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An exact solution is found for a Bethe-lattice model of the vibrations in AX2 glasses when the
dihedral angle is assumed to be completely random and is averaged throughout the lattice. The vi-

brational density of states agrees very well with that calculated by Bell and co-workers for a large
ball-and-stick model, and is much simpler to compute. The Raman, infrared, and inelastic neutron
scattering spectra are calculated for vitreous SiO~ and Ge02, which show satisfactory agreement
with the main features of the experimental spectra.

I. INTRODUCTION

There is much interest in understanding the structure
and properties of glasses using dynamical probes that
yield information about their vibrational modes. These
probes are principally infrared, neutron, and Ram an
scattering. As a result, there is substantial experimental
data, particularly on chalcogenide glasses' and silica, that
have not been fully exploited due to the difficulty of ap-
propriate theoretical treatment.

Among the several theoretical approaches to the prob-
lem, we note the extensive calculations of Bell, Dean, and
co-workers and the analytical models based on the Bethe
lattice. Also of interest is the simpler central-forces-
only theory by Sen and Thorpe that, in spite of its simpli-
city, has been very useful in interpreting the polarized Ra-
man spectra of these glasses. Unfortunately, the central-
forces-only theory does not always suffice because non-
central forces are frequently important, especially at lower
frequencies, or in the case of intermediate-range order.

The introduction of noncentral forces in a Bethe-lattice
calculation is not trivial because the relative positions of
second neighbors is not known from experiment.
Nevertheless, former Bethe-lattice calculations including
noncentral forces ' have been carried out assuming a par-
ticular configuration of atoms, an approximation that is
unlikely to be justified in a glass.

In a previous paper we have reported an efficient
method to solve analytically the AX2 Bethe lattice
without having to impose a given configuration between
second neighbors. It is the purpose of this paper to dis-
cuss that theory in detail and to compare the results with
experimental data.

units always share a corner (not edges, etc.). The relative
positions of the two tetrahedra are defined by the "inter-
tetrahedral" angle 8 and the "dihedral" angle P, measured
in a frame of reference centered on one A atom whose po-
lar axis is on the direction of one of the four tetrahedral
bonds.

Let us consider a Born Hamiltonian, where the poten-
tial between two neighboring sites I and I', when there are
small displacements u from the equilibrium positions, can
be written

Va = —,
' (a —P) I [u(l) —u(l')] nit I

+ —,
'

13[u(l )—u( l') ]

where there is a central force of strength a acting along
the unit vector joining the sites nit, and a noncentral force

II. THEORY

The local arrangement of atoms in an AX2 glass is
shown in Fig. 1, where it is seen that two tetrahedral AX4

FICx. 1. Local geometry of two tetrahedral units in an AX2
glass. The relative position of the frames of reference centered
at A and A' is measured by the "intertetrahedral" angle 0, be-
tween the polar axes z and z', and by the "dihedral" angle 4).
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(2)
where D is the dynamical matrix, whose elements contain
the second derivatives of (1) with respect to the various
Cartesian components p of the displacements, that is,

8 V
Dpp (/, /') =

Bu„(/)Bq (/')

Direct application of Eq. (2) to the present case poses a
serious geometrical problem, because of the need to speci-
fy the exact position of each atom in the same frame of
reference, and the set the equations rapidly becomes un-
tractable. For this reason it is most convenient to define a
different frame of reference centered at each A atom, in
such a way that its four X neighbors are described in the
same way everywhere. For instance, in Fig. 1 we show
that the frames centered on A and A ' both have a bond
along their respective polar axes z and z'.

Therefore, we need a notation for the Careen's function
that states explicitly the kind of atom at each site, and the
different frame of reference used; for example, let us write

G~x (/, /') = ((u"(/);u (/');co)), (3)

where the angular brackets represent a quantum and a
thermodynamical average" over the sample. This quanti-
ty is a 3 & 3 matrix that correlates the displacement of an
atom of type A at site / with the displacement of an atom
of type X at site /'. The prime on the X in (3) means that
the corresponding u is written in a frame of reference
different from the one used to describe u .

Let us follow the nomenclature depicted in Fig. 2. The
equation of motion for the atom of mass M labeled "ori-
gin" is then

I

4 4

Mco I+ g D; G""(0,0)=I+ g D;G "x(O,i),

(4)

P perpendicular to it.
The equations of motion for the Green's function' are

M„(/')co G„~ (/, /', m )

=5„„5(/,/')+ Q g D„„-(/,/")G~ „(/",/', co),

where I is the identity matrix and D; is the interaction
matrix between the A-X pair along one of the tetrahedral
directions, i =1,2, 3,4. For instance, if the z axis coin-
cides with direction 1, it is clear that

—P 0 0
0 —I3 0
0 0 —o.

Also, the matrices D are related by the tetrahedral sym-
metry

4

g D; = —', (a+2—P)I . (6)

Along the direction i we have

(mco I+D;+R; 'D;R;)G "x(O,i)

=D;G "~(0,0)+R, 'D;G "(O,i),

0 0 1

1 0 0
e;= 0 —cosO; sinO;

,
0 —sinO; —cosO;

It must be clear that

4
Mco I+ g D ( G"" (0 i )

l=l

D R G~x(0 i)+ QD JG '(0 j) (8)
j+l

where m is the mass of the atom X.
Notice that the vectors in . the last term in (7) are

described in different frames. A vector defined in the
frame centered at A' is transformed to the original frame
according to R, v'=v. From Fig. 1 it is clear that
R;=e;4;, where 4&; is a rotation of P degrees around
axis no; and 8; is a rotation by ~—O around an axis per-
pendicular to it, specifically,

cosP; sing; 0
—sing; cosP; 0

Let us use a shorthand notation:

A; =A;(8;,P;)

=mao I+D;+R, (8;,Qg )D;R; (8;,P; ) .

FIG. 2. Diagram showing the labeling of bonds used in the
equations of motion. The atom labeled "origin" is at site 0 and
subsequent sites are named after the bond arriving to them.
Sites with the same number of primes are referred to the same
frame of reference.

%'e need a further equation

A JGAx(oj ) DiGAA (O, E)+R J-. 1D JGAA (0 j) (10)

Now Eqs. (4), (7), (8), and (10) from a complete set that
can be solved in the Bethe lattice by defining the follow-
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ing transfer matrices: GAB"(0 J) T GAA'(0 i) (12)

and

Gxa (Q, i)=T;Gaw(0, 0)
Substitution into the proper equations of motion gives an
equation for T;;

I

—1

T( ——Mco~I+(Dg. Dg—R gA g
'R

( 'D;)+ g (DJ DJ—A J D j DJ—A J
'R

J DJTJ) D;R;A, 'D;. ,
j+1

(13)

whose solution can be put into (4) to give

4
G~"(0,0)= Mco I gK;— (14)

appropriate equations of motion are

A )(8,0)Gxx(1, 1)= I+D )Gx~(1,0)

R, 'D, Gxa (1,1), (18)

which defines a self-energy K; due to the mechanical im-
pedance attached to each bond i. It is clear that

where

D; =D 3 Ri D

Z Gx"(1 0)=D Gxx(1 1)

Z, Gx"'(l, l) =D,R,G (1,1),
where

Z ( Mco I+D ——) —g K
j+1

(19)

(20)

(21)

The actual solution of (13) requires the exact specifica-
tion of all the matrices in the infinite set {R;I. This is
impossible if the angles 8; and P; vary from site to site.
Therefore, it is necessary to introduce some approxima-
tions at this point:

(1) Let us assume that 8 is the same for any A-X-A
unit. This is reasonable since the dispersion of 0 in Si02
reported from x-ray studies, ' or from hand-built
models, ' is small (+10%). Nevertheless, we will investi-
gate the effects of introducing disorder in 8 in the next
section.

(2) The dihedral angles P; are completely random in the
glass. This assumption holds if there is no evidence of
intermediate-range order in the network, and it means
that the value of P in a particular place in the lattice does
not depend on the values of P elsewhere. There is evi-
dence' that geometrical constraints introduce strong
correlation between P's associated with neighbor bonds,
but even so, the mean distribution of P is reasonably flat.
This latter approximation allows one to perform an aver-
age of Eq. (14) in the spirit of the random-phase approxi-
rnation. ' Then

y
—1 (6xx( 1 1 ) )q

then, the elements of g are

g =

Imago

—2EI

(22)

(23a)

g = {men —2[@sin (P/2)+A, cos (8/2)]I ', (23b)

g = {mco —2[icos (8/2)+A, sin (8/2)]I

where

,=~+P/[M. P («K,~&+5«, &)/3],

A, = + [M — —((K )+8(K ))/3]

(23c)

It is clear that correlations between neighbors (6"x(1,0) )
are immediately obtained from (19).

The averaged Green's function (6 (1,1)) is diagonal in
the representation introduced by Bell, Dean, and Hibbins-
Butler, ' (x,y,z)=(R,B,S), in which the A-X-A plane is,
perpendicular to the x =R axis and the y =8 axis bisects
the angle 8. This latter representation differs from the
one we have used by a rotation P around the x axis by
(n 8)!2. Let —us call

4

( 6""(00) ) =6 = M@PI g(K;)—(16)
III. DENSITY OF STATES

where ( ) stands for an unweighted averaged over P.
This allows one to solve the Bethe lattice exactly. The
averaged self-energy- per bond is

(K, ) = —D, +D,. (A )D, +(D,'"T, ) .

The calculation of (K;) is straightforward and is given
in Appendix A. It is seen that all quantities of interest
can be written in terms of (,K;), for instance, 6 is ob-
tained with (16) using (6). As a further example, let us
calculate the autocorrelations on a site X. For bond j. the

In this section we will illustrate the kind of results ob-
tained with the present theory by examining the vibration-
al density of states (DOS), which is given, per AX2 unit,
by

p(m) = Im(M TrG+2m Trg ),
3m

(24)

where G and g are given by (16) and (22), respectively.
One can also investigate the contribution of certain modes
to the DOS, for instance
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FECs. 3. Theoretical densities of states for GeO~. Notice that
there are three well-separated bands for the oxygen motion. An
imaginary part of -5 cm ' was added to the frequency.

pr(aI) = Img~, y =R,B,S (25a)

is the partial density on site X and direction y, and

—2M')
pz (co) = ImG, p =x,y, z (25b)
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FIG. 4. Same as Fig. 3 for SiO2. Notice that the ~ocking and
bending bands overlap in the lower half of the spectrum.

0

is the partial density of a tetrahedral site 2, which is iso-
tropic. In Figs. 3 and 4 we show the results from (24) and
(25) for parameters appropriate to Ge02 and Si02, respec-

TABLE I. Parameters used for G-eO2 and SiO&.

Cxe02
Si02

o. (N/m)

341
507

31
78

9 (degree)

133
154

tively. The parameters were chosen to best fit the broad
features of the experimental spectra and their values are
given in Table I. It is worthwhile to note that these values
are in close agreement with the ones obtained by other
methods, ' particularly the angle 0 for SiOz which is quite
near the value 152' obtained by the latest x-ray measure-
ments.

There is one important difference between these glasses.
We notice that the oxygen bands are we11 separated in
GeO2, but they strongly overlap in SiO2, particularly the
rocking and bending bands. This fact accounts for the
main differences in the Raman spectra of these glasses, as
we sha11 see in the next section.

In order to see how good our results are, we compare
them with others already available. Among them there
are the very we11 documented calculations for a ball-and-
stick model by Bell, Bird, and Dean' (BBD). The BBD
calculation is one of the most realistic performed to date.
Figure 5(a) shows our results for Ge02 calculated with the
parameters reported in BBD and averaged over several an-
gles 0, with a triangular distribution centered at 140,

V ITR EOUS Ge02
I I I I

I
I I I I

Ia) I pp-AVERAGED
q = 5cm-&

CO

IX

tx.'I-
Cl
lK

CO

I-
I-
CO

Q

I-
CO

O

O
I-
CC
Cl

Ib)

(c)

III,(I-AVERAGED

n = 330 N/nI

0 600 1000
WAVE NUMBER W {cm ~)

FICx. 5. Comparison of the density of states for Ge02 ob-
tained with the present theory and results from numerical calcu-
lations in a hand-built model. (a) Averaged over a flat distribu-
tion of P and a triangular distribution of 8. (b} Same as (a) but
with a large imaginary part (q) added to the frequency. (c) His-
togram obtained by BBD (Ref. 18). (d) Theoretical result with a
fixed value of 0. Notice that panels (b) and (c) are practically
identical.
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mate ways of calculating scattering intensities from the
correlations already found.

A. Polarized Raman scattering

The Raman polarizability is proportional to'

g ( Va/ ).Im6 ( I, /') ( Va/ ),
l, I'

(26)

Im g QV„G&„(l,l')v „
p, ,v l, l'

(27)

where

where ul is the polarizability associated with atom I, and
f(co) is a slowly varying function of co. Martin and
Galeener have obtained an approximate expression for
Va/ based on a model of Alben et al. ' They show that
the polarized part of the Raman spectrum can be calculat-
ed from

0 500 1000
WAVE NUMBFR W (cm ")

FIG. 6. Same as Fig. 5 for SiO~. Here the comparison be-
tween panels (b) and (d) shows that the main effect of the disor-
der in 0 is to broaden the oxygen-bending band at -750 cm

which resembles the actual distribution on the physical
model reported by Bell and Dean. ' The BBD calculation
is shown in Fig. 5(c), and as we compare it with ours we
notice that our bands are too narrow, as expected from a
Bethe-lattice model. However, if we artificially broaden
the spectrum by introducing a reasonably large imaginary
part to the frequency (1)=20 cm '), as in Fig. 5(b), our
spectrum becomes practically identical with the one by
BBD [Fig. 5(c)]. The broadening can be justified by con-
sidering that we did not allow for distortions of the
tetrahedra that were certainly present in the hand-built
model, and whose effect would be to broaden the bands.

Figure 5(d) shows the broadened DOS for a single value
of 8. One can see that the effect of the disorder in 8 is
not important, as far as the DOS is concerned, and its
main effect is to broaden the peaks slightly, particularly
the oxygen-bending band. Therefore, one can conclude
that keeping a fixed 8 is not an unreasonable approxima-
tion while working with this theory.

The same comparisons are presented for Si02 in Fig. 6.
We notice that for this glass the resemblance of panels b
and c is even more striking, and that the effect of disorder
in 0 is somewhat more noticeable.

IV. SCATTERING RESPONSES

U = Qlm

10—
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Here the summation runs over all the m bonds arriving at
site I, and ni~ is a unit vector along a given bond.

The summation in (27) involves correlations between all
sites, and it is possible to perform such an infinite sum-
mation in the Bethe lattice. 2z However, this procedure
leads to unphysical results (for details see Yndurain
et al. ). Therefore, we decided to neglect long-range
correlations, in fact we calculated (27) by taking into ac-
count only the eight bonds associated with a five-atom
cluster. W'e calculated this using the cluster Bethe-lattice
method, that is, we treated the dynamics of a five-atom
cluster exactly and attached Bethe lattices to the free
bonds. The full Green's function is now a 15)& 15 matrix
that is explicitly shown in Appendix B.

Notice that v =0 for sites with tetrahedral symmetry;
therefore, only the oxygen sites contribute to the Raman
intensity. The results are shown in Fig. 7 for GeQz and in

The DOS is related to measurable intensities in scatter-
ing experiments through the Fermi "golden rule, " al-
though the DOS is not directly comparable with the ex-
periment because of unknown matrix-element effects,
which may produce substantial differences between the
spectra and the DOS. In this section we discuss approxi-

0 500 1000
NAVE NUMBER Nt (CIT1 ")

FIG. 7. Comparison between the experimental (a) and
theoretical (b) polarized Rarnan spectra of Ge02. The experi-
mental curve is from Ref. 27.
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ried out the procedure.
Figure 10 shows the same comparison for Si02, here,

the comparatively large response of the bending mode is
even more noticeable. The high-frequency peak is not
placed correctly because of difficulties with the large LO-
TO splitting of the modes in that region, that obviously
can not be obtained with the present theory.

C. Inelastic neutron scattering

The measurable quantity in a neutron scattering experi-
ments is
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I I
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which is the case of AX2 glasses reduces to

[a„(A)] 2[a„(x)]

P
Pl

(29)

In Figs. 11 and 12 we show the neutron intensities ob-
tained from (29) using the scattering lengths reported in
Ref. 31. The absence of the double peak at high frequen-
cies due to the I.O-TO splitting is more noticeable in this
case, although the overall shape of the spectrum is repro-
duced with remarkable accuracy, particularly the Si02
spectrum.

VITREOUS Ge02
I I 'I I

)
I I 'I I

i
I l 1

(8)

o' (a,w)

where q=K —Ko is the difference between the scattered
and incident wave vectors, and n (co) is the phonon popu-
lation at a given temperature. The incoherent part of the
scattering is closely related to the DOS: it is shown that
the differential cross section is

82
q g [a~"'(1)] ImG„~(l, l),

BQ Boo m 3Ko

where [a&(co)] includes the Debye-Wailer factor and the
scattering lengths. Then the "reduced" intensity is

FIG. 12. Same as Fig. 11 for Si02. The double-peak struc-
ture is not reproduced by the theory because it arises from a
LO-TO splitting (Ref. 26).

V. CONCLUSIONS

%e have reported a theory that enables oae to calculate
the displacement-displacement Green's function in a
dihedral-angle-averaged Bethe lattice, suitable for AX&

glasses. %'e have used it to calculate approximate spectra
for vitreous Si02 and Ge02 that compare well with the
experimental data. The dihedral-angle-averaged Bethe
lattice sheds new light on the nature of the vibrational
modes in these materials and is a powerful tool for the
study of local configurations, when used to represent the
network attached to the local cluster. Such cluster calcu-
lations will help in vibrational studies of the
intermediate-range order that can be present in these
disordered solids. The simplicity of our theoretical results
make the method efficient for use in more complex calcu-
lations. The results are readily adapted (or rederived) for
application to other glasses having different topologies.
The comparison made in Sec. III with the ball-and-stick
model results illustrates the versatility of the method,
since it proves that one need not build a new ball-and-
stick model to deal with a new structure with similar ac-
curacy. The comparison with experiment illustrates the
ability of the "continuous-random-network" model to ex-
plain the broad features in the vibrational spectra of these
materials.
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FICx. 11. (a) Reduced one-phonon neutron response 6{Q,co)

for GeQ2 fom Ref 27. (b) Theoretical incoherent neutron spec-
trum from Eq. (29).

In this section we will show in detail how to obtain the
solution for the averaged self-energy (K;). It is suffi-
cient to only consider (K I ), since the self-energies along
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0

the other bonds are related by the tetrahedral symmetry
[Eq. (6)].

Along bond 1, the expressions are simple:

Aq' 0
H)) ——a/P

H22 —— 1
(b cos 8+c sin 8+2d sin8cos8),

the nonzero elements of H can be written as

0

0 0

0 (A 1)

H33 —— (b sin 8+c cos 8—2d sin8cos8),
CK

where

A j ———mes —2a —(P—cL)sm 81 2

k

(P—a)(mcus —a —P)sin 8+ 22m' —4P

H23 — [d cos (28)—(b —c)sin8 cos8]=1 2

Finally one obtains one set of scalar coupled linear
equations for the transfer matrix

[m—co 2P—+(P a)—sin 8],II

k =(me@ —a —P) —(P—a) cos 8.

T ——
J. + 2II22~» —~23

H22
II 2

22~33 023

(A6a)

(A6b)

After much algebraic manipulation one obtains
r

Tz 0 0
(D',"T,) =(c-'H-'c) =, o T, o

0 0
(A2)

where

Q 'A i( —8 0)[D i 'UD iA, ( —8 0)—I]QD, ' .

(A3)

The matrix U is diagonal also, and its elements are

which can be solved self-consistently to any degree of ac-
curacy. Strictly speaking, Eqs. (A4), (A5), and (A6) can
be combined to obtain a quartic equation for m, and
therefore the solution of (A6) can be obtained analytically.
However, we think that an iterative solution of (A6) is
very convenient, since we have seen that with this pro-
cedure, it always converges to the correct physical root.

We note that the solution (A6) reduces to the expression
by Sen and Thorpe in the case where P=o, and that it
reproduces the results by Laughlin and Joannopoulos
when one suppresses the average and gives the appropriate
fixed values to P.

U„=U22=Mco ——', (a+2P) ——,(4a Aii +513 Ag ) APPENDIX 8

(4T(( +5TJ )

U„=M ' ——', (a+2P) ——,'(a'~
~

'+8P'~ )

——,
' (T((+8' ),

(A4)

(A5)

A five-atom cluster with Bethe lattices attached to the
outer bonds (i =1,2, 3,4) can be treated in closed form.
Using the same notation as before, one can write the full
Green's function for the cluster as follows:

where we have used the property (6). The nonzero ele-
ments of A ~( —8,0) are

4.
Mco I+ gD; —D ) —D2 —D3 —D4

a~, ——mco —2P,

a22 ——me@ —p(1+cos 8)—a sin 8,
a33 ——me@ —u(1+cos 8)—Psin 8,
a23 ——a32 ———(P—a)sin8cos8 .

Defining the quantities
where

—D)
—D2
—D3
—D4

Oi

0

02
0

0

0

0

03

0

0

04

(Bl)

a =a ))( U))a ))/P —1),2

a22( U22 22/P 1)+U33 23/~2

c = 33(U33a33/a —1)+Ui&az3/p

d=a23 ii 22/p + 33 33/a —1),

0;=@, [A;(—8,0)—Q 'D;(Z; )Dge]N; .

Each entry in (Bl) is a 3X3 matrix. Q and @; are rota-
tion matrices which account for the orientation of the
cluster surface bonds. In evaluating (Bl) we averaged
over 256 different configurations with random P s.
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