
PHYSICAL REVIEW B VOLUME 31, NUMBER 12

Theory of surface electronic states in metallic superlattices
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We report the existence of surface-localized electronic states for a superlattice consisting of alter-
nating slabs (parallel to the surface) of two different metals. The superlattice has a larger periodici-

ty in the direction perpendicular to the slabs and therefore many electronic branches in the folded
Brillouin zone. In the gaps existing between these bulk branches appear the surface-localized modes.
The theory is developed on an s-band model of a simple-cubic crystal. The simplicity of this model
allows one to obtain in closed form the bulk and (001) surface Green's functions for this superlattice.
The analytic knowledge of these functions enables us to study easily all the bulk and surface elec-
tronic properties of this metallic superlattice, which otherwise would require huge numerical calcu-
lations. We give here the analytic expression we obtained for the folded bulk electronic bands and
also the expression that gives the surface electronic states. A few figures for specific cases illustrate
these results.

I. , INTRODUCTION

A superlattice consists of alternating thin layers of two
deposited compounds. In particular, in recent years there
has been great interest in the fabrication and measurement
of properties of bimetallic superlattices' such as Nb-Cu,
Mo-Ni, Ta-Mo, Nb-Ta, Nb-Al, etc. Model calculations of
the electronic structure and of the local electron densities
of states in bimetallic superlattices have also appeared re-
cently. '—4

In this paper, we report, for the first time to our
knowledge, the existence of localized electronic states at
the free surface of a bimetallic superlattice. The surface is
taken to be parallel to the interfaces between the two met-
als from which the superlattice is built. Such systems
have a new periodicity in the direction x3 perpendicular
to the interfaces. This produces a folding of the electronic
bands in a reduced Brillouin zone, and the opening of new
gaps in which surface states may exist.

Previously, we presented a theory of surface phonons in
superlattices based on a well-known phonon model of a
simple-cubic crystal, for which the Green's functions can
be worked out in closed form. The mathematical similari-
ties of this model with a corresponding classical tight-
binding model for the study of electronic properties of
surfaces ' are well known.

Each unit cell of this model contains a single nondegen-
erate Wannier orbital. The electrons hop from site to site
via a nearest-neighbor overlap integral of strength y;.
Thus, the bulk-electronic-energy band consists of a single
band of tight-binding form. The superlattice under study
here is built up from, alternately, L& and L2 (001) atomic
planes of two such simple-cubic lattices having the same
lattice parameter, ao, and characterized by the overlap in-

tegrals (y& and y2) and occupation numbers (Z& and Z2)
of their respective electronic bands. These alternating
thin layers are bound together by an overlap integral y be-
tween the interface atoms. This simple model enables one
to obtain, in closed form, the bulk and (001) surface
Green's function for this superlattice. Only the diagonal
element of the bulk Green's function was given before,
through a different procedure, and it was used for the cal-
culation of local electron densities of states in infinite su-
perlattices.

We obtain here for the first time —and in closed
form —a simple analytic expression for the folded bulk
electronic bands of this superlattice, taking into account
the effect of self-consistency at the interfaces. Then we
show the existence of localized electronic states at (001)
surfaces of this superlattice, discussing the effect of the
physical parameters defined above. The surface states
also depend on the kind of layer (1 or 2) and its thickness
near the (001) free surface.

In Sec. II we obtain the bulk and surface Green's func-
tion for the superlattice defined above, and in Sec. III
these results are used for the calculation of the bulk and
surface electronic bands.

II. BULK AND SURFACE ELECTRONIC
GREEN'S FUNCTION FOR A SUPERLATTICE

A. Tight-binding model

The d bands of transition metals are well described by
the tight-binding model. The d states of the free atom
give rise to a complex array of five bands of d symmetry
in the crystalline state, and these five bands may contain
at most ten electrons. In this paper we study a much
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simpler model which includes only a single s band of
tight-binding character. We assume each energy level is
fivefold degenerate in order to make a crude model of the
d bands of transition metals. The resulting set of bands is
then filled by ten electrons.

The crystal will be taken to be simple cubic. The
tight-binding band described above will be generated from
a model which assumes all hopping integrals to be zero,
except for nearest-neighbor sites. The Hamiltonian of the
system is

Ho E) g——C (1)C(1) y( g C—t(l+5)C(l),
1 1,5

where E, is the energy of the atomic level and C (I) and
C(1) are, respectively, the creation and the annihilation
operators for the site I. In this Hamiltonian, E ranges over
all sites in the crystal, and 5 ranges over the sites which
form the nearest neighbors of /.

In the infinitely extended crystal, the energy bands are
described by

E(k) =E& —2y~[cos(k&ao)+cos(k2ao)+cos(k3ao)], (2)

G "(I,l';E) = (I
~

[(E+iF.)I H—] '
l I'),

where

p) t) —1

l3, l3 & 1

where by this equation we mean the matrix element of the
indicated operator between the Wannier functions associ-
ated with the two states l and l'. Particularly convenient
is the function G(kll, l3,13,E) related to G(l, l', E) by a
partial Fourier transform,

I

G (I I 'E) +G kll'13, 13,'E)e' ll

kl
I

where N, is the number of atoms in the surface of the
crystal, k~~ is a two-dimensional wave vector parallel to
the surface, and the sum over k~

~

covers the two-
dimensional Brillouin zone. This surface Green s function
may be readily obtained in closed analytic form for the
present model,

where ao is the lattice parameter and k is the wave vector.
This model, while highly oversimplified, can account

for trends present in the physical properties of transition
metals. Values were extracted for y& by comparing mea-
sured values of the cohesion energy with those predicted
by this model: y& ——,', eV for the 3d series, —,

' eV for the
4d series, and —„eV for the 5d series. For our purposes,
the virtue of this admittedly simple model is that we can
carry the calculation by analytic methods.

and where

E —cos(k~ao) —cos(k2ao) .
2'Y i

(6a)

(6b)

B. Green's function for a film

For the semi-infinite crystal with Hamiltonian H, the
electronic properties can be discussed by employing the
Green's function G "(I,I',E) defined by

Let us now create a film by removing all overlap in-
tegrals between the -atoms situated in the l3 ——L& and
L~+ I planes of the above semi-infinite crystal. The cor-
responding Green's function U

&
can be easily worked out

with the help of the Dyson equation and the above surface
Green's function. We find

1 1 I13 —13 I+&
Ui(kll, 13,13,'E) =

2 r 1
t] —1

13 —13 13 —13
I3+I3+1 2L)+3 (t) —t( )(r) —t) )

+ti 2L +2
1t] —1

(7a)

where

1 & l3, I3 &L] . (7b)

C. Bulk Green's function for the superlattice

Let us now set this K =2 film in epitaxy with the K = 1

film, but without any binding between the interface

Let us remark that the above surface and film Green's
functions do not take into account any self-consistent
rearrangement of the electrons near the free surfaces. We
will return to this question later.

In the same manner we construct another film of L, 2

(001) layers. In order to distinguish one of these two films
from the other, we will use an index %=1 or 2. The cor-
responding Green's function U2 can be obtained from
Eqs. (7) and (6) by changing all indices 1 to 2. Let us also
remark that, for this K =2 film, one has 1 & l3 l3 &I 2.

I

atoms. We characterize this uncoupled double film by
another integer n. An infinite repetition —oo & n & + ao

without coupling of this double film gives us our starting
point for our model of a superlattice. One easily sees that
the corresponding Green's function is

U(Ill, n, IC, I3,n', A', I'3,E)=5„„5~~Ux(kl~l, 13 13 E) .

We now couple all of these alternating E = 1 and E =2
films together in order to obtain an infinite superlattice
via the following procedure.

(1) We set the uncoupled films 1 and 2, respectively, to
potentials V~ and V2 in order to align the Fermi energies
in all pf the slabs. This only translates the origins E] and
E2 of the energies, and in what follows we include these
potentials V& and V2 in E& and E2. We will explain later
how we determine E& and E2 as functions of the occupa-
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tions of the occupations Z1 and Z2 of each band and of
its shape in order to align the Fermi energies.

(2) We then couple all of the films by using a hopping
integral y between the corresponding interface atoms. In

order to satisfy self-consistency we introduce the self-
consistent intra-atomic potentials 6& and A2 to the surface
atoms. The matrix elements of this perturbation potential
that couple all of the alternating films together are then

5 V(nK13, n'K'1'3 ) = —7 g (5„m6K251,L 5„„+15K151, I+5n +15K 151,15„6K261, L )

g (~nm ~K1O13L1~n'm '5K'2~1' I+~nm ~K 2~111~n'm ~K'1~1' L

~2 + |Inm5K2~n'm~K'2(~l3L261'L +~131~1' 1)

~1 g ~K I~K'1(~n, m+1~131~n', m+1'III' I+~nm ~!3L1~n'm ~1' L
m

We can now work out in closed form the elements D(k~~,'n, K, l3,'n', K', i3,'E) of the Careen's function D of this infinite su-
perlattice, with the help of the Dyson equation

D= U+ U5VD . (10)

In what follows, and for simplicity, we will no longer write explicitly the dependence on k~~ and E in the elements of U
and D.

After some algebra (see the Appendix for more details) we can obtain the elements of D as functions of the qK defined
in terms of the tK of Eq. (6a) by

tz ——e, K=1 or 2

and a new variable t defined by

ri —(Il —I)'~, Ii ) 1

t= ri+i(1 —ri )'~, —I &i I&I

Ii+(ri —I)'~, Il & —1

(12)

with

sinh(qIL1)sinh(q2L2) b I sinh[q, (L, —1)]
271 = —2 1—

sinhq
&

sinhqz pl sinh(q IL I )

1 I Y2»nh[ql«1+ 1)]s1nh[q2(L2+ 1)]+ -2 1 —2
'V sinhq

& sinhq2

62 sinh[q2(L2 —1)]1—
Slnh( q 2L 2 )

sinh(q, L, ) b. 1 sinh[q, (L, —1)]
sinh[q1(L1+ 1)] y21 i hs[nq (LI+11)]

b2 sinh(q2L2) bz sinh[q2(L2 —1)] l
2 sinh[q, (L1 —1)]sinh[q2(L2 —1)]

X 1 —2 . + +
y2 sinh[q2(L2+1)] yz sinh[q2(L2+1)] yly2 sinhq

& sinhq2
(13)

This expression is directly related to the bulk electronic bands of our superlattice. We will show this in the next section
and study the effect of the self-consistent interface potentials 51 and b,2 on the position of these bands. We will see that
the effect of 5& and 62 is small, and that the bulk bands of superlattice can be described with a good precision when tak-
ing b, l and b,2 to be zero in the above expression. With this approximation, Ii has the following simple form:

sinh(q, LI)sinh(q2L2) ) Iy2 sinh[q1(L1+1)]sinh[q2(L2+1)] l. 2 sinh[q1(LI —l)]sinh[q2(L2 —1)]
29= —2 + -2 +

sinhq ) sinhq2 sinhq] sinhq2 T &'72 sinhq ) sinhq2

(14)
/

and the elements of the superlattice Green's functions will be given here within this approximation.
First, we give the elements of D between different K = 1 and K =2 films:
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D( n 11;n '2l') = 1

sinhq& sinhq2 t —1

—sinh[q i (L i + 1 —l3 ) ]sinh(q2l 3 )
y

si nh[q~(L~ —l3)]sinh[qq(13 —1)] t ~"

V172

I+ slnh[q2(L2+ 1 —l3 )]stnh(q) l3 )
y

sinh[q2(Lz —l3 )]sinh[q&(l3 —1)] t ~"
'Vi'Y2

(15)

D(n2l;n'1l') = 1

sinhq] sj.nhqz p2 —1

—sinh[q2(L2 —l3+ 1)]sinh(q~ l3 ) — sinh[q &(l3 —1 )]sinh[q2(L2 —l3 )] t '
"

y 'Vi72

+ —sinh(q213)sinh[q&(L& —l3+1)]— sinh[qi(Li —l3)]sinh[q2(l3 —1)] t '" "+''
X&T2

(16)

The elements of D between the same K films are

D(n1l3;n'1l3 ) =5„„U&(l3l3) —y[U, (l31)D(n —1,2 L2,n'1l3 )+ U&(13L &)D(n21;n'113 )]
and

D(n2l3,'n'2l3 ) =5„„U2(l3l3 ) —y[ U2(l3Lz)D(n+ 1, 1, 1;n'2l3 )+ U2(l31)D(n 1L &, n'2l3 )],
where

cosh[qtt(Lz+ 1 —l3 l3 )] cosh[—qz(—L~+ 1 —
~

l3 l3
~
)]

Uz (13l3 ) =
sinhqz sinh[qz(Lz+. 1)]

sinh[q& (L&+ 1 l3 ) ]
y~ sinh[q~(L~+ 1)]

and

sinh(qzl3 )
Ux(13Lsc )=-

y~ sinh[q~(L~+1)]

(18)

(19)

(20)

(21)

Only the diagonal elements D(nKl;nKl ) of this Green's
function were given before in a different form. These au-
thors first coUpled together two different films K = 1 and
K =2 and then constructed out of this bifilm the superlat-
tice. The method of Menon and Arnold introduces in the
denominator of the superlattice Green's function the poles
of the bifilm, which, of course, are no longer good poles
for the superlattice, and therefore they must also appear
in the numerator of their Green's function. This is the
main reason why a direct comparison between the
D(nKl;nKI) of Menon and Arnold and ours is not easy.
Let us note also that in both their way and our way of
deriving the superlattice Green s function, in the denomi-
nator one has the poles of the two single films E=1 and
K=2 (given by sinh[q&(Lz+1)]), which must also ap-
pear in the numerator of the superlattice Green's function.
In Eqs. (15) 'and (16) we divided out these common factors

appearing in the numerator and denominator of the non-
diagonal elements of D. In the elements of
D(nKl3', n'K13 ) given by Eqs. (17) and (18), we left one of
these common factors, namely sinh[qz(Lz+ I)), in the
numerator and one in the denominator, as these enable us
to write these results in a more compact form.

D. Surface Green's function for the superlattice

%'e will consider here two different cases, depending on
the thickness of the last film near the free surface.

1. Surface film with same width as corresponding bulk films

We create two free surfaces by equating to zero all
overlap integrals y between atoms in the plane
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(n =0, K =2, 13 L——2) and atoms in the plane
(n=l, K=1, 13 ——1). The corresponding perturbation to
the potential is

(nKI3 n K I3 ) Y( Ilno~K2I3/ L ~lil'1'3K'lilt

G(nK13 , n''K'I3 ) = D(nKI3;n'K'13 )

D(nKI3, 02L 2 )D(111;n 'K'I
3 )+f

1 yD—(111;02L2 )

(23)

+~ 1~K 1~I 1~ 'O~K'2~i I (22) and, in particular,

Let us call G the Green's function of these two semi-
infinite superlattices. Its elements can be obtained with
the help of the Dyson equation and are, for n and n') 1,

G(111 111) D(111;ill)
1 yD(1—11;02L2 )

(24)

where D(111;111)and D(111;02L2) can be obtained with
the help of Eqs. (17) and (15) in the following form:

D(111;111)= 1 t 1

Slllhq i Slnhq2
—sinh[q1(L 1

—1)]sinh(q2L2)+ sinh(qlL1)sinh[q2(L2+ 1)] (25)

and

D(111;02L2)= . . —sinh(qlL1)sinh(q2L2) — sinh[q 1(L 1
—1)]sinh[q2(L2 —1)]

1 1 ~
.

'V

t —1 sinhq& sinhq2 XiT2

+ —sinhq
& sinhq2 (26)

The poles of G(111;111)given by Eq. (24) will enable us to study the appearance of localized surface states in the next
section. Expression (24) does not include the effect of self-consistency on the surface atoms. We will see on the exam-
ples of the next section that these effects are small.

2. Surface film with width smaller than corresponding balk films

We now create two other free surfaces by equating to zero all interactions between atoms in plane (n =1,K= 1, I3= Io & L 1 ) and in plane (n = 1, K= 1, l3 —IO+ 1).
As above, one obtains the surface Green's function, which, for n and n') 1, l3) lo+1 when n =1, and I3 ) Io+1

when n'= 1, is

Y 1D(nK13, 1, 1,l0)D(1, 1,lo+ 1;n'K'13 )
G(riKI3 n'K'l3 ) =D(nK13;n'K'l3 )+

Yl & s Oi t ~ 0+ (27)

and, in particular,

D(1, 1,IO+ 1;1, 1,Io+ 1)
G(1, 1,IO+1;1,1,IO+1)=

Yl s ~Oi r t0+

I

where gl is given by Eq. (6b). In the same manner, for the
infinite superlattice, we obtain the bulk electronic bands
from

(28)
2I =cos[k3(L 1 +L2 )a 0], (30)

The elements of D can be calculated as above with the
help of Eq. (17).

The poles of the above surface Green's function [Eqs.
(24) and (28)] will enable us to study in the next section
the corresponding surface states.

III. BULK AND SURFACE ELECTRONIC
BANDS OF A METALLIC SUPERLATTICE

g, =cos(k3ao), (29)

The bulk electronic bands of our metallic superlattice
can be obtained from the knowledge of the bulk Green's
functions. Let us first recall that for the infinite simple-
cubic lattice described by Eqs. (1) and (2), the bulk elec-
tronic band given by Eq. (2) can also be presented as

where g is given by Eqs. (13) and (14), respectively, with
or without interface self-consistency, and because the
periodicity in the direction x3 is now given by (Ll
+L2)aO, one has

~ & k3(L1+L2)aO & +~ . (31)

Because of this larger periodicity in the direction x3,
one has a folding of the electron dispersion curves in a re-
duced Brillouin zone and opening of new gaps between
these folded dispersion curves. In these gaps, new surface
states may appear; they can be found from the new poles
in the surface Careen's functions [Eqs. (24) and (28)] due to
the creation of the free surface.

All of these expressions, which give us the bulk and
surface electronic bands of the superlattice, are functions
of the atomic levels E& and E2. As explained in Sec. IIC,
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we will translate these energies E& and E2 in order to
align the Fermi energy in all uncoupled films of the su-
perlattice. The calculation of Ez —E~ and Ez —E2 re-
quires the knowledge of the bulk density of states of each
metal. These energies can, however, be obtained in closed
form by approximating the local density of states of atom
i by a rectangular band' of width O';. The second mo-
ment of the density of states is within this approximation

E
Yl

3

P2i =
12

2= gXij (32)

where the y;j stands for the overlap integrals between the
atom i and its first-nearest neighbors. Then one easily ob-
tains

1/2

E; —EF——( —, —Z; ) 12g y~~j

J
(33)

E, —5, EF=( 2
—Z—, )[12(51',+)' )]'

and, for the atoms of planes 2 & l3 & L )
—1,

Er EF= ( —,
' —Z, )7)—/72 .

(34)

(35)

where Z; (0 & Z; & 1) is the electronic occupation number
for the atom i, For d electrons in a transition metal, Z; is
the number of d electrons divided by 10.

In what follows we will take EF as the origin of the en-
ergies. Thus, once the occupation numbers Z~ and Z2 for
the two metals are given, Eq. (33) gives us E& and E2.

Following the procedure outlined in Sec. IIC, we now
couple all the films together by use of the overlap integral

y and of the self-consistency potentials 6& and A2 on the
interface atoms [Eq. (9)]. The self-consistency in metallic
systems where the charge screening is short ranged is well
realized by assuming the charge neutrality of each atom. '

Then in the same way that we derived Eq. (2), one obtains,
for the atoms of planes 1 and L& of the simple-cubic
films 1,

-2 S

FIG. I. Bulk and surface electronic states for a metallic su-
perlattice made of films with L& ——L2 ——2 atomic planes. The
ratio between the overlap integrals is taken to be y~/y2 ——2 and
the occupation numbers Zl ——Z2 ——2,' then, E~ ——E2 ——O. The
origin in energy is taken at the Fermi energy EF. The bands are
drawn as functions of S=cos(k&ao)+cos(k2ao). The hatched
areas correspond to the bulk bands of the superlattice. The sur-
face states are given, respectively, for the metal 1 at the surface
with a number of planes lo ——2 (dashed line) or lo ——1 (solid line),
and for the metal 2 at the surface with lo ——2 (dashed-dotted
line) or lo ——1 (dotted line). The quantities presented on both
axes are dimensionless.

In the same way, one obtains the energies E2 and E2 —A2
for the films 2.

For the surface atoms (having five rather than six
first-nearest neighbors) of a semi-infinite superlattice, one
can introduce self-consistency potentials b., on the surface
atoms. 6, is calculated from an expression similar to Eq.
(34), with @=0 and b.

&
replaced by b, The surface

Green's functions given by Eqs. (24) and (28) are also
modified in a straightforward manner.

On the figures which fo11ow we represent only the re-
sults for b,

&

——b,2 ——b,,=0, as the effects of self-consistency
were found to be small for these cases. However, we wi11
discuss separately the effects of 4] and 62, and those of
b,„on the results.

The first five figures correspond to two-atomic-plane-
thick films (L

& L2 ——2), in order to avoid——the complexity
of too many bands. Figure 6 will show the effects due to
greater values of L

&
and L2. In all of these examples the

interface-overlap integral y was taken to be equal to
(y )+y2) /2.

First, we consider the case of half-filled bands, namely
Z) ——Z2 ——0.5, for which the self-consistency is automati-

S=cos(k&ao)+cos(k2ao) . (36)

Figure 2 represents a case for which the overlap in-
tegrals y~, y2, and y are equal (metals of the same transi-
tion series), but the occupation numbers Z& and Z2 are

cally achieved. Figure 1 displays the corresponding bulk
bands and surface states for the metallic superlattice. In
this example, the ratio y ~ jy2 ——2, greater than the order of
magnitude given in Sec. IIA, was chosen mostly for in-
creased clarity of the figure as the gaps were smaller for
y&/y2 ——1.4. However, for both values of y~/yz above, we
obtained the same number of surface states. This example
represents, qualitatively, a superlattice made from one
transition metal of the 3d series and the one from the 5d
series. We remark that the surface states are very dif-
ferent depending on the nature and the number /o of
atomic planes (here, 1 or 2) of the film 1 or 2 near the sur-
face. One can also notice the symmetry of the bulk and
surface bands with respect to the origin of the figure
(E=0 and S=0), where
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10—

E
Y,

E
Y)

2

S

FIG. 2. Same as in Fig. 1, but with L& ——L2 ——2, pl=3'2
Z& ——0.8, and Z2 ——0.3. .

-2 S

FIG. 4. Same as in Fig. 1 for a superlattice having qualita-
tively the parameters of the Nb-Cu system. These parameters
are given in the text.

E
YI

I

1
I

06
I

07
I

0-9

FIG. 3. Bulk and surface electronic bands of a metallic su-

perlattice for Ll ——L2 ——2, y( ——y2, and Zl ——
~ as functions of

E2 or Z2, at the point kl ——k2 ——0 of the two-dimensional Bril-
louin zone. The lines representing the bulk and surface states
have the same meanings as in Fig. 1.

different, namely Z~ ——0.8 and Z2 ——0.3. This gives, with
the help of Eq. (35), E~ E~ —2.54—6y~ a——nd E2 E~-
= l.697y ~. For this case, as y &

——y2
——y, the interface

self-consistency potentials 6& and h2 are zero, but the sur-
face self-consistency potentials 6, differ from zero and
slightly affect the position of the surface states given in
Fig. 2 for 6, =0. For film 1 near the surface, we found
b,,=—0.222y&, and the effect of b,, is to increase the en-
ergies of the surface states, as well as for /o ——2 and 1, by
an amount too sinall to be represented on the scale of this
figure. For film 2 near the surface, we found
b,,=0.148y2 and a small decrease of the energies of the
surface states. These shifts of the surface states were
found to be, at most, of the same order of magnitude as
the values of b„. We also notice in Fig. 2 the small width
of the bulk bands; this is mostly due to the fact that the
bulk bands of the two infinite metals are well separated in
energy, because of the difference between E& and E2.
One can also remark that in this figure all bulk and sur-
face dispersion curves are straight lines with a slope of 2.
Indeed, for y~ ——y2 ——y, g& and gz [Eq. (6b)] and then q
[Eqs. (13) and (14)j are functions of the same parameter,
E/2y&+S, as well as the superlattice Green's functions.
Thus, the results given in Fig. 2 can be obtained by per-
forming the calculation for only one value of S or
(k),k2).

Keeping in mind this property due to y&
——y2 ——y, we
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FIG.- 5. Same as in Fig. 1 for a superlattice having qualita-
tively the parameters of the Mo-Ni system. These parameters
are given in the text.

represented in Fig. 3 the bulk and surface states for
k& ——k2 ——0, as functions of E& —E2 (origin at E~ ——Ez)
and of the difference between the occupation numbers Z&
and Z2 (origin at Z& ———,). When E, =E2, the two metals
are identical and we observe only a folding of the bulk
bands within a smaller Brillouin zone, without any gaps.
When E2 becomes different of E&, the bulk bands shift
apart and surface modes appear within the gaps. We em-
phasize the result that when E& E2 increases (t—he bulk
bands of the two metals having a decreasing overlap in en-
ergy), the width of the bulk bands decreases and these
bulk states become more and more localized within each
film. The effects of self-consistency were neglected.

We also considered examples which can depict qualita-
tively two metallic superlattices already realized. Figure 4
was drawn for parameters corresponding to the order of
magnitude of those of the Nb-Cu superlattice within the
frame of the simple model studied here: @Nb

——1.4yc„,
ZNb ——0.4, and Z« ——0.9; this implies that E~—EF
=0.849yNb and Ecu —EF——2.424@Nb. Figure 5 can, in
the same manner, represent qualitatively the Mo-Ni su-
perlattice, with yM, ——1.2yN;, ZM, ——0.5, and Z» ——0.8,
implying that EM, —E+——0 and E» —E+———2. 121@&.
On these two figures the bulk and surface states are
represented for h~ ——A2 ——6, =0. The values of these
self-consistent potentials were found to be at the inter-

FIG. 6. Dispersion of the bulk bands in function of k3, for
several film widths, namely I.]

——1.2 varies here from 2 to 6;
y, ='1.4yg, Z[ ——Z2 ——

2 (E) ——E2 ——0), and k[ ——kp ——0. The en-

ergies of the surface states are indicated by double-headed ar-
rows (~). The numbers near the position of the surface states
give the decay factor t, [Eq. {12)]of the corresponding wave
function from one elementary cell [(L~+Lp)a ]oto another.

face: ANb ——0.019&Nb Acu=0. 122&CU, »d ~Mo=0~ ~N1
=0.044yN;. Their effect is to decrease the energies of the
surface states by an amount smaller than the values of b.

&

and A2 and one not noticeable on these figures.
Finally, in Fig. 6 we show the effect of an increase of

the thickness of films 1 and 2 on the bulk and surface
states. This study was done for y& ——1.4@2 and Z& ——Z2=0.5, implying that E

&
——E2 ——EI;, and by varying

I. ] ——I 2 from 2 to 6. Letting k& ——k2 ——0, we represent
the dispersion of the bulk bands of the superlattice as a
function of the wave vector k3 perpendicular to the
layers. The dispersion of the bulk bands of the superlat-
tice is important in the energy regions for which the bulk
bands of the two metals overlap; outside these regions the
superlattice bands are almost flat. %'e indicated in Fig. 6,
by double-headed arrows (~), the energies of the surface
states, for k

&
——kz ——0, when a complete film 1 is near the

surface (lo L~). The number ——appearing near the posi-
tion of each surface state gives the value of the parameter
t, [value of t given by Eq. (12) for the surface state]. This
number t, is the decay factor of the Green's function
[Eqs. (15)—(18)], and then also the decay factor of the
wave function associated to the surface state, from one
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elementary cell [(L&+Lz)a0] to the other. The surface
state can be very localized near the surface (small t, ) or it
can decay slowly inside the bulk (t, close to 1) when it lies
close to a bulk band in a narrow gap between two wide
bulk bands.

IV. DISCUSSION

In this paper we obtained, for the first time, surface
electronic states on a simple three-dimensional atomic
model of a metallic superlattice. The simplicity of this
model enables us to derive, in closed form, the bulk and
surface Green's functions for this superlattice. From the
poles of these Green's functions we obtained simple ex-
pressions for the bulk and surface electronic bands of this
metallic superlattice. We also analyzed the case for which
the width of the last surface film was smaller than that of
the corresponding bulk films. A few specific examples il-
lustrate these general results. Of course, the results given
on these examples are qualitative, since real transition
metals are not simple cubic, as in our model, and they
have 5d electrons, s-d coupling, etc. However, some gen-
eral trends can be expected to remain true for more realis-
tic models. The bulk bands of a superlattice are expected
to be almost nondispersive in energy regions, while the
bulk bands of the two constitutive metals do not overlap.
The existence of rather wide gaps between the bulk bands

of a superlattice should also remain for more sophisticat-
ed models, as well as the existence of surface states (and
even more general defect states) within these gaps.
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APPENDIX: BULK GREEN'S FUNCTION
FOR THE SUPERLATTICE

In this appendix we will show how one can obtain the
bulk Green's function D of the metallic superlattice under
study in this paper. We start with the Dyson equation
(10) relating D to the Green's function U of the same in-
finite set of uncoupled films. U was obtained in closed
form [Eqs. (7) and (8)]. The perturbation 5V which cou-
ples all these films together is given by Eq. (9), but, since
we saw in Sec. III that the self-consistent potentials b,

~

and b 2 can be neglected to a good approximation, we set,
for what follows, h~ ——b,z=0 in Eq. (9).

When use is made of the Dyson equation (10), we ob-
tain

I

D(nK!3,n'K'13 ) =5«5+x Ux(l3, 13 ) —y ( 5x ~[U~(l31)D(n —1,2,Lz, n'K'13 )+'U&(l3L
&
)D(n, 2, 1;n', K'13 )]

+5xz[Uz(l31)D(n, 1,L&,'n'K'l3 )+ Uz(13Lz)D(n+1, 1, 1;n'K'l3 )]j, (A1)

where the

Ux(l3l3 ) = Uzr(k~~, l3, l3,E)
g(n, n') = 5„„5zx Uz(Lzl3 )

—y[Uz(11)u(n+ l, n')+ Uz(Lz1)w(n, n')] .

are given by Eq. (7). In order to solve this system of equa-
tions, it is useful to define

(A9)

f(n, n') =D(n21;n'K'l3 ),
g(n, n') =D(n2Lz, n'K'13 ),
u(n, n') =D(n11;n'K'l3 ),
w(n, n') =D(n1L &,

'n'K'l'3 ),

(A2)

(A3) b u(n, n')+Au(n+ I,n')+Bw(n, n')
(A4) + Cw(n —l, n') =Ki(n, n'), (A10)
(A5)

Using the values of f(n, n') and g(n, n') given by Eqs.
(A8) and (A9) in Eqs. (A6) and (A7), one obtains

and also to rewrite Eq. (A1) as the following set of four
equations:

u(n, n') = 5«5&x U& (113 )

b, w(n, n')+Aw(n —l, n')+Bu(n, n')

+ Cu(n+ 1,n') =Kz(n, n'), (A11)

where
—y[U&(11)g(n —l, n') U+~(1L&)f(n, n')],

w(n, n') = 5«5&x' Ui(L&l3 )

—y[U~(L~1)g(n —1,n')+ U~(11)f(n, n')],
(A7)

b, =1—y Ui(11)Uz(11),

A = —y U)(1L) )Uz(1Lz),

8= —y Ui(1L i ) Uz(11),

C = —y 'U) (11)Uz (L z 1),

(A12)

(A13)

(A14)

(A15)

f(n, n')= 5„„5zx Uz(113)

—y[Uz(lLz)u(n+1, n')+ Uz(11)w(n, n')],
(A8) and

K, (n, n') = 5«[5)x U)( il3 ) —y5zx. U, (1L ) ) Uz( 1/3 )]

5n —1,n'y5zK'Ul ( 11 ) Uz(L z
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E2(n, n') = 5„„[5&x'U&(L~ls ) —y52x. U, (11)U2(1/', )] u(n + 1), is used again in Eq. (A10) and finally provides

—5„,„y52x U&(L&1)U2(L2l3) . (A17) w(n+ l, n')+ w(n —l, n') —2gw(n, n')
Now, the value of U(n+ 1) given by Eq. (Al 1) can be in-
serted into Eq. (A10), which yields v(n) as a function of
w(n) and w(n —1). This last expression of U(n), and also where

F1~n —1;n'+F2~nn'+F3~n+1 n' ~ (A18)

1 —2y U, (11)U2(11)+y [U2(11)—U2(IL2)][U)(11)—U, (1L, )]
2' =

y Ui (1L i ) U~(1L2)
(A19)

52K' U2(L2l3 )

y U2(L21)
(A20)

—Ui(L il3 )
F2 ~1K'

y Ut (1L i ) U2(1L2)

U2(11) Ui(11)U, (Lil3 )
Ui(113 )—

U2(1L2) Ui(ILi)

Ui (11)U~( 1l3 ) Ui ( 1 1 ) —U) 1L)
Ui( IL i ) U2(1L2) Ui ( IL 1 )

U2(11)U2( ll3 )

U2(1L2 )
—Up Lpl3 (A21)

F3 ~1K'
U) (11)U) ( 1l3 ) —Ui(L il3 )

Ui ILi
(A22)

h(n+ l, n')+h(n —l, n') —2tih(n, n') =5„„ (A23)

Equation (A18) can be solved, remembering that the solu-
tion of

Returning to Eq. (A18), one obtains

t In —n' —1I+1 tl" "I+'
w(n, n') = F& +F2

t —1 t —1

1S

t I
n —n"I+1

h(n, n') =
t2 —1

where

q —(7) —1)', q & 1

t= tl+i(1 —g )'~, —1&g& 1

g+(g —I)'~, g & —1 .

(A24)

(A25)

t In —n'+1I+1

t2 —1
(A26)

In the same manner, one can obtain each of the four ele-
ments of D appearing in the second member of Eq. (Al),
or even, directly, their linear combination. Finally, one
obtains the elements of the superlattice Green's function
as given by Eqs. (15)—(18), and once use is made of ex-
pression (7) for the films Green's functions Uz, the value
of 2g given by Eq. (A19) reduces to that given by Eq. (14).
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