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Electron correlations in the ground state of covalent semiconductors
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We describe a simple and transparent method for studying electronic correlations in the ground
state of covalent semiconductors. The starting point is a single-determinantal ground-state wave
function in the bond-orbital approximation. Electronic correlations are taken into account by apply-
ing a variational ansatz. Analytical expressions I.re obtained for the interatomic or bond correlation
energy as well as for the pair-correlation function. Both are discussed in detail. The intra-atomic
correlation energy is estimated in two different ways which give identical results. One is based on
an atoms in solids" method which requires a population analysis of the ground-state wave func-
tion, while the other is based on an analysis of the correlation energies of hydrocarbon molecules.
The theory is applied to diamond, Si, Ge, and o.-Sn. The correlation-energy contributions to the
cohesive energy and the radial force constant are discussed and compared with experimental data.
By using a diagrammatic representation, a comparison is made with ground-state correlation-energy
calculations which use the "GW approximation" of Hedin [Phys. Rev. 139, A796 (1965)].

I. INTRODUCTION

A qualitative and quantitative understanding of elec-
tronic correlations in semiconductors remains a challeng-
ing problem. This holds true for the ground state, which
will be the subject of the present paper, as well as for the
excited states. For example, it is well known that the
cohesive energy' and the size of the band gap ' are
strongly influenced by electronic correlations. Therefore
the one-electron approximation is inadequate for their
determination.

Various attempts have been undertaken to obtain esti-
mates for the correlation energy contributions to the
cohesive energy of diamond ' and zinc blende. The cal-
culations were done by constructing a two-electron wave
function for each bond and introducing an ionic state
correction into the Heitler-London wave function. Such a
description includes intrabond correlations. More recent
estimates of the total correlation energy of diamond and
its contribution to the cohesive energy have been obtained
by using the local-density approximation.

Recently it was demonstrated that for the ground state
as well as for the excited states of diamond accurate self-
consistent field (SCF) and correlation-energy calculations
can be performed on an ab initio level. Thereby a local
approach (LA) to the correlation problem was used. The
LA is a variational method which can be applied both to
molecules' and solids. Although the underlying physical
picture of that approach is simple and the formalism is
straightforward, actual calculations are far from being
trivial. This is mainly due to the fact that they require a
SCF calculation as a starting point which poses in itself
an elaborate problem.

In order to give a simple and transparent picture of the
electronic correlations in the ground state some approxi-
mations have to be made. First of all we will assume that
a SCF calculation has been performed and that we know
the corresponding localized atomic-like (sp ) hybrid func-

tions from that calculation. These can always be obtained
from the SCF eigenstates. Using these hybrid functions
we adopt the bond-orbital approximation (BOA)" to con-
struct our approximated SCF ground state. This will en-
able us to calculate analytically the interatomic correla-
tion energy by means of the LA. The I'nteratomIc correla-
tions consist of the correlations within the bonds (intra-
bond correlations) and the correlations between different
bonds (interbond correlations); therefore interatomic
correlations can also be called bond correlations. In addi-
tion to the interatomic or bond correlations we must also
consider the intra-atomic correlations. The intra-atomic
correlations, however, are not contained in this calculation
which is formulated within a minimal basis set. For their
ab initio description the use of a larger basis set is neces-
sary. The approach taken here relies on the observations
that intra-atomic correlations on different atomic sites do
not influence each other ' and that inter- and intra-
atomic correlations are independent to a very good ap-
proximation. ' ' This enables us to employ, e.g., an
"atoms in solids" method to estimate the intra-atomic
correlation energy which makes use of some ideas
developed by Verhaegen and co-workers. ' '

Although the present theory deals with a many-body
problem, it is conceptually, and also computationally, of
comparable simplicity as the one-electron theories of Har-
rison and co-workers" ' ' and Levin, ' which are on the
level of an extended Huckel theory.

The present paper is organized as follows. In Sec. II,
we define the Hamiltonian for the present calculations
and we set up the correlated ground-state wave function.
A simple expression for the interatomic or bond correla-
tion energy is derived in Sec. III by means of the LA and
a physical interpretation of it is provided. This section
also contains an investigation of the pair correlation func-
tion. Furthermore, a brief discussion of the extended
bond-orbital approximation (EBOA) as well as an exten-
sion of the theory to polar semiconductors is given. The
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intra-atomic correlations are discussed in Sec. IV. Here
also the charge fluctuations at an atomic site are studied
in detail. Numerical results for interatomic as well as
intra-atomic correlation energies are presented in Sec. V.
Their contributions to the cohesive energy and to the radi-
al force constant are evaluated. A summary is given in
Sec. VI. Appendix A contains a discussion of the applica-
bility of the GW approximation of Hedin' (with 6 the
Green's function and W the screened, spin-independent
electron-electron potential) to the calculation of ground-
state energies of semiconductors. In Appendix B, the re-
lation of the present theory to perturbation theoretical
treatments, e.g., the perturbative configuration interaction
using localized orbitals (PCILO) method' ' is studied.

II. DESCRIPTION OF METHOD

We are interested in a simple description of the effects
of electronic correlations on the ground-state properties of
semiconductors. For that purpose we will use the BOA
for the SCF ground-state wave function.

Consider a diamond lattice structure which is built up
by localized atomic-like (sp ) hybrids. Their optimal
form can be determined by a SCF calculation. We assume
that such a calculati:on has been performed and that the
hybrids have been Lowdin orthogonalized with respect to
each other. We denote these orthogonalized functions by
h;(r). The corresponding electron creation and annihila-
tion operators are a;' and a; . They fulfill the relations

t: aicrraj o']+ =~ij 5crcr r ~' (1)

From the two hybrids hj, (r) and hI2(r), which point into
bond I, we form bonding and antibonding wave functions

Bt ——2 (al~ +an—1/2

(2)
At ——2 (at) —aI2 ) .—1/2

This construction applies to the elemental semiconductors
which will be primarily considered. An extension of the
theory to heteropolar semiconductors is discussed in Sec.
III.

The transformation from the hybrid functions to bond-
ing and antibonding functions is essential in order to
present a simple picture of the electronic correlations in
semiconductors or any closed-shell system. It can be
made irrespective of whether a BOA is made or not.

The simplifications of the BOA come in when the
ground-state wave function

l
@scF& is derived. In that

case it has the simple form

I~'SCF&= +Bi'. lo&, (3)
I,O

where
l

0& is the vacuum state. The one-particle density
matrix is then of the simple diagonal form,

i jEI
+i'oaJr g = .

0, otherwise.

Here

i)J) O'

t)~ a)~aJ~+ 2 ~ ~&Jkl && k~ +lo aJ~
i,j,k, l,

O') O'

tj= f dr h;*(r) — b, +V(r) hj(r)
2172

(6)

is the bare hopping matrix element between hybrids i' and

j where V(r) is the electrostatic potential from the nuclei
and core electrons, and

)lc

Vjkt= f dr dr'h, *(r)h (jr), hk(r')hl(r')

are the interaction matrix elements. For convenience we
will use in the following the abbreviations

= xiii
K= V~;jj i&j, i,j. H I

for the relevant interaction matrix elements in a bond.
Later we will also need the interaction expressed in terms
of the bonding and antibonding functions instead of the
hybrids. We shall denote these matrix elements by
Vz jt z s, etc. , in obvious notation, i.e., with h; ( r ),hj ( r )

replaced by the bonding and antibonding functions.
For the following discussion it is advantageous to

divide H into a self-consistent field Part HscF and a resi-
dual interaction part H„„

~SCF +~res ~

It follows that

HSCF = g fij aicraj cr r

&)J) O'

where the Fock matrix is

1

fij ij + X (Vijkl 2 Vilkj ) (akcr'atcr'&
k, l, o'

(10)

H«) =~c«Y~ g (Vijkl ccrc) Vtlkj )(ak'al &a; aj
i,j,k, l

O, O (12)

Having defined the Hamiltonian and the SCF ground
state we make the following ansatz for the correlated
ground-state wave function

l
)tjo&=exp(~)

l
~'scF&

This diagonal form which is a direct consequence of the
BOA will simplify the correlation-energy calculations de-
cisively.

For the following we need the Hamiltonian H expressed
in terms of the a;, a;,

a =HO+~;.t

Here and in the following

&
=

& @scF
l

( )
l
+scF & .

The operator S is of the form

S=—g 7 Omn mnr

m, n

(14)
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where the g are variational parameters and the 0 „
are written as

O „=O'„—(O'„) . (15)

This ensures that, when applied on
~
@scF) they generate

a state which is orthogonal to it. The O~„are of the
form

(16)
CT, CT

where nncr +ncrQno'
Generally, O~„~ @scF) contains one-particle as well as

two-particle excitations of
~
@scF). For simplicity we

shall neglect the former. They lead to small density
changes as a secondary effect of the electron correlations.
We do this by requiring that contractions within the 0 „
operators are forbidden when expectation values are calcu-
lated of quantities containing them. The form (16) for
0'„neglects Hund's rule correlations. Including them
would require additional operators 0' „,which are prod-
ucts of spin instead of density operators.

The parameters g „are determined by minimizing

After applying a linked-cluster theorem this expression
can be written as

E,= (esHes), , (18)

where the subscript c implies that only "connected" con-
tractions are taken into account. For more details we
refer to the original Ref. 22. Equation (18) is evaluated by
making the replacement exp(S)=1+S, which turns out to
be a good approximation for not too strongly correlated
systems such as semiconductors. An explicit expression
for Eo is written below.

The main effect of applying exp(S) on
~
@scF) is to

reduce large density fluctuations in the system. The sim-
plest way to see that is to consider a bond which is formed
by the hybrids 1 and 2. Then

S= —

halo

g Sr vI i g—SIJ—
I &rJ&

(21)

where I and J are bond (not hybrid) indices. Sl(=Sir)
=0;; describes correlations in bond I while SrJ ——0;z de-
scribes those between nearest-neighbor bonds, indicated by
(IJ), etc. The indices i,j refer to hybrids which are
chosen according to the above description. We are now
able to write Eo [see Eq (18)]. in the following form:

Eo ——(H) +2(SH„,),+ (SHS ),
= (H) —2'()g (S,H„, ),—2g, g (S,~H„, ),

r &rJ&

+ 10 Q (SIHSI')c+ )1 g g (SIJHSICL )c
I,I' &rJ& &rcz. &

+29oai g g
r &xL&

(22)

close to the average number of valence electrons, i.e., four.
An example of both types of configurations is shown in
Fig. 1.

In the BOA, in which the one-particle density matrix
has the simple form (4), the O~„simplify considerably.
In that case there are always two electrons within a bond.
Therefore we need to consider only one hybrid per bond
when the 0' „are constructed [see Eq. (16)]. A reduction
of the double occupancy within one hybrid implies au-
tomatically a reduction of the double occupancy of the
other hybrid in the same bond. An analogous statement
holds true for correlations between electrons in different
bonds. In the following we shall choose that particular
hybrid of a given bond which enters with a positive sign
when the antibonding function of that bond is construct-
ed. With these simplifications we can write Eq. (14) in
the form

0)) ——2n ),n ), . (19)

Here we have dropped a term (n» +n ~, ) which generates
one-particle excitations only. The state

I 0) =exp( —nllO11)1@SCF) /11o0 (20)

has the charge fluctuations in the chosen bond diminished
because the probability is reduced of finding two electrons
simultaneously in hybrid 1. Similar considerations hold
for charge fluctuations in different bonds.

An equivalent point of view is the following. Imagine a
decomposition of

~
&PscF) into a sum of products of dif-

ferent atomic configurations. The application of exp(S)
on

~
@scF) decreases the weight of all those configura-

tions in which there are too many or too few electrons on
different atomic sites. We call these configurations. "un-
favorable" because the electron-electron interaction ener-
gies are very large for them. In return the relative weight
of "favorable" configurations is enhanced. These are con-
figurations in which the atomic occupational numbers are

(b)

FIG. 1. Two configurations which are contained in the SCF
ground state; (a) is called favorable and (b) is called unfavorable.
The positions of valence electrons in the bonds are indicated by
dots. The numbers of valence electrons at different atomic sites
are also indicated.
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Here use has been made of (SrJHs( p), =0. From this
expression for Eo the correlation energy E„„„=Eo (—H )
will be calculated in the following. Because of the
minimal basis set used here, E„„is an interatomic or
bond correlation energy.

III. INTERATOMIC CORRELATION ENERGY

In order to evaluate E„„onehas to evaluate the vari-
ous expectation values which appear in Eq. (22). Because
of the BOA it is possible to express all interactions in the
bond representation. One finds

( SuH«s )~ = V~rrrr„err~
——, V„rrrrz~~r . (23)

To to+ —,
' ——(IC —3J), (24)

where tp ———t&2 ~0 is the bare intrabond hopping matrix
element or half the bare splitting between the bonding and
antibonding states. In Eq. (24) we have neglected V», z
and those V~rk~ which depend on at least three different
hybrids because their values are very small compared to J.
In diamond it is E = 13.3 eV and J=0.3 eV. '

The term K/2 is the contribution of the electron-
electron interaction to the effective intrabond hopping in
the SCF approximation, arising because of the nonlocal
exchange interaction. It is this term, E, which is respon-
sible for the overly large energy gaps between the conduc-
tion and valence bands of semiconductors and insulators
in the SCF approximation. ' This feature is missing in
any treatment in which the exact exchange interaction is
replaced by a local exchange potential V,„(r).

In the following we want to restrict ourselves to the
correlations within a bond and between neighboring
bonds. Correlations between bonds which are further
apart contribute only insignificantly to the correlation en-
ergy. The reason for this is simply that correlations be-
tween bonds are due to van der %'aals interactions with an
interaction energy falling off as r with increasing dis-
tance r between bonds.

We determine next the various sums which appear in
Eq. (22). One finds from Eq. (23),

N, g (S H„,},=2V „=(U K)=2V—
I

(25)

where %, is the number of unit cells, each containing four

The corresponding expression for (SrH„, ), follows by
setting J=I. Equation (23) represents the van der Waals
interaction between dipoles in bonds I and J. The second
term on the right-hand side (rhs) compensates for the
self-interaction when I=J. It is missing in the so-called
GR' approximation, ' which has been originally deviced
for the homogeneous electron gas but is also widely used
in band-structure calculations for semiconductors and in-
sulators. For more details we refer to Appendix A.

The evaluation of (SrrHSr;r ), is given in Appendix A
[see Eqs. (A 1) and (A2)]. The expectation value
(Sr&HscpS~r ), is proportional to To= —f&2 which is
half the energy splitting between the bonding and anti-
bonding states in the SCF approximation, 1 and 2 denote
the two hybrids forming a bond. From Eq. (11) one finds

where use has been made of Eqs. (Al) and (A2). Similarly
one can evaluate the terms in Eq. (22) which involve
operators acting on neighboring bonds. For that purpose
we abbreviate [see Eq. (23)]

(S„H„,),= V,

when I and J are neighboring bonds. One finds

(Srr H see Sxr },=48To
&u& &zL, )

(28a)

N, g g (SrrH„,Sxr ), =24[ Vo +4V) —(IC —J)] .
&u) &zL)

(28b)

There are 12 pairs of neighboring bonds per unit cell. The
term 96V& results from J=I. but I&K. It describes local
field corrections. A dipole fluctuation in bond I induces
dipoles in bonds J and K. The dipole in bond K contri-
butes to the local electric field in bond J and therefore to
the dipole which is formed there. The remaining terms in
Eq. (28b) describe the influence of the electron interac-
tions on the polarizability of a bond. Stated differently,
the induction of a dipole in a bond is different in the pres-
ence and absence of electron correlations.

Finally one finds

N, g g (SrH„,Sxr ), =24VP,
r &zL&

(29)

which describes the mutual influence of correlations
within a bond and between neighboring bonds. The corre-
lation energy per unit cell then becomes

Ecol-1 = —4&p Vp +4&ptp —48& ] V& +48& &tpA +48&pg ) V]

where the abbreviation

Vp 2V)a=1+ +
2tp tp

(31)

has been introduced.
It should be noticed that the bare hopping element tp

enters into E„„instead of the SCF hopping matrix ele-
ment Tp. The intrabond hopping tp is the only hybrid
hopping matrix element which appears in the expression
for the correlation energy. Therefore E„„,as given by
Eq. (30), is ultimately connected with the formation of the
bonds and is an interatomic or bond correlation energy.

The variational parameters gp and g~ are determined
from BE„„/Bqp[&]——0, respectively. This yields the cou-
pled equations

bonds. The remaining sums which involve operators
within one bond only are

Ne g (SrHscr Sr )c =4To ~

(26)
N, ' g (SrH„„Sr),= —2(E —3J),
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D
~p

90
6V

YJ 1
0

tion of E„„(a~)will be the subject of a separate investi-
gation.

pD
(1—g")

2tpu

(32)

for the stationary values g", . When set into Eq. (30) the
latter can be simplified to the form

E, „=—2V g"—24V, q", . (33)

(o) ( ~o )'
E,~„=—

tp
(34b)

As a side remark we mention that making the G8' ap-
proximation would increase E',,„', by a factor of 2 (see Ap-
pendix A).

In practice it turns out to be quite a good approxima-
tion to replace Eqs. (32) by

yD
no =no nl = (1—no )

st (0) st 1 {0) (35)
2tpcx

We repeat that in obtaining Eq. (33), spin-spin correla-
tions have been neglected completely as well as density-
density correlations beyond nearest-neighbor bonds. Both
contributions are estimated to be very small in the systems
we study here ' '

( = —0. 1 eV in diamond).

A. Polar semiconductors

At this stage we want to discuss briefly the extension of
the present theory to polar semiconductors. In these sys-
tems, a new characteristic parameter, the polarity az of a
bond, enters into the calculations. " By considering how
the interaction and hopping matrix elements depend on az
one finds that

A discussion of Eq. (33) with respect to perturbation
theoretical results is given in Appendix B. It is instructive
to consider correlations within a bond only, i.e., to set
ql ——0. In that case gp' ——gp

' with
D

gp
(0) (34a)

2tp

and

B. Pair correlation function

It is instructive to calculate the pair correlation func-
tion in the correlated ground state

(37)

and to compare it with the one in the SCF ground state
gj "——(n; nj ) . In the following we identify the index i
with the arbitrarily chosen hybrid 1. The results are
shown in Fig. 2. When we label the hybrids as indicated
in the inset of that figure it is found that g~~

——(1—qo')/2,
g&p=(1+ 7o )/2& g~3 = I+'0& ~ g]4= 1 —'9& y g]3 1 —vl

g, 4
——1+q 1', etc. The correlation contributions

5g;j =g;j —g,j " are due to the polarization fluctuations in
the bonds. Therefore they fall off very fast, i.e., as r if
r is the distance between the bonds. In the ground state
the SCF pair correlation function is changed appreciably
only on a length scale which is less than three bond
lengths (see Fig. 2).

It is easy to see that E„„,as given by Eq. (33), can be
rewritten as

I I K

carr g ~iijj~gij + g g ( ~iikk 2 +ikki )(3gik
i =1 k=1

(3&)

where I and E denote neighboring bonds with hybrids
i(j) and k. This equation shows explicitly within our ap-
proach the connection between the changes 6g,j——g;j—g,sJCF in the pair correlation function and the correlation
energy.

It should be pointed out that 6g,j looks very different
when i refers to an additional electron or hole added to
the system, as in a calculation of the quasiparticle band
structure. In this case the correlation contributions 6g j to
the pair correlation function as well as to the quasiparticle
band structure are due to the long-ranged polarizations of
the bonds around the extra particle. '

(36)

In Eq. (36), E„„(0)is the interatomic or bond correlation
energy of a (fictitious) covalent semiconductor (az ——0) of
the same bond length as the polar semiconductor under
consideration. For GaAs, which has nearly the same
bond length as Ge, we obtain, therefore,

E„„(GaAs)= —,E„„(Ge),
where a~(GaAs) = —, has been used.

This shows that in a polar semiconductor the intera-
tomic or bond correlations are not as important as in co-
valent semiconductors. In particular one expects that the
bond correlation energy tends to zero as the system be-
comes purely ionic (az ——1). A more accurate determina-

~ O—~X~~=g--- X
Ox

0.5 ~I'
X- -- X

SCFI4
0

5 4 3 1 2 3 4 5
hybrid index

FIG. 2. Pair correlation functions g~j" and g~j along a zig-
zag chain of carbon atoms, as indicated in the inset. The lines
serve as guides to the eye.
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C. Extended bond-orbital approximation (EBOA)

Finally, we would like to mention the modifications
which arise when the BOA is replaced by the EBOA.
This approximation allows for charge fluctuations be-
tween different bonds which are excluded in the BOA. In
distinction to the BOA, a Wannier function 8'I also con-
tains admixtures of antibonding functions from neighbor-
ing bonds, i.e.,

(39)&1~+ g 4J~J~
J (~1)

E

N is a normalization factor. The coupling parameter
is usually small for semiconductors, i.e.,

A. (0.1. It turns out that the correlation-energy correc-
tion due to A, is of order A. . With V& /Vp =-0.4, the
correction factor for the correlation energy E',„', [see
Eq. (34)] is approximately (1—6A. ), and therefore can be
safely neglected. The same holds true for the correlation
energy between different bonds. This demonstrates again
that the correlation energy of a system is relatively insens-
itive to small changes in the ground-state wave function.

IV. INTRA-ATOMIC CORRELATION ENERCx Y

E',",",„'(C, ) =2 g P„(C)e„(C), (40a)

In addition to the interatomic or bond correlations one
must consider the intra-atomic correlations, because they
also contribute to the cohesive energy and other physical
properties of the solid. An accurate calculation of the
intra-atomic correlation energy in a solid would require
the use of a very large basis set, containing high angular-
momentum functions. Such type of calculations, howev-
er, are very elaborate and have been started only recently.

To obtain an estimate for the intra-atomic correlation
energy we first will use an atoms in'solids method which
is based on some work of Verhaegen and co-workers, ' '
to which we refer for more details. The basic idea is
demonstrated in the following for diamond (C ).

An isolated carbon atom has four valence electrons in
the configuration s p, the ground state of which is given
by the term P according to Hund's rule. The situation is
different for a carbon atom in diamond. Due to the co-
valent bonding the number n of valence electrons varies
between 0& n & 8. We denote by P„(C) the probabi'lity of
finding n valence electrons at a given site in the ground
state

~
Pp) of the crystal. The probability distribution of

finding different configurations i when n is fixed is called
w„(i). We will assume that the probabilities for different
terms within a configuration are according to their respec-
tive degeneracies. The total intra-atomic correlation ener-

gy (per unit cell) of diamond is then approximated by

PscF=((b,n)'), (41)

which is related to the charge fluctuation b, n =n —4, the
BOA yields a value PscF ——2. We now compare this result
with the charge fluctuations at a carbon atom in the
correlated ground state

~
gp). We label with a, b two hy-

brids of one atom and make use of

(42)

to find

13„„=(gp
~

(b,n)
~
gp), =2(1—g —6g, ) . (43)

For diamond this gives a value of f3„„=1.25 as compared
with PscF ——2. It is seen that the charge fluctuations are
considerably reduced in the correlated ground state. Nu-
merical values for P„""(C)are given in Table I. It has
been assumed that P„'" is given by a Gaussian distribu-
tion, "

intra-atomic correlations are independent of each other.
This has been shown to be a good approximation ' and
we assume that it also holds true here. Calculating e„(C)
in the way described underestimates the weight of the
Hund's rule state within each configuration. Therefore
the correlation energy may be overestimated somewhat.
Another implicit assumption made in writing Eq. (40b) is
that renormalization effects are unimportant. They, can
result from the different spatial extent of the electronic
wave functions when the atom is free or part of a solid.

For the w„(i) we use the same values as have been cal-
- culated for a carbon atom in CH& or C2H6. We believe
that this is a good approximation because we know from a
.number of molecular calculations that this distribution
is very insensitive to the atomic surroundings as long as
one is dealing with o. bonds. By using the numerical
values for e'„'(i) for the carbon atom as given in Ref. (13)
the correlation energies e„(C) can be calculated. They are
listed in Table I. The corresponding energies for Si, Ge,
and Sn are not known, unfortunately.

It should be mentioned that a theory of the above form
works quite well for the calculation of the intra-atomic
correlation energy of hydrocarbon molecules without ~
bonds.

Finally, it is instructive to compare the correlated
ground state

~
gp) and the SCF ground state

~
@scF) with

respect to a population analysis. In
~
NscF) the probabili-

ty of finding n valence electrons at an atomic site is given
by a binomial distribution P„". This function can be
easily calculated in the BOA and is tabulated in Table I.
P„has its maximum value for n =4. For the parameter

e„(C)=g w„(i)e'„'(i) . (40b)
1

corr
(44)

Here e'„'(i) is the correlation energy of an isolated carbon
atom (ion) characterized by n and i with different terms
weighted according to their degeneracies. It can be ob-
tained therefore from atomic calculations.

In writing Eq. (40a) one assumes that interatomic and

This expression will be used in Eq. (40a) when the intra-
atornic correlation energy is calculated.

This completes the description of the atoms in solids
method. We show next how the intra-atomic correlation
energy of diamond can be approximately determined from
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TABLE I. Atomic correlation energies e„(including core electrons) in eV as defined in the text and
probabilities P„of finding n valence electrons on a carbon atom in diamond (for the SCF and correlated
ground state, respectively).

0 1

n

2gPscF
n

2gpcorr
n

1.2

0.15

1.4
8
2.5

2.2
28
18.5

3.4
56
61.2

49
70
91.3

6.6
56
61.2

8.1

28
18.5

9.7
8
2.5

11.2
1

0.15

V. NUMERICAL RESULTS
/

We present in the following some numerical results for
the inter- and intra-atomic correlation energies per unit
cell of C, Si, Ge, and a-Sn. I.et us begin with the intera-
tomic correlations. In order to compute them we must
know the numerical values for tp, Vp, and V& for each
substance. Since they are available only for diamond we
must estimate them for Si, Ge, and cx-Sn by a scaling pro-
cedure.

The SCF calculations for diamond of Kiel et al.
yield the values

Vp(C )=4.6 eV, V~ (C„)=1.1 eV . (46)

For tp(C„) we have chosen a value of 10.7 eV. This value
was extracted from a fit to ab initio Hartree and
Hartree-Fock band structures for diamond, ' using the
BOA. %"ith these parameter values, one finds for dia-
mond gp

' ——0.21 and E,' „=—2.0 eV. When Eqs. (32)
and (33) are used one finds that rip' ——0.20, g", =0.029, and

an analysis of the correlation energies of some simple hy-
drocarbon molecules. From such an analysis one obtains
the intra-atomic correlation energy E',",'„", (C) of a carbon
atom in a molecule. One can use then the same value for
diamond. In our opinion this is a good approximation be-
cause we will see in Sec. V that E,'",'"(C) is the same in all
(hydrocarbon) alkane molecules C„Hq„+q which we will
investigate. Therefore we do not expect that E',",'„", (C)
will be much different when we move on to diamond.

We start from the expression

Ec«orr ( n H2n+ 2)

=E„„+(2n +2)E',",",,'(H) +nE',",",,'(C) (45)

for the total correlation energy of simple hydrocarbon
molecules which involve o. bonds only. Here E„„is the
interatomic or bond correlation energy of the molecule.
Values for E„„aretaken from numerical calculations for
a number of molecules. The second term on the right-
hand side is the intra-atomic correlation energy of the
(2n +2) hydrogen atoms in the molecule. For the intra-
atomic correlation energy of one hydrogen atom we use
E',",",,'(H) = —0.25 eV. This value has been obtained. from
an ab initio calculation of CH4. .' It is insensitive to the
particular form of the molecule. ' ' The last term on the
right-hand side is the intra-atomic correlation energy of
the n carbon atoms in the molecule. From Eq. (45)
E,'",",,'(C) can be calculated if the other energies are
known. This is done in Sec. V.

—2&p Vp = —l.8 eV (intrabond correlations),

—24')'V) ———0.8 eV
(47)

(nearest-neighbor interbond correlations) .
When one adds an estimated —0. 1 eV for correlations be-
tween more distant bonds ' ' one obtains

E„,„(C„)= —2.7 eV . (48)

The numerical values from SCF calculations for the pa-
rameters tp, Vp, and V& are not known for Si, Ge, o,-Sn.D D

Therefore we use scaling relations in order to derive them
from those of diamond. We scale according to

, C 1.8
t~() tp" (dc ——/dg) (49a)

V ' = V "(d /d~)' (49b)

V) '~= V) "(dc /dg)' (49c)

where d denotes the bond length. The index C„stands
for diamond and g for Si, Cre, a-Sn. A relation of the
form of Eq. (49a) is found in Ref. 28 (see Ref. 36). The
relation (49b) was obtained as follows. The interaction
matrix elements U,K can be calculated easily for
nonorthogonal hybrids constructed from atomic s and p
functions by using the results of atomic Hartree-Fock cal-
culations. The latter have been tabulated by Mann for
the entire Periodic Table. In order to obtain the matrix
elements for the orthogonalized atomic hybrids the Mul-
liken approximation was made. It was found that (U-
K),«~„scales with d ', d being the bond length. The
assumption is made that the same scaling property holds
when instead of the atomic hybrids the required SCF hy-
brids in the solid are used. Since Vp ——(U-K)/2, this
yields immediately the relation (49b). The Eq. (49c) was
assumed to be valid without further justification.

The resulting numerical values for tp, Vp, and V, are
shown in Table II. The variational parameters gp', g&' can
now be determined according to Eq. (32). They are listed
in Table III. One notices that the g parameters become
larger in going from diamond to Si, Ge, and o,-Sn. This is
due to the fact that the bare hopping matrix element tp
changes more rapidly than the interaction matrix elements
Vp and V& . The bond correlation energy per unit cell
E„„is listed in Table IV together with its decomposition
into intrabond and interbond contributions. As expected
the intrabond contributions exceed the interbond contribu-
tions. The results are relatively insensitive to moderate
changes in the exponent of the scaling laws for Vp, V~.
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TABLE II. Numerical values for the parameters tp, Vp, V&

(in eV).
TABLE IV. Calculated interatomic or bond correlation ener-

gy per unit cell fin eV}.

tp
VD

VD

10.7
4.6
1.1

Si

5.0
2.5
0.6

Ge

4.7
2.4
0.6

a-Sn

3.6
2.0
0.5

2go Vp
—24'", V,

Ecorr

1.8
0.8
2.6

Si

1.2
0.4
1.6

1.2
0.4
1.6

a-Sn

1.1
0.4
1.5

Next we discuss the intra-atomic correlation energies.
As pointed out before the fluctuations in the number of
valence electrons at an atomic site are drastically reduced
in the correlated ground state. We list in Table V the
values for P„„=(go(b,n)

~ Po), for the four systems
under consideration. They have to be compared with

PscF
In the following we shall consider diamond only, be-

cause the required atomic calculations are available for
the carbon atom only. We will attempt below a rough ex-
trapolation to the other systems.

By combining the energies e„(C) listed in Table I with
the Gaussian distribution (44) one obtains

E,'",",„'(C„)= —10.0 eV . (50)

E',",'„'„'(C)= —5.0 eV . (51)

This leads to the same result for the intra-atomic correla-
tion energy of diamond as in Eq. (50).

In order to compute the contribution of the intra-
atomic correlation energy EEjgg g to the cohesive energy of
diamond, one must subtract from Eq. (50) the correlation
energy for two isolated carbon atoms, ' i.e.,

E„,„(2C)= —8.4 eV .

This results in

hE';„'t"„(C„)=1.6 eV

(52)

(53)

Nearly the same result (—10.1 eV) is obtained when the
SCF population is used. This demonstrates that the result
is insensitive with respect to an accurate determination of
I'n.

Next we use the second method described in Sec. IV to
calculate the intra-atomic correlation energy (per unit cell)
of diamond. We use for the interatomic or bond correla-
tion energies of CHq, C2H6, and C3Hs the values —1.9,
—3.5, and —S.1 eV, ' ' ' respectively. For the total
correlation energies of these molecules, we use the num-
bers —8.0, —15.0, and —22.0 eV, respectively. From
Eq. (45) we finally obtain for the intra-atomic correlation
energy of one carbon atom

and a total correlation contribution to the cohesive energy
of

b E",„,( C„)=4.3 eV .

Although the total correlation energy E,",'„(C„)= —12.7
eV is only a very small fraction ( &1%) of the ground-
state energy of diamond, it contributes considerably (28%%uo)

to the cohesive energy which is E,'„'~ (C„)= 15.2 eV.
Whereas the total correlation energy E",,'„(C„)=—12.7
eV is dominated by the intra-atomic correlation energy
E',",",,'(C ) = —10.0 eV it is the interatomic or bond corre-
lation energy which dominates the correlation contribu-
tion to the cohesive energy. Intra-atomic and interatomic
correlations contribute to the cohesive energy in the ratio
7=-

We want to mention that the estimated value of —12. 1

eV, for E,",'„(C ), agrees very well with the value of
—12.7 eV calculated in our approach. From the ab initio
calculation of Ref. 8 an estimated limit of —11.8+0.5 eV
for the total correlation energy (per unit cell) of diamond
is obtained. Using the resu1t given by Cremer" for the
correlation energy of a carbon-carbon bond in simple hy-
drocarbon molecules one obtains an estimate of —12.2 eV
for E,",'„„(C„). All the results for E,",',„(C„) are in very
good agreement.

As has been pointed out before, appropriate numerical
data for the calculation of the intra-atomic correlation en-
ergies for Si, Ge, and Sn is not available. Therefore noth-
ing rigorous can be said about the contributions of the
intra-atomic correlations to the cohesive energy in these
systems. But when one assumes that also in Si, Ge, and
Sn the ratio y is approximately the same as in diamond
the results for the correlation contributions to the cohesive
energy look reasonable. They are listed in Table VI to-
gether with the experimental values for the cohesive ener-
gies. One may use the values given in that Table VI for
an estimate of the SCF contribution to the cohesive ener-

gy in diamond, Si, Ge, and a-Sn. For diamond the value
EscF(C„)=10.9 eV agrees very well with an estimate of
11.0 eV, which is based on an ab initio SCF calculation.

Finally we want to discuss the contributions of the in-

TABLE III. Calculated values for gp' and q~'.

Si

TABLE V. Square deviation P„,„=($0~(An)
~
$0), in the

number of valence electrons at an atomic site in the correlated
ground state

~
tto) (Ps&F——2).

sl

st
0.20
0.029

0.24
0.030

0.25
0.032

0.27
0.034 corr 1.25

Si

1.14 1.10

a-Sn

1.03
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TABLE VI. Experimental cohesive energy (taken from Refs.
42—44) per unit cell E,' p (corrected for zero-point motion) aod
contribution hE,","„ofelectronic correlations (in eV).

Ecoh
exp

~Ecorr

I 5.2
4.3

Si

9.5
2.6

7.9
2.6

e-Sn

6.3
2.4

teratomic correlations to the radial force constant Cp. We
assume that the intra-atomic correlations contribute much
less to Cp so that we can discard them. Cp is given by

d 2 g2gcoh
Cp —— (55)

x d

7T2
~corr~p

Sto
(56)

In Eq. (56) a small contribution due to the electronic
correlations between different bonds has been neglected.
Co"" is dominated ( )90%) by the intrabond correlations.
For diamond, U=22. 5 eV (Ref. 27) and Co'" = —5.9 eV.
The experimental value is Cp ——70 eV." We do not expect
Co"' to be much different for Si, Ge, and a-Sn because to
varies from one substance to the other as 1/d' and U
should scale roughly as 1/d.

It should be noted that the correlation contribution to
the radial force constant is negative. This means that the
corresponding SCF force constant is weakened. This ob-
servation is in agreement with findings from SCF calcula-
tions on various molecules ' and also on diamond.

VI. SUMMARY

We have presented a simple variational scheme for
determining the various contributions to the ground-state
correlation energy of covalent semiconductors. The calcu-
lations demonstrated that the variational parameters q;
have an easy to grasp physical meaning. The correlation
corrections to the SCF ground state with respect to charge
fluctuations as well as the pair correlation function can be
easily expressed in terms of these parameters.

Due to the BOA, the one-particle density matrix simpli-
fies so much that the interatomic or bond correlation-
energy calculations could be done analytically. We believe
that the results are not very sensitive to find details of the

The radial force constant is directly related to the bulk
modulus.

In order to calculate the correlation contribution Cp"'
from Eq. (55) we have to know the dependence of the
various matrix elements in Eq. (33) on small changes of
the bond length. We assume tp to vary as 1/x . Further-
more we assume that the on-site Coulomb matrix ele-,
ments remain constant and that the other Coulomb ma-
ti'ix elements vary as 1/x. This should be a reasonable ap-
proximation because the dominant Coulomb matrix ele-
ments for the hybrid functions entering Vo and V& are of
the form V;; -.

We obtain then the following estimate

wave function (see the discussion on the EBOA). It has
been shown that the borid correlation energy as well as the
correlation corrections to the pair correlation function are
due to the short-ranged van der Waals interactions be-
tween bonds. Whereas in the ground state the polariza-
tion Auctuations are important it is the long-ranged polar-
ization of the bonds around an extra particle which deter-
mines the influence of the electronic correlations on the
quasiparticle band structure.

The intra-atomic correlation energies are not contained
within the minimal basis set in terms of which the BOA
was formulated. For their determination, an atoms in
solids method has been used as well as an analysis of the
correlation energies of some hydrocarbon molecules. The
approximations involved were discussed in detail. We be-
lieve that the value of —5.0 eV for the intra-atomic corre-
lation energy of a carbon atom in diamond is a rather ac-
curate one. Due to the lack of appropriate numerical data
the values given for Si, Ge, and Sn should be taken only as
rough estimates.

In any case the present approach provides a simple and
transparent way of understanding the various correlation
corrections to the ground-state energy as well as the large
amount (around 25%) of the correlation contribution to
the cohesive energy. There is no difficulty in extending
the local approach to the calculation of excited states of
covalent semiconductors. This will be the subject of a
separate publication. We believe that calculations of this
type will help to clarify our understanding of the electron-
ic properties in a class of materials which have been
viewed for a long time as good candidates for a one-
electron description.
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APPENDIX A: DIAGRAMMATIC
REPRESENTATION AND GO' APPROXIMATION

In the following we want to relate the various contribu-
tions to the expectation values (,SH„,), and (,SHS), to a
corresponding diagrammatic representation. The general
rules for the construction of such diagrams can be found
in Ref. 9. The diagrams have the advantage of making
transparent the origin of the various terms in the above
expectation values.

The expectation value (,SH„,), has two corresponding
diagrams which are shown in Fig. 3 [diagrams (la) and
(lb)]. The operator to the right (here H„,) appears always
at the bottom of a diagram with the other operators fol-
lowing in the same sequence in the diagram as they ap-
pear in the expectation value. The two diagrams (la) and
(lb) correspond to the two terms in Eq. (23).

Corresponding to (SHscFS ), are the two diagrams (2a)
and (2b). The one-electron operator HscF ls represented
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by a cross. The resulting expression is

( SIJHSCFSKL )c 2T05IK(5JL T5KL5IJ) ~ (A 1)

From Eq. (Al) one obtains (SIHsCFSKL ),=0. This
I

means that HscF does not couple intra- and interbond
correlations.

The diagrams (3a)—(3h') represent the various contribu-
tions to the expectation value (SH„,S)„which is given
by the following equation:

1 1( SIJHrcsSKL )c 25JL ( VAIBIAKB» T VAIAKBKBI ) 5JL 5JK( VAIBIAJBJ 2 VAI AJBJBI )

1 1

5JL5IL( VALBLAKBK 7 VALAIrBKBL ) 5JK5IL( VAIAIBJBJ 2 VAIBJAIBJ)
1 1 1 1+ 2 5JK5IL ( VAIAIAJAJ 2 VAI AJAJAI ) + z 5JK5IL ( VBIBIBJBJ 2 VBIBJBJBI) (A2)

The diagrams (3a) and (3b) correspond to the first line on
the rhs of that equation. The second and third line corre-
spond to (3c) and (3d) and (3c') and (3d'), while those in
the fourth line are represented by diagrams (3e) and (3f)
and those in fifth and sixth line by (3g) and (3h) and dia-
grams (3g') and (3h'), respectively.

When the energy is calculated due to correlations
within a bond the diagrams (3a)—(3d') cancel and only
(3e)—(3h') remain. On the other hand, to the correlation
energy between different bonds only diagrams (3a)—(3d')
contribute while (3c)—(3h') cancel each other. This is
easily verified from Eq. (A2).

Next we discuss the GW approximation of Hedin. ' It
corresponds to taking into account only (la), (2a), (3a),
(3b), (3c), and (3c'). First let us consider correlations
within the bonds only (i.e., 2) ~

——0). In that case one finds

D
(0)

90
2to 1 —Vo /(2to)D

(A5)

Ecorr, 68' =
&o 1 —Vo /(2Io)

The last expression must be compared with Eq. (34b). It
is seen that the 68' approximation results in an increase
of the intrabond correlations b~ more than a factor of 2.
For example, for diamond, F.,'„,Gw-= —5.0 eV instead of
—2.0 eV.

The simplest way of realizing the shortcomings of the
68' approximation when applied to a covalent semicon-
ductor is to consider intead the H2 molecule in a Hubbard
model description. It can be considered as a rough simu-
lation of a bond. In that case,

E'c'., Gw = 42lo(2Vo —)+4no(2To W»—
where

U
+corr, Gw(H2 )

Sto

U3

32to
(A6)

W=VA A B B 2 (U+K) (A4)

(&a) (tb)

(2a) {2b)

The contributions from the diagrams (3a), (3c), and (3c')
compensate each other. Minimizing Eq. (A3) results in

while in the exact result the First term on the rhs should
be multiplied by —, and the second term should be absent
altogether (the next highest order term is proportional to
U4)

This incorrect description of the intrabond correlations
is due to the neglect of the exchange diagrams, such as
(lb), which correspond to vertex corrections in the spirit
of the GW approximation.

The correlations between different bonds are treated in
a reasonable way by the 68 approximation. This is due
to the fact that in this case the neglected exchange in-
tegrals (between functions of different bonds) are only of
minor importance.

{3a)

(3c')

(3b)

(3cI')

(3c)

(3e)

(3cI )

(3f)

APPENDIX 8: RELATION TO PERTURBATION
THEORY

By expanding Eq. (33) for E„„to second order in the
electron-electron interaction, we obtain

(3g) (3h) (3g') (3h')

FIG. 3. Diagrams (v) contributing to the ground-state corre-
lation energy. One can distinguish three classes of matrix ele-

ments, i.e., first-order matrix elements containing (1) the residu-
al interaction H, , second-order matrix elements arising from
HscF (2), and (3}the interaction energy H„,. The wavy line cor-
responds to the operator S, the dashed line represents H„„and
the cross is associated with Hs~F.

(Vo)' (V) )'
E 2

——— —l2COrI',
0 0

(B1)

The same result is obtained by considering the bare Ham-
iltonian Ho of Eq. (5) as unperturbed part and by treating
H;„, as a perturbation. Second-order Rayleigh-
Schrodinger (RS) perturbation theory leads to Eq. (Bl),
which can also be written in the form
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(82)

when the BOA is used. ' Equation (82) explicitly shows
the connection between the correlation energy and the
fluctuation of the electron-electron interaction in the SCF
ground state.

The computation of the interatomic or bond correlation
energy within the BOA reminds one of the PCILO (per-
turbative configuration interaction using localized orbi-
tals) method, ' ' which is well known in quantum chem-
istry.

The difference is that the I.A is a variational method
and, more important, it can be easily extended to excited
state calculations of infinite systems. '

In the PCILO method HscF, and not Hp, is treated as
unperturbed Hamiltonian. In this case, second-order RS

perturbation theory leads to

( I'o )'
Ecorr, 2

TO

( I') )'—12
TQ

(83)

Instead of the bare hopping matrix element tp, the SCF
hopping matrix element To [see Eq. (24)] enters into the
expression for the correlation energy. The same result is
obtained within the LA, if the term &SH„„S), in the
correlation-energy calculation is neglected. In this case
we have

E o 2 = —4&p Vp +4&pTp —487(~ V& +48& j Tp (84)

which, after minimization, leads to Eq. (83).
For diamond Eq. (Bl) leads to E„„2(C„)=—3.3 eV

while Eq. (83) gives E„„,2(C )= —2. 1 eV. The more ac-
curate result obtained within the LA is E„„,(C~) = —2.6
eV (see Sec. V).
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