each
phase, cubic diamond (CD), hexagonal diamond (HD), P-
Sn, simple hexagonal, simple cubic (sc), hexagonal close-
packed, body-centered-, and face-centered cubic struc-
tures. Since the diamond structure is an insulating phase,
10 k points are sufficient to obtain accuracy better than
0.5 mRy/atom. To compare the structural stability of the
cubic and hexagonal diamond structures, we used 28 k
points for CD and 27 for HD, respectively. These sets of
k points are larger than those used in previous calcula-
tion. For the metallic phases of the P-Sn, sh, sc, hcp,
bcc, and fcc structures, a large number of k points is

necessary to represent the band overlap in k space. Cirids
of 75, 150, 165, 146, and 140 sampling points in the ir-
reducible Brillouin zone are chosen for P-Sn and hcp, sh,
sc, fcc, and bcc, respectively. The resulting maximum er-
ror in the total energy is within 1 mRy/atom. The
Gaussian's occupation for the electron states proposed by
Fu and Ho is also tested for the sh phase of Si. Howev-
er, we found that this scheme is not effective for obtaining
convergence of the total energy in condensed Si.

For the 13-Sn, sh, and hcp structures which are not cu-
bic, we optimized the total energies by varying c/a for a
given volume. Since pressure delocalizes the bond
charges, the c/a ratio is also relaxed under compression.
The total energies are computed as a function of volume
for various structural types, and then fitted to the
Murnaghan's equation of state. Thus, the ground state
properties, such as lattice constants and bulk moduli, can
be obtained. The calculated structural energies are highly
accurate to distinguish the structural stability at various
pressures, and to predict the transition pressure and
volume for solid-solid phase transitions. Furthermore, the
total energy change due to a distortion of crystal lattice
can be used to calculate phonon frequencies within a few
percent.

The calculations for the phonon frequency are done for
the modes at high symmetry points in the Brillouin zone,
e.g., the zone center and zone boundary phonons. For
these phonon modes, the phonon waves are commensurate
with the crystal lattice, and thus the cell contains twice as
many atoms for zone boundary phonons while it has the
same number of atoms at the zone center. Since the po-
larizations are completely determined by symmetry, the
total energy for each mode can be evaluated with the use
of the frozen-phonon approximation. %'e estimate the
phonon frequency from the energy difference between the
undistorted and distorted lattices. The phonon modes are
computed at I for the P-Sn and hcp structures and
[00q,„]points for the P-Sn, sh, and hcp phases. These
phonon modes are of particular interest because some of
them are related to the P-Sn —+sh and sh~hcp phase
transform ations.

III. RESULTS

A. Solid-solid phase transitions

Recent observations of the pressure-induced
structural sequence (diamond~P-Sn~sh~hcp) for Si
have confirmed the tendency to increase the coordination
number under compression. A compression usually weak-
ens the covalent bonding and the bond charges move to
interstitial regions. In this case, the 3d band moves down-
ward. This effect is normally represented by the decrease
of the conduction band energies at the X point in the Bril-
louin zone for cubic crystals. As a consequence, the semi-
conducting diamond phase changes into metallic phases.
On the other hand, the crystal favors structures with high
coordination numbers when the bond is delocalized by a
compression. For a fixed volume, the nearest-neighbor
distance is enlarged if it is highly coordinated, and thus
the charge density is less localized. As pressure increases,
the electronic contribution to the total energy increases
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while the core-core interaction (the Ewald term) energy
decreases. Hence, the Ewald contribution at a compressed
volume plays an important role in driving the phase
transformation for the group-IV elemental semiconduct-
ors into highly coordinated structures.

/
Figure 2 shows the results for the total energy calcula-

tions as a function of volume for several crystal struc-
tures. The sequence of the phase transition from diamond
to P-Sn, to sh, and to hcp, is in good agreement with ex-
periment. The calculations indicate that the P-Sn, sh, sc,
bcc, hcp, and fcc structures are metallic phases. The den-
sities of states at the Fermi energy for P-Sn, sh, and hcp
phases are found to be sizable. The transition pressures
and transition volumes are listed in Table I for the dia-
mond to f3-Sn, P-Sn to sh, sh to hcp, and hcp to fcc tran-
sitions. These are also compared with experiments and
other calculations.

For the transition from diamond to P-Sn, the computed
transition pressure of 93 kbar is consistent with a recently
calculated value of 95 kbar by Yin and the previous
value of 99 kbar. It is higher than another recently cal-
culated value of 70 kbar. The measured pressure varies

from 88 to 125 kbar . However, analysis of these data
suggests that 110 kbar could be considered as an appropri-
ate value under hydrostatic pressures. It was shown that
nonhydrostatic stress lowers the transition pressure.
Therefore, all the calculations underestimate the transition
pressure from the diamond to I3-Sn structures.

The calculated pressure from P-Sn to sh is 120 kbar.
The measured values are 160 (Ref. 5) and 132 (Refs. 6 and
7) kbar. For this transition, we consider this reasonably
good agreement since the pressure is very sensitive to the
number of k points used to represent the band overlap in
k space and the type of the exchange and correlation func-
tional, Because of the proximity of the total energy
curves between P-Sn and sh phases (see Fig. 2), the transi-
tion pressure represented by a common tangent between
two E( V) curves has a variation of about 50 kbar when
E( V) curves are changed by 0.5 mRy per atom. With 40
k points for P-Sn and 75 for sh, the energy difference be-
tween two E( V) curves increases by 0.6 mRy/atom, and
thus the pressure increases by 70 kbar. -.Two other calcula-
tions using the pseudopotential method have been report-
ed, 149 (Ref. 27) and 143 (Ref. 28) kbar. However, it

TABLE I. Transition pressures and transition volumes for the cubic diamond to P-Sn, i3 Sn to sh-, sh
to hcp, and hcp to fcc transitions. The volumes are all given as fractions of the measured equilibrium

0
volume (20.002 A /atom) for the cubic diamond Si. The results are compared with experimental and
other calculations.

Transition V, (D) V, (P-Sn) V, (sh) V, (hcp) V, (fcc) a, (kbar)

Present calculation
Other calculation

Experiment

0.931
0 915'
0.928
0 926'
0.918d
0.9»'
0.92~

0.719
0.707'
0.718b
0 719'
0.710
0.706

93
95'
99

100'
125'
113

88g

P-Sn~sh

Present calculation
Other calculation

Experiment

0.707
0 678
0 683'
0.698

0.692
0.661"
0.672'
0.673'

120

149'
160g

132—164

sh —+hcp

Present calculation
Other calculation

Experiment
0.608'

0.603
0.580'

0.615'

0.556
0 538'
0.563'
0.570'
0.54'

410

410'
350—400~
360—420

hcp~fcc

Present calculation
Other calculation

'Reference 27.
Reference 8.

'Reference 9.

Reference 34.
'Reference 4.
References 6 and 7.

0.465
0.482'

0.456 1160
800'

gReference 5.
"R.eference 28.
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FIG. 2. The total structural energy versus the volume nor-
malized by the calculated equilibrium volume in the diamond
structure.

should be noticed that these numbers are obtained using a
set of smaller number of k points for 143 kbar (40 for P-
Sn and 60 k points for sh) and using fixed values of c/a
for both the P-Sn and sh phases for 149 kbar. We also
tested the Gaussian occupation scheme for the electron
states proposed by Fu and Ho. This scheme was suc-
cessful in getting the convergence faster for the transition
metals Mo and Nb with a high density of states at the
Fermi level. For Si under pressure, we found that this
scheme has the same degree of convergency as those used
here. Furthermore, the calculation by Yin showed that
the test of the Hedin-Lunqvist's exchange and correlation
functional varies the transition pressure from 149 to 113
kbar. From these facts, the prediction of the transition
pressure from /3-Sn to sh sensitively depends on the calcu-
lational schemes.

The sh phase is calculated to transform into the hcp
structure at 410 kbar. Experimentally, the hcp phase is
found to be stable at around 400 kbar, ' and this pressure
is close to the calculated value. The present result is in
better agreement with experiment than another calculated
value of 469 kbar. Moriarty and McMahan extrapolat-
ed the Yin and Cohen's E(V) curves and obtained the
pressure of 410 kbar for the P-Sn to hcp transition. Our
calculation found the pressure for this transition to be 360
kbar.

Actually, a new Si-VI phase was reported to appear
above 360 kbar before the transition into the hcp phase.
As yet, this new phase has not been identified either ex-
perimentally or theoretically. There are several possible
conjectures ' for the structure at pressures between 360
and 400 kbar; a mixture of Si-V (sh), Si-VI, and Si-VII
(hcp), different stacking of hexagonal layers including sh
and hcp sequences, and structures intermediate between sh

C0

CY
E
S
rS I

S
~p

0 I

865

I
S
C I

4J

.3 1&3

UP~p a

FIG. 3. Energy barriers from the sh to the hcp structures for
volumes of 11.855, 11.484, and 11.114 A per atom. The sh and
hcp phases corresponds to displacernents of zero and a/V 3,
respectively. The total energies at intermediate states are opti-
mized by a variation of e/a.

and hcp. To understand the Si-VI phase, we have calcu-
lated the total energy barrier from sh to hcp for several
volumes between the two transition volumes for the sh
and hcp structures. Figure 3 shows the energy differences
for intermediate states from the sh phase as a function of
displacement for volumes of 11.855, 11.484, and 11.114
0

A per atom. The sh and hcp structures correspond to
displacements of one hexagonal base of zero and a/W3
along the [110] direction, respectively. For each inter-
mediate state, the c/a ratio is optimized. Near the transi-
tion volume for the hcp structure, the barrier is found to
be small. The decrease of the barrier due to a compres-
sion results from a soft phonon mode for the sh phase
(this will be discussed later). Then, the sh phase can easily

. transform into the hcp phase. This behavior is similar to
the transition to orthorhombic phase for GaAs due to a
soft transverse acoustic mode. Figure 3 shows a local
minimum in the total energy change for a volume of

O

11.114 A per atom. While it is not possible as yet to in-
terpret the Si-VI phase, a small energy barrier from sh to
hcp suggests that any structure formed by displacements
of hexagonal planes, for example, stacking of sh and hcp
structures or intermediate phases between sh and hcp,
does not cost much structural energy.

At extremely high pressures of the order of Mbar, our
calculations indicate that the hcp phase will transform
into the fcc phase. This transition was first suggested by
Moriarty and McMahan. Our calculated pressure of 1.2
Mbar is somewhat higher than their result of 760 to 820
kbar. However, both calculations are in good agreement
for the transition volumes.
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As shown in Fig. 2, the hcp phase of Si is lower in ener-

gy than the bcc phase for volumes less than 0.8 Vo, where
Vo is the equilibrium volume for the diamond phase.
This behavior differs from a previous result where the
bcc Si had lower energy for volumes above about 0.67 Vo.
A fixed value of c/a for the hcp phase used in this calcu-
lation was found to overestimate the total energy by 0.7
mRy/atom. Furthermore, a smaller set of k points used
for the bcc structure underestimates the total energy by
0.7 mRy/atom. These effects cause the bcc phase to be
lower in energy than the hcp phase. For the comparison
of hexagonal and cubic diamond structures, the cubic dia-
mond structure is stable with respect to the hexagonal
structure over a wide range of compressed volume. This
behavior is consistent with Yin and Cohen's results. By
using a larger number of k points (28 for CD and 27
points for HD) samples in the irreducible Brillouin zone,
the energy difference between two structures at the equili-
brium volume is found to be 0.7 mRy/atom which is
smaller than their results of 1.6 mRy/atom. These differ-
ences are at the limits of the accuracy of these calcula-
tions at this time.

The calculated transition volumes are listed in Table I.
The transition volumes, 0.707 (/3-Sn) and 0.692 (sh) for the
P-Sn to sh and 0.596 (sh) and 0.549 (hcp) for sh to hcp
transformations, are in good agreement with the measured
values. ' The c/a ratios are estimated to be 0.551 for /3-

Sn at a volume of 16 A /atom, 0.955 for sh at 13.5
A /atom, and 1.695 for hcp at 11.1 A /atom. In Table II
the agreement with the experimental values of 0.552 (/3-

Sn), 0.94 (sh), and 1.698 (hcp) is also excellent.
It was demonstrated that the Ewald energy plays a

dominant role in determining the equilibrium axial ratio.
For the P-Sn phase of Si and Ge, the axial ratio of 0.55
obtained from the minimum Ewald energy in Ref. 8 has
been found to agree well with the experimental value of
0.552. Figure 4 shows the Ewald energy as a function of
the axial ratio for the sh phase of Si. The axial ratio for
the minimum Ewald energy is 0.928 and this ratio is close
to the measured values of 0.936—0.947. In Sn alloys'
with the sh structure, the c/a ratio was found to lie be-
tween 0.927 and 0.931. Pseudopotential calculations for
the Sn alloys showed .that the Ewald energy has a
minimum for a c/a of 0.928. This is equivalent to our es-
timate for c/a using the ab initio pseudopotential method
in a monoatomic system. Therefore, the Ewald energy
also gives a reasonable estimate of the axial ratio for the
sh phase of Si.

Calculation
Experiment

'Reference 7.
"Reference 34.
'Reference 5.

0.551
0.550'
0.554b

0.955
0.936'
0.937'
0.947'

1.695
1.64'
1.698'

TABLE II. Comparisons of the c/a ratio for i3-Sn, sh, and
hcp Si with experiment.
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FIG. 4. Ewald energy vs the axial ratio for the sh phase of Si.
A volume of 12.596 A per atom is chosen.

B. Soft phonon modes for the P-Sn
and simple hexagonal phases

It is of interest to investigate the phonon modes for the
P-Sn, sh, and hcp phases. We have found that the physi
cal origin of solid-solid transition sequence P-Sn
~sh~hcp could be understood by examining the
pressure-sensitive soft phonon modes. The sh and hcp
structures are viewed as phonon displacements with large
amplitudes from the P-Sn and sh structures, respectively,
accompanied by a change of the c/a ratio. Figure 1

shows the structural relationships between P-Sn and sh,
and between sh and hcp phases.

The sh structure can be determined from P-Sn by
displacing one of two interpenetrating body-centered
tetragonal sublattices in the direction of the c axis by c/4,
followed by a slight modification of the interatomic dis-
tances. For /3-Sn, the ratio of the tetragonal axis is
1:1:c/a, where c/a =0.551 is used. When /3-Sn
transforms into sh, the c axis of /3-Sn becomes the a axis
of sh. After a displacement of c/4, the orthorhombic lat-
tice with a ratio of I:a/c:a/2c needs a modification of
the atomic spacings to be the sh phase (I:U 3:c/a), where
c/a for sh is 0.955. The displacement of tetragonal sub-
lattices corresponds to the longitudinal optic (LO) phonon
mode for /3-Sn at the zone center (I ) in the [001] direc-
tion. Figure 1 shows the polarization for this mode. The
calculated phonon frequency for the LO(I ) mode is 4.19
THz at a volume of 14.448 A /atom. As the volume is
compressed, the LO(1") mode becomes softer and the fre-
quency is 3.81 THz for a volume of 14.078 A /atom.

When a displacement for the LO(l ) mode changes
from zero to c/4 with the c/a ratio for the /3-Sn phase
fixed, the total energy is found to increase smoothly.
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Then, the energy barriers are found to be 2.3 and 1.9
mRy/atom for volumes of 14.226 and 13.840 A per
atom, respectively, which are close to the transition
volumes for the P-Sn and sh phases. In fact, an accurate
calculation for the energy barrier from P-Sn to sh is diffi-
cult since four parameters (three lattice constants and a
displacement) have to be modified until the total energy
becomes minimum. However, a variation of c/a at inter-
mediate stages is found to reduce effectively the energy
barrier. We found that the energy change is negative, i.e.,0
no barrier, for a volume of 13.840 A /atom whereas for a0

volume of 14.226 A it is reduced to 0.5 mRy/atom.
The softness of thei LO(I ) mode for P-Sn Si results

from bond bending. This was also found in a recent study
by Needs and Martin. For other modes at the
M[00q,„]point in the Brillouin zone, the polarizations
are determined in the same way as those used for the
modes at the X[00q~,„]point in Si and Ge. As shown
in Table III the frequency of the transverse optic (TO)
mode is about three times larger compared to those for
the transverse acoustic and longitudinal modes. Here, the
longitudinal optic and acoustic (LOA) modes are degen-
erate at the M point. Since the TO mode is effectively
equivalent to the compression of the bond, a distortion
costs a large energy. For Sn with the P-Sn structure, the
TA and LOA modes were also found to be soft.

As shown in Fig. 1, the hcp structure can be formed
from the sh phase by sliding one hexagonal plane with

respect to the next by a/V3 in the [110] direction, ac-
companied by a modification of the c/a ratio. This dis-
placement corresponds to a transverse acoustic (TA) pho-
non mode for the sh phase at the 2 [00q,„]point in the
Brillouin zone. Within the harmonic approximation, this
phonon frequency is equivalent to that obtained from dis-
placements along the [100] axis by symmetry. Table III
shows that those frequencies are almost the same at a
volume of 13.366 A (pressure of 180 kbar). A discrepancy
for two transverse modes at a pressure of 366 kbar near
the transition into the hcp structure results from anhar-
monic effects. The transverse mode at the A point is rela-
tively softer than the longitudinal one. As pressure in-
creases, the LA frequency increases while the TA de-
creases. At higher pressure above 400 kbar, we found that
the transverse frequency is imaginary and thus this mode
destabilizes the sh phase. This results from the negative
pressure dependence of the TA mode. As a consequence,
the sh structure can easily transform into the hcp phase.
On the other hand, the hcp structure has opposite
behavior to the sh phase. At 300 kbar, the transverse
mode for the hcp phase in the [00q,„) direction has an
imaginary frequency. Thus, the hcp phase is unstable
with respect to the sh structure. However, a compression
increases the stability of the hcp structure as shown in
Fig. 3.

The Brillouin zone of the hcp structure is about one-
half of the sh phase since the c axis is approximately
twice as large and the number of atoms per unit cell is
two while the sh phase has only one. In addition, the pho-
non dispersion along I 3 for the hcp structure can be ap-
proximated by folding back the I A axis of the sh phase.
The optic modes for the hcp phase correspond to the

TABLE III. Calculated phonou frequencies for 13-Sn, sh, and
hcp Si. Units are in THz and kbar for frequency and pressure,
respectively. Displacements along +[001]and *[110]directions.

Structure Frequency Pressure

P-Sn LO(I )

Simple hexagonal

TO(M)
TA(M)
LOA( M)
LA( 2)

TA( A)+

TA( A)*

Hexagonal close packed LO(I )

TO(I )

LOA( 3)

TOA( A)

4.19
3.81

12.76
4.12
4.83

12.58
16.61
3.85
3.57
3.82
3.24

17.22
19.15
4.30
5.21

11.46
12.54
4.02
4.69

95
110
110
110
110
180
366
180
366
180
366
465
630
465
630
465
630
465
630

V

TPA

FIG. 5. phouon polarizations in the [1120] plane for the
longitudinal (LOA) and transverse (TOA) modes at the
3 [00q,„)point for the hcp structure.
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for the longitudinal and transverse modes at the
A [00q,„]point in the Brillouin zone are shown. At this
point, the optic and acoustic modes are degenerate for
each longitudinal and transverse direction.

The calculated charge density for the sh phase shows a
large pileup of covalent charge along the axial direction in

Fig. 6. The fact that the c/a ratio is less than 1 suggests
that a covalent pile up of charge density might exist. This
character is opposite to that of the graphite structure with
weak bonding between layers. Hence, the distortion along
the interlayer axis produces a stronger restoring force than
that in the plane, and thus the LA frequency is higher.

5.4 6.4

FIG. 6. Charge density contour plots (in units of
electrons/cell volume) in the (a) [1010]and (b) [0001] planes for

o 3
the sh phase at a volume of 12.6 A per atom.

IV. CONCLUSION

We have shown that the pseudopotential-total-energy
methods produce successfully the transition sequence cu-
bic diamond~P-Sn~sh~hcp~fcc in condensed Si.
The successive transitions from P-Sn to sh to hcp can be
viewed as arising from phonon displacements correspond-
ing to the longitudinal optic mode for the P-Sn and trans-
verse acoustic mode for the sh structures, respectively, in
the [001] direction. These phonon modes have decreasing
frequencies with increasing pressure. We have found that
the soft phonon modes and a modification of the c/a ra-
tio reduce effectively the energy barriers from P-Sn to sh
and from sh to hcp, and thus these are likely the origin of
the phase transitions.

At this point, the crystal structure of the Si-VI phase
has not been clearly established. The present calculations,
however, indicate that an intermediate state from the sh
to hcp structures has a total energy close to those of the
sh and hcp structures. Because of the softness of the
transverse mode for the sh phase, a stacking fault in the
hexagonal planes of the sh structure might be close to the
sh and hcp in the total energy.

Finally, the densities of states (DOS) for the P-Sn, sh,
and hcp phases are found to be fairly high compared to
that of normal metals. The calculated DOS's are 4.8, 5.0,
and 4.0 states/(Ry atom) for P-Sn, sh, and hcp Si, respec-
tively. The existence of superconductivity in the P-Sn
phase has been reported earlier with a critical temperature
of 6.7 K. We have found that the soft phonon modes and
the covalent character remaining in the bonding are likely
to be associated with the superconductivity for condensed
Si in the P-Sn, sh, and hcp structures. Details of the
electron-phonon interaction and the superconductivity for
these phases will appear elsewhere. '

folded-back acoustic modes of the sh phase. Then, the
LA and TA modes at the A point for sh will be the
LO(I ) and TO(I ) modes for hcp, respectively. In Table
III, the corresponding frequencies are given. When the
frequencies at 366 kbar for sh and at 465 kbar for hcp are
compared, the LO(I ) and TO(I ) modes for hcp are very
close to the LA( A) and TA( A) modes for sh, respectively.
Slight differences come from the use of different volumes,
different ratios for c/a, and different positions of the
second atom in the unit cell. In Fig. 5, the polarizations
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